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Abstract: We consider the linear quadratic differential games for positive linear systems with the feedback infor-
mation structure and two players. The Newton method to obtain the stabilizing solution of a corresponding set
of Riccati equations is presented in the literature. Here, we modify the Newton method and propose a new faster
iterative method. Moreover, the convergence properties of the modification are investigated and the sufficient con-
dition to apply the modification is derived. The performances of the proposed algorithm are illustrated on some
numerical examples.

Key–Words: feedback Nash equilibrium, generalized Riccati equation, stabilizing solution, nonnegative solution.

1 Introduction
The problem to compute the stabilizing nonnegative
solution to the set of Riccati equation is a important
problem with many practical applications. Our in-
vestigation is motivated from the paper of Azevedo-
Perdicoulis and Jank [2], where the problem of find-
ing a deterministic feedback Nash equilibrium for a
two player infinite-horizon linear-quadratic differen-
tial game is studied. This equilibrium is defined as a
pair of linear time-invariant state feedback strategies
stabilizing the closed-loop system. However, the con-
sidered game is studied on positive systems and play-
ers’s strategies are presented via the stabilizing solu-
tion of the associated coupled set of Riccati equations.
Positive systems have attracted much attention as ap-
plications in economics [1, 9], and financial modelling
[7].

Let us introduce some notations we are used in
the paper. Rn×s stands for n × s real matrices. The
inequality X ≥ 0 (X > 0) means that all elements of
the matrix (or vector) X are real nonnegative (pos-
itive) and we call the matrix X nonnegative (posi-
tive). For the matrices A = (aij), B = (bij), we
write A ≥ B(A > B) if aij ≥ bij(aij > bij)
hold for all indexes i and j. The notation X ≥ Y
with X = (X1, . . . , XN ) means that Xi ≥ Yi , i =
1, . . . , N . A matrix A is called asymptotically stable
(or Hurwitz) if the eigenvalues of A have a negative
real part. A symmetric matrixA is called positive def-
inite (semidefinite) matrix if all eigenvalues are posi-
tive (nonnegative). An n × n matrix A is called a Z-

matrix if it has nonpositive off-diagonal entries. Any
Z-matrix A can be presented as A = αI − N with
N being a nonnegative matrix, and it is called a non-
singular M-matrix if α > ρ(N), where ρ(N) is the
spectral radius of N . In addition, a matrix is called
nonnegative (nonpositive) if all of its entries are non-
negative (nonpositive).

We introduce the following set of Riccati equa-
tions:

0 = R1(X1, X2) := −AT X1 −X1A−Q1

+X1 S1X1 −X2 S12X2

+X1 S2X2 +X2 S2X1 ,

0 = R2(X1, X2) := −AT X2 −X2A−Q2

+X2 S2X2 −X1 S21X1

+X2 S1X1 +X1 S1X2 ,

(1)

where A,Q1, Q2 ∈ Rn×n and Q1, Q2 are symmetric
nonnegative matrices, and −A is a Z-matrix.

The concept of a Nash equilibrium in games with
feedback information structure has been introduced
[3, 4]. Following their findings we refer that the de-
terministic feedback Nash equilibria are characterized
by the solutions of a set of coupled algebraic Ric-
cati equations with a stability property. The Newton
method to calculate the nonnegative stabilizing solu-
tion of a coupled system of generalized algebraic ma-
trix Riccati equations in a two-player linear-quadratic
differential game with infinite time horizon is pro-
posed in [2]. In Theorem 8 proved in their paper the
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convergence properties of the Newton method for a
two-player differential game, where the information
structure of each player is of a feedback patten are de-
rived. In fact, the Newton method is considered to find
the stabilizing solution to set (1). In addition, some in-
teresting applications are developed, among them be-
ing the papers of [5, 6, 8].

The Newton method is given by the following set
of recursive equations:

−A(k)TX
(k+1)
1 −X(k+1)

1 A(k)

+W
(k)
12 X

(k+1)
2 +X

(k+1)
2 W

(k)
12

T
= Q

(k)
1 ,

−A(k)TX
(k+1)
2 −X(k+1)

2 A(k)

W
(k)
21 X

(k+1)
1 +X

(k+1)
1 W

(k)
21

T
= Q

(k)
2 ,

(2)

where

A(k) = A− S1X(k)
1 − S2X(k)

2 ,

W
(k)
ij = X

(k)
i Sj −X(k)

j Sij ,

i, j = 1, 2; i 6= j ,

Q
(k)
i = Qi +X

(k)
i SiX

(k)
i −

∑
j 6=iX

(k)
j SijX

(k)
j

+
∑

j 6=i[X
(k)
i SjX

(k)
j +X

(k)
j SjX

(k)
i ] .

(3)

The execution of iteration (2) is required to solve
a set of linear equations of the form in each step:

(
L11 L12

L21 L22

)  vec(X
(k)
1 )

vec(X
(k)
2 )

 =

 vec(Q
(k)
1 )

vec(Q
(k)
2 )


with

L11 = L22 = −In ⊗A(k)T −A(k)T ⊗ In

L12 = −In ⊗W (k)
12

T
−W (k)

12

T
⊗ In

L21 = −In ⊗W (k)
21

T
−W (k)

21

T
⊗ In

where ⊗ is the Kronecker product and the vec opera-
tor stacks the columns of a matrix into a column vec-
tor.

In this paper we will improve the Newton itera-
tion. We introduce a new iterative method for comput-
ing the nonnegative stabilizing solution to (2), where
two sequences of Lyapunov algebraic equations are
constructed. Numerical examples have been intro-
duced so as to demonstrate the effectiveness of the
proposed algorithms. The second method is faster that
the Newton method because it solves the Lyapunov
matrix equations at each iterative step in comparison
with the system of linear equations with high dimen-
sional structure.

2 A new iterative method
We consider the matrix functions R1(X1, X2) and
R2(X1, X2) introduced in (1).

Lemma 1 For the matrix function Ri(X1, X2), i =
1, 2 the following identities hold:

(i) Ri(X1, X2) = AX
T Xi −XiAX

−Qi −Xi SiXi −
∑

j 6=i Xj Sij Xj ,
(4)

with AX = A− S1X1 − S2X2, and

(ii) Ri(X1, X2) = Ri(Z1, Z2, X1, X2) :=

−Qi − Zi Si Zi + (Xi − Zi)Si(Xi − Zi)

+
∑

j 6=i [(Xj − Zj)Sj Xi +Xi Sj(Xj − Zj)]

−AZ
T Xi −XiAZ −

∑
j 6=iXj Sij Xj ,

(5)

where AZ = A − S1 Z1 − S2 Z2 and Zi = ZT
i , i =

1, 2.

Proof: The statements of Lemma 1 are verified by
direct manipulations. ut

We denote Ri(Z,X) the presentation of Ri(X)
through a symmetric matrix Z.

In Theorem 8 Azevedo-Perdicoulis and Jank [[2]]
have proved the convergence properties of the Newton
method for a two-player differential game, where the
information structure of each player is of a feedback
patten are derived. In order to improve the Newton
method we introduce the Lyapunov iterative process,
where the sequences of Lyapunov algebraic equations
are constructed. We put X(k)

2 instead of X(k+1)
2 in

the first equation of (2) and X(k)
1 instead of X(k+1)

1 in
the second equation of (2). We obtain a new iterative
method named the Lyapunov method:

−A(k)TX
(k+1)
1 −X(k+1)

1 A(k) = Q̃
(k)
1

−A(k)TX
(k+1)
2 −X(k+1)

2 A(k) = Q̃
(k)
2 ,

(6)

where

Q̃
(k)
1 = Q1 +X

(k)
1 S1X

(k)
1 +X

(k)
2 S12X

(k)
2

Q̃
(k)
2 = Q2 +X

(k)
2 S2X

(k)
2 +X

(k)
1 S21X

(k)
1 .

(7)

In our investigation we exploit the fact that the
following statements are equivalent for a Z-matrix (-
A):

(a) −A is a nonsingular M-matrix;
(b) In ⊗ (−AT ) + (−AT ) ⊗ In is a nonsingular

M-matrix;
(c) A is asymptotically stable .
The convergence properties of the Lyapunov iter-

ation (6) are established in the following theorem:
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Theorem 2 Assume there exist symmetric nonnega-
tive matrices X̂1, X̂2 and X(0)

1 = 0, X
(0)
2 = 0 such

that Ri(X̂1, X̂2) ≥ 0, and −A is a nonsingular M-
matrix. Then, the matrix sequences {X(k)

1 , X
(k)
2 }∞k=0

defined by (6) satisfies:
(i) X̂i ≥ X(k+1)

i ≥ X(k)
i andRi(X

(k)
1 , X

(k)
2 ) ≤

0 for i = 1, 2 , k = 0, 1, . . .;
(ii) The matrix −A(k) is an M-matrix for k =

0, 1, . . .;
(iii) The matrix sequences {X(k)

1 , X
(k)
2 }∞k=0 con-

verge to the nonpositive solution X̃1, X̃2 to the set of
Riccati equations (1) with X̃i ≤ X̂i and the matrix Ã
is asymptotically stable.

Proof: Using iteration (6) we construct the matrix se-
quences X(1)

1 , X
(1)
2 , X

(2)
1 , X

(2)
2 , . . . , X

(r)
1 , X

(r)
2 .

We will prove by induction the following state-
ments for r = 0, . . .:

(A) Ri(X
(r)
1 , X

(r)
2 ) ≤ 0, i = 1, 2 and the matrix

−A(r) is an M-matrix;
(B) X(r+1)

i ≥ X(r)
i , i = 1, 2;

(C) X̂i ≥ X(r+1)
i , i = 1, 2.

Assume that Ri(X
(k−1)
1 , X

(k−1)
2 ) ≤ 0 and the

matrix −A(k−1) is an M-matrix and X̂i ≥ X
(k)
i ≥

X
(k−1)
i , i = 1, 2. We will prove the statements (A)-

(B)-(C) for r = k.
First, we would prove Ri(X

(k)
1 , X

(k)
2 ) ≤ 0, i =

1, 2 and −A(k) is an M-matrix. Secondly, we would
compute X

(k+1)
1 , X

(k+1)
2 as a unique solution of

(6). Third, we would prove that X̂i ≥ X
(k+1)
i ≥

X
(k)
i , i = 1, 2.

Using identity (5) for Ri(X
(k)
1 , X

(k)
2 ) we present

Ri(X
(k)
1 , X

(k)
2 ) = Ri(X

(k−1)
1 , X

(k−1)
2 , X

(k)
1 , X

(k)
2 ).

However:
−A(k−1)TX

(k)
i −X(k)

i A(k−1) = Qi

+X
(k−1)
i SiX

(k−1)
i +

∑
j 6=iX

(k−1)
j SijX

(k−1)
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We obtain:

Ri(X
(k)
1 , X

(k)
2 )

= +(X
(k)
i −X(k−1)

i )Si(X
(k)
i −X(k−1)

i )

+
∑

j 6=i [(X
(k)
j −X(k−1)

j )Sj X
(k)
i

+X
(k)
i Sj(X

(k)
j −X(k−1)

j )] .

Since Si ≤ 0, i = 1, 2 and hence, together
with X

(k)
i ≥ X

(k−1)
i ≥ 0, i = 1, 2 we infer that

Ri(X
(k)
1 , X

(k)
2 ) ≤ 0 , i = 1, 2.

Next, we will prove that −A(k) is an M-matrix.
We consider the difference

Ri(X
(k)
1 , X

(k)
2 )−Ri(X̂1, X̂2)

= Ri(X
(k)
1 , X

(k)
2 )−Ri(X

(k)
1 , X

(k)
2 , X̂1, X̂2)

= −A(k)T (X
(k)
i − X̂i)− (X

(k)
i − X̂i)A

(k)

−
∑

j 6=i [(X̂j −X(k)
j )Sj X̂i + X̂i Sj(Xj −X(k)

j )] ,

and therefore

−A(k)T (X
(k)
i − X̂i)− (X

(k)
i − X̂i)A

(k)

= Ri(X
(k)
1 , X

(k)
2 )−Ri(X̂1, X̂2)

+
∑

j 6=i [(X̂j −X(k)
j )Sj X̂i + X̂i Sj(X̂j −X(k)

j )] .

Since Ri(X̂1, X̂2) ≥ 0,Ri(X
(k)
1 , X

(k)
2 ) ≤ 0 and

Si ≤ 0, i = 1, 2 and hence, together with X̂ ≥
X(k) ≥ 0 we infer that the right hand of the above
identity is nonpositive. Therefore, the matrix −A(k)

is an M-matrix.
Thus, we can apply the recursive equation (6) to

find the matrix X(k+1)
1 , X

(k+1)
2 . We will prove X̂i ≥

X
(k+1)
i , i = 1, 2. After some matrix manipulations

we obtain

−A(k)T (X
(k+1)
i − X̂i)− (X

(k+1)
i − X̂i)A

(k)

= −Ri(X̂1, X̂2)

+(X̂i −X(k)
i )Si(X̂i −X(k)

i )

+
∑

j 6=i [(X̂j −X(k)
j )Sj X̂i + X̂i Sj(Xj −X(k)

j )] .

Now let us analyze the last set of matrix equa-
tions. The matrix −A(k) is an M-matrix. The right-
hand side of each equation is nonpositive. Thus
X

(k+1)
i − X̂i ≤ 0 , i = 1, 2 and X̂ ≥ X(k+1).

For proving X(k+1) ≥ X(k) we consider the iden-
tity:

−A(k)T (X
(k)
i −X(k+1)

i )− (X
(k)
i −X(k+1)

i )A(k)

= Ri(X
(k)
1 , X

(k)
2 )

Since Ri(X
(k)) is a nonpositive matrix and −A(k) is

an M-matrix we obtain X(k)
i −X(k+1)

i ≤ 0, i = 1, 2.
Thus X(k+1) ≥ X(k). Hence, the induction process
has been completed.

Thus the matrix sequences {X(k)
1 , X

(k)
2 }∞k=0 are

monotonically increasing and bounded above by
(X̂1, X̂2) (in the elementwise ordering). We denote
limk→∞(X

(k)
1 , X

(k)
2 ) = (X̃1, X̃2). By taking the
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limits in (6) it follows that (X̃1, X̃2) is a solution of
Ri(X) = 0, i = 1, 2 with the property (X̃1, X̃2) ≤
(X̂1, X̂2) and −Ã is an M-matrix and therefore Ã is
asymptotically stable.

ut

3 Numerical examples
We carry out some numerical experiments for com-
puting the stabilizing solution to the set of generalized
Riccati equations (1). The Newton method (2) and the
Lyapunov method (6) are applied and compared on
some examples.

We consider a two-player game where the matrix
coefficients: A,Bi, Qi and Rij for i, j = 1, 2 are the
following. We define them using the Matlab descrip-
tion.

B1=full(abs(sprandn(n,4,0.7))/10);
B2=full(abs(sprandn(n,3,0.7))/10);
R11 = [-400 0 0 -40; 0 -150 0 0; 0 0 -300 0;

-40 0 0 -300];
R22 = [-90 0 0; 0 -120 -5; 0 -5 -120];
R12 = [220 190 190; 190 180 22;

190 22 190];
R21 = [100 88 0 99; 88 250 190 0;

0 190 240 130; 99 0 130 300];
Q1=0.375*eye(n,n); Q1(1,n)=0.45;

Q1(n,1)=0.45;
Q2=0.285*eye(n,n); Q2(1,n)=1.5;

Q2(n,1)=1.5;
Test 1: A=(abs(rand(n,n))/1-7*eye(n,n))/10;
Test 2: A=(abs(rand(n,n))/1-15*eye(n,n))/10;
The latter example is executed for different values

of n, also 100 runs are completed for each values of
n.

The latter tests are executed Test 1 for n=12 and
100 runs; Test 2 for n=27 for 30 runs. We takeX(0)

1 =

X
(0)
2 = 0 and thus Ri(X

(0)) = −Qi ≤ 0 (i.e. the
matrix is nonpositive). Regrading the outlined choice,
we might note that the conditions of theorem 2 are
fulfilled, i.e. X(0) ≤ X̂, Ri(X

(0)) ≤ 0 and Ri(X̂) ≥
0, i = 1, 2 .

On the basis of the experiments, performed for
n = 12, the following summary of results might be
outlined. The Newton iteration (2)-(3) requires 3 it-
eration steps while finding the stabilizing nonnega-
tive and positive definite solution X̃N for each run.
Yet, the Lyapunov iteration (6)-(7) requires 8 iteration
steps so as to find the stabilizing nonnegative and pos-
itive definite solution X̃L. The CPU time is 0.88s and
and 0.5s respectively for executing the Newton iter-
ation with 100 runs and the Lyapunov iteration with
100 runs.

Considering our results obtained for Test 2 with
n = 27, we could summarize that the Newton itera-
tion (2)-(3) requires 3 iteration steps while finding the
stabilizing nonnegative and positive definite solution
X̃N . On the other hand, the Lyapunov iteration (6)-
(7) requires also once again 8 iteration steps so as to
find the stabilizing nonnegative and positive definite
solution X̃L. Neverthelss, the CPU time for execut-
ing the Newton iteration with 30 runs is 22.4s and it is
found to be 0.6s for the Lyapunov iteration .

4 Conclusion
We study the Lyapunov iterative process for finding
the nonnegative stabilizing solution to a set of Riccati
equations (1). The convergence properties of the Lya-
punov method is derived in Theorem 2. Numerical ex-
periments are carried out and the obtained results are
used for comparison purposes. Thus, the following
conclusions might be outlined. On one hand, the ef-
fectiveness of the proposed new iterative method (6)-
(7) is confirmed. The Lyapunov iterative process is
found to be faster than the Newton iteration, thus the
new Lyapunov method represents an acceptable alter-
native to compute the nonnegative stabilizing solution
to (1).
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