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Abstract: The problem of change detection and data segmentation has received considerable attention during the
last two decade in a research context and appears to be the central issue in various application areas. The following
techniques are investigated in the paper for their performance evaluation: filtering techniques with a whiteness
test, techniques based on sliding windows and distance measures and maximum likelihood techniques for data
segmentation. The used model will be the simplest extension of linear regression models to data with abruptly
changing properties, or piecewise linearizations of non-linear models. Finally, some Monte-Carlo simulations for
change detection and data segmentation are presented, to evaluate the performance of these algorithms in a number
of cases.

Key–Words:Change detection, segmentation, filtering, maximum likelihood, distance measures, Monte-Carlo sim-
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1 Introduction

The problem of change detection and data segmen-
tation has gained considerable attention during the
last two decades in a research context and appears
to be the central issue in various application areas.
In this framework, the problem of segmentation be-
tween ”homogenous” parts of the data (or detection
of changes in the data) arises more or less explicitly.

The proposed problem formulation assumes the
off-line or batch-wise data processing, although the
solution is sequential in data and an on-line data pro-
cessing can be used. The following techniques are
investigated in the paper: filtering techniques with a
whiteness test, techniques based on sliding windows
and distance measures, and maximum likelihood tech-
niques for data segmentation.

The presented approaches have been evaluated by
Monte-Carlo simulation for change detection in the
mean of a signal, change detection in the parameters
of an autoregressive model with exogenous variable
(ARX) model and for analysis of the robustness prop-
erties of the algorithms. Based on the obtained results
it can be noted that the performances of the maximum
a posteriori probability (MAP) method are superior to
the other investigated approaches.

2 Problem Formulation

We introduce now the general change detection and
segmentation problem for linear regression model
with piecewise constant parameters. The goal is to
find a sequence of time indiceskn = k1, k2, . . . , kn,
where both the numbern and the locationski are un-
known, such that a linear regression model with piece-
wise constant parameters,

yt = φT
t θ(i) + et, E(e2

t ) = λ(i)Rt (1)

whenki−1 < t ≤ ki is a good description of the ob-
served signalyt. Hereθ(i) is thed-dimensional pa-
rameter vector in segmenti, φt is the regressor and
ki denotes the change times. The noiseet is assumed
to be Gaussian with varianceλ(i)Rt, whereλ(i) is a
possibly segment dependent scaling of the noise and
Rt is the nominal covariance matrix of the noise. We
can think of λ either as a scaling of the noise vari-
ance or variance itself (Rt = 1). Neitherθ(i) or λ(i)
are known. The Gaussian assumption on the noise is
a standard one, partly because it gives analytical ex-
pressions and partly because it has proven to work
well in practice. We will assumeRt to be known
and the scaling as a possibly unknown parameter. The
model (1) is referred to as changing regression, be-
cause it changes between regression models. Its im-
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Figure 1: Change detection based on a whiteness test
for filter residuals

portant feature is that the jumps divide the measure-
ments into a number of independent segments, since
the parameter vectors in different segments are inde-
pendent.

The assumption on the regression models in (1)
is not too restrictive since many stationary processes
encountered in practice can be closely approximated
by such models. The identification and parameters
estimation methods represent only tools to perform
change detection and segmentation. Good and precise
models offers high performance in these schemes, but
also biased parametric models can be used for change
detection and segmentation. This bias decreases, but
does not annihilate the performance of the detection
and segmentation procedures. Some important cases
of the model (1) are the changing mean model, the
autoregressive (AR) model, the autoregressive model
with exogenous variable (ARX) and finite impulse re-
sponse (FIR) model, etc, whereφt has different ex-
pressions.

3 Approaches
Several methods for change detection and data seg-
mentation have been suggested earlier, see e.g. [1],
[2], [3], among others. They typically employ multi-
ple detection algorithms, hidden Markov models, ex-
plicit management of multiple model, AFMM (adap-
tive forgetting by multiple models), or formulate the
segmentation problem as a least-squares problem with
sum-of-norm regularization over the state parameter
jumps. We present in the following three class of ap-
proaches for change detection and segmentation.

3.1 Change detection based on filtering
One useful approach for change detection consists in
filtering of the observed data through a known or iden-
tified AR filter, and in looking for changes in the resid-
ual signal of innovations,{ǫt}. Actually, the use of
cusum techniques based upon the innovations (one-
step prediction errors) ,{ǫt}, or the squared innova-
tions, {ǫ2

t }, is a standard approach for change detec-
tion in AR models. Such a technique, based upon
{ǫ2

t } is based upon the fact that, before the change
E(ǫ2

t ) = σ1 and thus:E(ǫ2
t /σ1 − 1) = 0.

To conclude, statistical whiteness tests can be
used to test if the residuals are white noise as they
should be if there is no change. Fig. 1 shows the ba-
sic structure, where the filter residuals are transformed
to a distance measure, that measures the deviation
from the no-change hypothesis. Thestopping rulede-
cides whether the deviation is significant or not. The
most natural distances are the following, [1], change
in the meanst = ǫt, change in variancest = ǫ2

t − λ,
with λ known, change in correlationst = ǫtyt−k or
st = ǫtut−k for somek, and change in sign correla-
tion, st = sign(ǫtǫt−1).

The main problem in statistical change detection
is to decide what ”large” are these distances. Many
change detection algorithms can be recast into the
problem of deciding on the following two hypotheses:

H0 : E(st) = 0, H1 : E(st) > 0

wherest is adistance measure. A stopping rule is
essentially achieved by low-pass filteringst and com-
paring this value to a threshold. Below, two such low-
pass filters are given:

• The CUmulative SUM (CUSUM) test of Page:

gt = max(gt−1 + st − ν, 0), change if gt > h

Thedrift parameterν influences the low-pass ef-
fect, and thethreshold h(and alsoν) influences
the performance of the detector.

• The Geometric Moving Average (GMA) test:

gt = λgt−1 + (1 − λ)st, change if gt > h.

Here, the forgetting factorλ is used to tune the
low-pass effect, and the thresholdh is used to
tune the performance of the detector. Using no
forgetting at all (λ =0), corresponds to threshold-
ing directly, which is one option.

It seems that classical approach consisting in test-
ing how much the sequence of innovations ,{ǫt} is far
from hypothesis ”zero-mean white noise” is not suffi-
cient for change detection in practice.

3.2 Change detection based on sliding win-
dows and distance measures

The main idea underlying this approach consists in
comparison of two models: a model (M2), based on
data from a sliding window of sizeL (yt−L+1, . . . , yt)
is compared to a model (M1) based on all data or
a substantially larger sliding window (y1, y2, . . . , yt),
[2]:
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Data: y1, y2, . . . , yt−L+1, . . . , yt︸ ︷︷ ︸
M1

Data: y1, y2, . . . , yt−L+1, . . . , yt︸ ︷︷ ︸
M2

If the model based on the larger data window
gives larger residuals

‖ǫ1
t ‖ > ‖ǫ2

t‖ (2)

then a change is detected. The problem here is to
choose a norm that corresponds to a relevant statis-
tical measure. Some norms that have been proposed
are:

• The Generalized Likelihood Ratio (GLR).

• The divergence test.

• Change in spectral distance. There are many
methods to measure the distance between two
spectra. One approach would be to compare the
spectral distance of two models.

These criteria provide anst to be put into a stop-
ping rule for instance, the CUSUM test. The choice of
window sizeL is very critical here. On the one hand,
a large value is need to get an accurate model in the
sliding window and, on the other hand, a small value
is needed to get quick detection.

Concerning the distance functions presented
above, we will give in the following their expressions.

In Basseville and Benveniste, [2], two different
test statistics for the case of two different models are
given. A straightforward extension of the generalized
likelihood ratio test leads to:

dGLR = L log
σ1

σ2

+
(yt − φT

t θ1)
2

σ1

−
(yt − φT

t θ2)
2

σ2

(3)
This test statistic will be referred as Brandt’s GLR

test.
To measure the distance between two models, any

norm can be used. So, the Kullback discrimination in-
formation, [4], between two probability density func-
tionsp1 andp2 is defined as:

I(1, 2) =

∫
p1(x) log

p1(x)

p2(x)
dx ≥ 0 (4)

In the special case of Gaussian distribution

pi(x) = N(θ̂i, Pi)

we get

I(1, 2) =
1

2
tr(P−1

2 P1−I)+
1

2
(θ̂1−θ̂2)

T P−1
2 (θ̂1−θ̂2)−

−
1

2
log

(
detP1

detP2

)
(5)

The Kullback information is not a norm (it is not
symmetric) and is not suitable as a distance measure.
Instead, Kullback divergence is used:

V (1, 2) = I(1, 2) + I(2, 1) ≥ 0 (6)

From Kullback divergence, the divergence test
can be derived and it equals:

dDIV = L

(
σ1

σ2

− 1

)
+

(
1 +

σ1

σ2

)
(yt − φT

t θ1)
2

σ1

−

− 2
(yt − φT

t θ1)(yt − φT
t θ2)

σ2

(7)

The corresponding algorithm will be called the di-
vergence test.dGLR anddDIV start to grow when a
jump has occurred, and again the task of the stopping
rule is to decide whether the growth is significant.

3.3 Maximum a posteriori probability esti-
mator

We use in the following the general segmentation
problem for linear regression model with piecewise
constant parameters. As we mentioned before, in seg-
mentation the goal is to find a sequence of time indices
kn = k1, k2, . . . , kn, where both the numbern and the
locationski are unknown, such that a linear regression
model with piecewise constant parameters (1).

One way to guarantee that the best possible so-
lution is found is to consider all possible segmenta-
tion kn, estimate one linear regression model in each
segment, and then choose the particularkn that mini-
mizes an optimality criteria:

k̂n = arg min
n≥1,0<k1<...<kn=N

V (kn) (8)

For the measurements in theith segment, that is
yki−1+1, . . . yki

= yki

ki−1+1
, the least square estimate

and its covariance matrix are denoted:

θ̂(i) = P (i)
ki∑

t=ki−1+1

φtR
−1
t yt, (9)

P (i) =




ki∑

t=ki−1+1

φtR
−1
t φT

t




−1

. (10)
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The following quantities,V - the sum of squared
residuals,D - − log det of the covariance matrixP
andN - the number of data in each segment, are given
by

V (i) =
ki∑

t=ki−1+1

(yt − φT
t θ̂(i))T R−1

t (yt − φT
t θ̂(i))

(11)

D(i) = − log det P (i) (12)

N(i) = ki − ki−1 (13)

and represent sufficient statistics in each segment. The
data and quantities used in segmentation procedure
are shown in Table 1.

Table 1: Data and quantities used in MAP procedure
Data y1, y2, . . . , yk1

. . . ykn−1+1, . . . , ykn

Segm. Segment 1 . . . Segment n
LS est. θ̂(1), P (1) . . . θ̂(n), P (n)
Stat. V (1), D(1), N(1) . . . V (n), D(n), N(n)

Note that the segmentationkn hasn − 1 degrees
of freedom. Two types of optimality criteria have
been mainly proposed in this field: statistical crite-
ria (Maximum Likelihood (ML) or Maximum A pos-
teriori Probability estimate (MAP)) and information
based criteria. The main problem in segmentation is
the dimensionality. The number of segmentationskn

is 2N (can be a change or no change at each time in-
stant).

We give now the conceptual description of the
Maximum a posteriori probability (MAP) estimator,
[1], for the data and quantities given in Table 1:

1. Examine every possible segmentation, parame-
terized in the number of jumpsn and jump times
kn, separately.

2. For each segmentation, compute the best mod-
els in each segment parameterized in the least
square estimateŝθ(i) and their covariance matri-
cesP (i).

3. Compute in each segment the sum
of squared prediction errorsV (i) and
D(i) = − log det P (i).

4. The MAP estimate of the model structure for the
three different assumptions on noise scaling ((i)
known λ(i) = λ0, (ii) unknown but constant
λ(i) = λ and (iii) unknown and changingλ(i)
is given by the following equations, [1]:

k̂n = arg min
kn,n

n∑

i=1

(D(i) + V (i)) + 2n log
1 − q

q

k̂n = arg min
kn,n

n∑

i=1

D(i) + (Np − nd − 2) ×

× log
n∑

i=1

V (i)

Np − nd − 4
+ 2n log

1 − q

q

k̂n = arg min
kn,n

n∑

i=1

(D(i) + (N(i)p − d − 2) ×

× log
V (i)

N(i)p − d − 4
) + 2n log

1 − q

q

respectively. The user can assume a fixed probability
q of jump at each new time instant.

Computing the exact likelihood is computation-
ally intractable because of the exponential complex-
ity. Some algorithms implementing recursive lo-
cal search techniques and numerical searches based
on dynamic programming or MCMC (Markov Chain
Monte Carlo) techniques are given in [1].

4 Simulation Results
We present in the following some simulation results
obtained by Monte Carlo simulation for different sig-
nal models including only models with changes in the
mean, ARX model parameters, and robustness eval-
uation when the following techniques have been in-
vestigated: filtering techniques with a whiteness test,
using the Cumulative Sum (CUSUM), and Geometric
Moving Average (GMA), techniques based on sliding
windows and distance measures, using Generalized
Likelihood Ratio (GLR) and Divergence Test (DIV),
and MAP estimator with unknown and constant noise
scaling, when MCMC numerical search procedure has
been used.

4.1 Change detection in the mean of a signal

The results are obtained by Monte-Carlo simulation,
for 1000 noise realizations, in the case of a piecewise
constant mean model, having the following structure:

yt = θ(i) + et (14)

whereet is a random sequence of zero mean and vari-
ance E(e2

t ) = λσ2
t , with σ2

t = 1, for each experi-
ment. The model parameters are given in Table 2.
The change detection results for different level of the
noise,λ, are given in Table 3 for filtering approach, in
Table 4 for sliding windows approach and in Table 5,
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for MAP approach with unknown and constant noise
scaling and MCMC algorithm (with a value of jump
probability,q = 0.3), respectively; the results represent
the number of the real change instants detected (0 de-
lay in detection). The problem of change detection in
the mean of a signal is used in ”local approach”, [2],
where the general detection problem is reduced to a
classical problem of monitoring the mean of a Gaus-
sian vector variable.

Table 2: Mean model parameters
i 1 2
Segmenti 1-100 101-200
θ(i) 1.0 2.0

Table 3: Change detection in mean: Filtering
Exp. λ GMA CUSUM

1 0.01 806 976
2 0.04 615 685
3 0.09 603 603
4 0.25 555 560

Table 4: Change detection in mean: Sliding windows
Exp. λ Brand GLR DIV

1 0.01 986 918
2 0.04 902 764
3 0.09 787 674
4 0.25 333 337

Table 5: Change detection in mean: MAP
Exp. λ MAP

1 0.01 1000
2 0.04 990
3 0.09 878
4 0.25 637

4.2 Change detection in parameters of an
ARX model

.
The ARX model used has the following structure:

yt = −a1(i) ∗ yt−1 − a2(i) ∗ yt−2 +

+ b1(i) ∗ ut−1 + b2(i) ∗ ut−2 + et (15)

whereet is a random sequence of zero mean and vari-
anceE(e2

t ) = λσ2
t , with σ2

t = 1, for each experiment.

Table 6: ARX(2,2,1) model parameters
i 1 2 3

Segmenti 1-100 101-200 201-300
a1(i) 1.5 1.5 1.5
a2(i) 0.8 0.8 0.6
b1(i) 2. 2. 2.
b2(i) 0.5 1. 1.

The model parameters are given in Table 6; the input
ut was a random signal of mean zero and variance 1.

As in the previous case, the experiments were per-
formed, for constant value ofλ in each experiment.
The change detection results for different level of the
noise,λ, are given in Table 7, for filtering approach, in
Table 8 for sliding windows approach and in Table 9,
for MAP approach with unknown and constant noise
scaling and MCMC algorithm (with a value of jump
probability,q = 0.3), respectively; the results are given
under the the form of the number of the real change
instants detected (0 delay in detection).

Table 7: Change detection in ARX(2,2,1): Filtering
Exp. λ GMA CUSUM

1st ch. 2nd ch. 1st ch. 2nd ch.
1 0.01 313 398 585 719
2 0.04 247 292 298 385
3 0.09 176 222 189 248
4 0.25 164 168 180 169

Table 8: Change detection in ARX(2,2,1): Sliding
windows

Exp. λ Brand GLR DIV
1st ch. 2nd ch. 1st ch. 2nd ch.

1 0.01 158 199 195 184
2 0.04 93 136 118 176
3 0.09 42 111 66 119
4 0.25 18 65 26 57

Table 9: Change detection in ARX(2,2,1): MAP
Exp. λ MAP

1st ch. 2nd ch.
1 0.01 729 834
2 0.04 512 638
3 0.09 327 490
4 0.25 173 227

4.3 Robustness evaluation

The robustness of the algorithms to the model struc-
ture, has been tested, also by Monte Carlo simulation,
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for an underestimated model order ARX (1,1,1) and
for an overestimated model order ARX(3,3,1). It re-
sulted that the performances are affected, when the
model order is underestimated, for all methods, es-
pecially when the noise level increases. If the model
order is overestimated, the performances are not af-
fected to a great extend for MAP segmentation proce-
dure. The results are given in Table 10, Table 11 and
Table 12, for filtering, sliding windows and MAP ap-
proach with unknown and constant noise scaling and
MCMC algorithm (q = 0.3), respectively. As in the
previous cases, the results are given under the form
of the number of the real change instants detected (0
delay in detection). So, when no information on the
model order is available, the best solution is to use an
high-order model to perform signal segmentation.

Table 10: Change detection with ARX(3,3,1): Filter-
ing

Exp. λ GMA CUSUM
1st ch. 2nd ch. 1st ch. 2nd ch.

1 0.01 321 400 559 725
2 0.04 227 253 286 357
3 0.09 152 173 182 214
4 0.25 116 142 138 170

Table 11: Change detection with ARX(3,3,1): Sliding
windows

Exp. λ Brand GLR DIV
1st ch. 2nd ch. 1st ch. 2nd ch.

1 0.01 71 146 100 132
2 0.04 48 108 678 138
3 0.09 23 111 40 100
4 0.25 11 56 14 64

Table 12: Change detection with ARX(3,3,1): MAP
Exp. λ MAP

1st ch. 2nd ch.
1 0.01 739 812
2 0.04 484 606
3 0.09 275 422
4 0.25 132 214

5 Conclusions
The paper gives the conceptual description of some
change detection and data segmentation algorithms
based on filtering, sliding windows and likeli-
hood techniques and evaluates their performances by
Monte-Carlo simulation. Based on the obtained re-
sults it can be noted that the performances of the MAP
segmentation approach are superior to the other ap-
proaches investigated, but with the price of the com-

putation effort. The performances of the filtering, slid-
ing windows and distance measures approaches de-
pend to a great extend of the choosing of the design
parametersν andh. The single design parameter in
MAP segmentation isq, the probability that the sys-
tem jumps at each sample. Other design parameters
(see [6]) could be chosen without problems. Some
practical applications of the presented approaches in
seismic signal processing and vibration signal analy-
sis are given in [6] and [5], [7], respectively.
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