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Abstract: In this work we establish an optimal test for checking the appropriateness of a spatial regression model.
In the study of model check for regression, the correctness of an assumed model is investigated by the partial sums
of the residuals. In this work an inverted procedure is proposed in that we firstly embed the observation into a
partial sums process to get the corresponding asymptotic regression model. Instead of considering the residuals of
the model, we derive the Cameron-Martin density of the observation. For simple hypotheses underH0 as well as
underH1 we derive the Neyman-Person test based on the ratio of the densities underH0 andH1. Interestingly, the
rejection region can be exactly computed as an integral with respect to the partial sums process of the observation.
An application of the procedure to a real data is also discussed.
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1 Introduction

The application of partial sums method in spatial re-
gression has been studied in many literatures. Mac-
Neill and Jandhyalla [16] and Xie and MacNeill [23]
utilized respectively the ordinary and set-indexed par-
tial sums of the spatial least squares residuals of poly-
nomial regressions in detecting the existence of a
boundary in the experimental region. They derived
the limit process by adopting the technique proposed
in MacNeill [14, 15]. Recently Somayasa and at al.
[20, 21] developed asymptotic method in model check
for spatial regression based on the set-indexed par-
tial sums of the residuals. By considering an equally
spaced experimental design (regular lattice) as the
experimental design they obtained the limit process
which is a functional of the set-indexed Brownian sheet
by extending the geometric approach of Bischoff [7],
Bischoff and Somayasa [9] and Somayasa [18] and by
applying the existing uniform central limit theorem in-
vestigated in Alexander and Pyke [1] and Pyke [17].

In this paper we establish asymptotic model-check
for spatial regression by proposing a different approach
in that instead of considering the partial sums of the
residuals we firstly attach the observations into the set-
indexed stochastic process (random function). Next we
derive Neyman-Pearson test procedure which is most
powerful test based on the ratio of the density func-

tions of the processes under the hypotheses. In con-
trast to the methods studied in the literatures mentioned
above in this paper we use unequally spaced experi-
mental design obtained by sampling the observations
according to a probability measure, see Bischoff [6]
and Somayasa [19]. So that from the practical view
our proposed method seems to be more flexible in the
sense of economic, technical or ecological reasons.

Let us consider a spatial regression model

Y (x) = g(x) + ε(x), x ∈ D ⊂ Rd,

whereg is an unknown function of bounded variation
on the experimental regionD andε is unobserved ran-
dom error withE(ε(x)) = 0 andV ar(ε(x)) = σ2 > 0
for everyx ∈ D. In this paper we restrict the consider-
ation to the experimental region given by a two dimen-
sional rectangleD := [a1, a2] × [b1, b2], for a1 < a2

andb1 < b2. Result for higher dimensional rectangle
can be obtained immediately. Given a probability mea-
sureP0 on the Borelσ-algebraB(D) we construct the
experimental design

Ξn := {(tn`, snk) : 1 ≤ `, k ≤ n}
onD by performing a sampling procedure according to
the method proposed in [19]. By this sampling scheme
Ξn is not necessarily a regular lattice, unlessP0 is a
uniform probability measures onB(D). Let Pn be a
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discreteprobabilitymeasureonB(D) associated toΞn

defined by

Pn(B) :=
1
n2

n∑

`=1

n∑

k=1

δ(tn`,snk)(B), B ∈ B(D),

where for a fixed(tn`, snk) ∈ Ξn, δ(tn`,snk) is the Dirac
measure in the point(tn`, snk), see Bauer [4]. We note
thatPn can also be equivalently written as

Pn(B) :=
1
n2

n∑

`=1

n∑

k=1

1B(tn`, snk), B ∈ B(D),

where1B is the indicator function ofB. By this sam-
pling scheme we get the property thatPn ⇒ P0 as
n → ∞. Throughout the paper⇒ stands for the con-
vergence in distribution in the sense of Billingsley [5].

Let W and V be finite dimensional
spaces defined byW := [f1, . . . , fp] and
V := [f1, . . . , fp, fp+1, . . . , fm], p ≤ m, where
f1, . . . , fp, fp+1, . . . , fm are known regression func-
tions which are assumed to be orthogonal as functions
in L2(D, P0), whereL2(D, P0) is the space of squared
integrable functions onD with respect toPo. Suppose
g is decomposable asg = g1 ⊕ g2, whereg1 ∈ W
andg2 ∈ V ∩ WC , such that〈g1, g2〉L2 = 0, where
WC is the complement ofW. It is the purpose of the
present paper to develop an optimal test procedure for
the hypotheses

H0 : g ∈ W against H1 : g ∈ V (1)

so that upon testing the hypotheses it can be concluded
whetherf1, . . . , fp is adequate or we additionally need
fp+1, . . . , fm for representingg. By the assumption,
testing (1) is equivalent to the problem of testing the
following

H0 : g2 ≡ 0 against H1 : g2 ≡ f, (2)

for some functionf ∈ V ∩ WC . Thus we consider
underH0 as well asH1 simple hypotheses.

Let Y (Ξn) := {Y (tn`, snk) : 1 ≤ `, k ≤ n} be
the array of independent observations ofY over Ξn,
such that

Y (Ξn) = g(Ξn) + ε(Ξn), (3)

whereg(Ξn) := (g(tn`, snk))
n,n
`=1,k=1 ∈ Rn×n, and

ε(Ξn) := (ε(tn`, snk)
n,n
`=1,k=1 is an n × n matrix of

random errors having independent and identically dis-
tributed components withE(ε(tn`, snk)) = 0 and
V ar(ε(tn`, snk)) = σ2 > 0, for 1 ≤ `, k ≤ n. In
the classical study an approach for testing (1) and (2)
has been proposed by Arnold [2] and Arnold [3] by in-
vestigating the ratio between the length of the residual

of the observation of Model 3 underH0 and underH1.
In [19] the limit process of the ordinary partial sums
process of the residual was investigated.

In this paper we embed the observations into a
stochastic process using the set-indexed partial sums
operator defined below. Beforehand we give a formal
definition of set-indexed Brownian sheet.

Definition 1 (Gaenssler [10]) LetA ⊂ B(D) be
a Vapnik-Chervonenkis class (VCC) of subsets of
D. A pseudo metricdP0 on A × A is defined by
dP0(A1, A2) := P0(A14A2). Let `∞(A) be a subset
ofA defined by

`∞(A) =

{
w : A → R| ‖w‖A := sup

A∈A
|w(A)| < ∞

}

Furthermore letU b(A, dP0) be the space of functions
in `∞(A) that is dP0-uniformly continuous. A cen-
tered Gaussian processWP0 := {WP0(A), A ∈ A}
is calledA-indexed Brownian sheet (Gaussian white
noise) with the control measureP0 if and only if for
every A,B ∈ A, E(WP0(A)WP0(B)) = P0(A ∩
B). The sample paths ofWP0 are concentrated in
U b(A, dP0). The properties ofWP0 is summarized be-
low:

1. V ar(WP0(A)) = P0(A), ∀A ∈ A.

2. If A1, . . . , An are disjoint, then the random vari-
ablesWP0(A1), . . . ,WP0(An) are mutually inde-
pendent.

3. If A1, . . . , An are disjoint, then

n∑

j=1

WP0(Aj) = WP0




n⋃

j=1

Aj


 , a.s.

Definition 2 An operatorSn : Rn×n → `∞(A), de-
fined by

Sn(An×n)(B) :=
1
n

n∑

`=1

n∑

k=1

1B(tn`, snk)a`k,

for everyAn×n = (a`k)
n,n
k=1,`=1 ∈ Rn×n andB ∈ A

is calledA-indexed partial sums operator. See also
Gaenssler [10].

Theorem 3 Let ε(Ξn) := (ε(tn`, snk))
n,n
`=1,k=1 in

Model 3 consist of independent and identically dis-
tributed random variables withE(ε(tn`, snk)) = 0
andV ar(ε(tn`, snk)) = σ2, n ≥ 1. Then we have

1
σ
Sn(ε(Ξn))(·) ⇒WP0(·), as n →∞.
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Proof: Werefer the reader to Gaenssler [10].

Based on the reason thatg ∈ W is equivalent to
1
ng ∈ W for all n ≥ 1, we test the hypotheses by
observing the localized version of (3) defined by

Y loc(Ξn) =
1
n

g(Ξn) + ε(Ξn). (4)

Then by the linearity ofSn, we have

Sn(Y loc(Ξn)) = Sn(
1
n

g(Ξn)) + Sn(ε(Ξn)).

Since g has bounded variation onD it can be eas-
ily shown that 1

σSn( 1
ng(Ξn)) converges uniformly to

1
σϕg ∈ `∞(A), whereϕg(A) :=

∫
A g(t, s)P0(dt, ds),

for anyA ∈ A. Thus combining this result with Theo-
rem 3 we get

1
σ
Sn(Y loc(Ξn))(·) ⇒ Y :=

1
σ

ϕg(·) +WP0(·).

The last result shows that the partial sums of the lo-
calized model can be approximated byY which is a
signal plus noise model with the signalϕg(·) and the
noiseWP0 . Hence the problem of testing the hypoth-
esisH0 : g2 ≡ 0 can be handled by observing the
asymptotic modelY and considering the hypothesis
H0 : ϕg2 ≡ 0, since= ϕg(·) = ϕg1(·) + ϕg2(·). This
test problem will be the main objective of the current
work. Without loss of generality we assumeσ2 = 1.

The rest of the present paper is organized as fol-
lows. In Section 2 we investigate the Cameron-Martin
formula for the density ofY. For that we adopt the
technique proposed in Bischoff and Gegg [8] which is
inspired by the work of Lifshit [13]. In Section 3 we
establish the uniformly most powerful test for testing
the hypotheses formulated above. Application of the
test procedure will be presented in Section 4. We also
present conclusion and remark for future work at the
end of the paper.

2 Cameron-Martin Formula for the
A-Indexed Gasussian Sheet

First we derive the reproducing kernel Hilbert space
(RKHS) ofWP0 which plays important role through-
out the work. LetJ : L2(D, P0) → U b(A, dP0) be
a linear operator defined by(J`)(A) :=

∫
A ` dP0.

ThenJ is injective. The dual space ofU b(A, dP0) is
given by the space of signed measure onA, denoted
by U b∗(A, dP0). The duality is defined by〈µ, f〉 :=∫
D f dµ, for (µ, f) ∈ U b∗(A, dP0) × U b(A, dP0).

Next we define the operatorJ∗ : U b∗(A, dP0) →
L2(D, P0), defined by(J∗µ)(x, y) = µ([x, a2] ×

[y, b2]), for (x, y) ∈ D. Then for everyµ ∈
U b∗(A, dP0) andA ∈ A we get

(JJ∗µ)(A) =
∫

A
(J∗µ)(x, y)P0(dx, dy)

=
∫

A
µ([x, a2]× [y, b2])P0(dx, dy)

=
∫

D

∫

D
1{(x,y)∈A}1{x≤s,y≤t}P0(dx, dy)µ(ds, dt)

=
∫

D
P0(A ∩ [a1, s]× [b1, t])µ(ds, dt)

= (Kµ)(A),

where K is the covariance operator of the process
WP0 . Thus the sufficient condition of Theorem 4.1 in
Lifshits [13] is fulfilled. Therefore it can be concluded
that the RKHS ofWP0 is given by

HWP0
=

{
h : h(A) =

∫

A
` dP0, ` ∈ L2(D, P0)

}
.

The spaceHWP0
is furnished with the inner product

and norm defined by

〈h1, h2〉HWP0
:= 〈`1, `2〉L2 , ‖h‖HWP0

= ‖`‖L2 .

Let P be the distribution ofWP0 on U b(A, dP0).
For any functionh ∈ U b(A, dP0), let Ph be the dis-
tribution of h +WP0 on U b(A, dP0), where for every
Borel setB ⊂ U b(A, dP0), Ph(B) := P (B − h). The
functionh is called a shift. In the caseh ∈ HWP0

then
h is called admissible shift.

Now we are ready to state the Cameron-Martin
theorem for the shifted Gaussian processh +WP0 .

Theorem 4 Ph is absolutely continuous with respect
to P on U b(A, dP0) if and only ifh ∈ HWP0

. If h ∈
HWP0

with h(A) =
∫
A ` dP0 for A ∈ A, then

dPh

dP
(w) = exp

{∫

D
` dw − 1

2
‖h‖2

HWP0

}
, (5)

for P -almostall w ∈ U b(A, dP0), where the integral∫
D ` dw is in the sense of Wiener integral defined in

appendix.

Proof. By recalling Theorem 5.1 of [13] we get the
general formula for the density ofPh with respect to
P , that is

dPh

dP
(w) = exp

{
z(w)− 1

2
‖h‖2

HWP0

}
,

for P -almostall w ∈ U b(A, dP0), wherez is a linear
measurable functional onU b(A, dP0) such thatIz =
h. Comparing between this general formula and Equa-
tion 5 we only need to show that(Iz)(A) = h(A) =
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∫
A ` dP0 for everyA ∈ A. Interested reader is referred

to [13], pp. 22–37 for a concise discussion regarding
the operatorI. We claim thatz(w) =

∫
D ` dw. Then

for everyA ∈ A we have

(Iz)(A) = δA(Iz) = 〈δA, Iz〉 = 〈I∗δA, z〉
= E(WP0(A)z(WP0))

= E
(∫

D
1A dWP0

∫

D
` dWP0

)

=
∫

A
` dP0 = h(A).

Thus we show that our claim is correct and therefore
the proof in complete. Clearlyϕg1 andϕf are inHWP0

having theL2(D, P0)-densityg1 andf , respectively.

3 Uniformly Most Powerful Test
We consider for the moment the simple hypotheses
H0 : ϕg2 ≡ 0 againstH1 : ϕg2 ≡ ϕf0 , for somef0 ∈
V ∩WC . Under the situation ofH0 the sampleY(·)
is generated from the modelY(·) = ϕg1(·) +WP0(·),
whereas underH1, Y(·) = ϕg1+f0(·) + WP0(·). The
following theorem presents a most powerful test of size
α for testing the simple hypotheses. A similar result
was obtained in the work of Gegg [11] for Brownian
motion on[0, 1].

Theorem 5 Observing the modelY = ϕg(·)+W(·), a
uniformly most powerful test of sizeα for the hypothe-
sesH0 : ϕg2 ≡ 0 againstH1 : ϕg2 ≡ f0 for some
f0 ∈ V ∩WC will reject H0 if and only if

∫

D
f0dY ≥ z1−α‖f0‖L2 .

wherez1−α is the(1−α) quantile of the standard nor-
mal distribution.

Proof. Let ψ0 andψ1 be the density ofY underH0

andH1, respectively. Then by formula (5) we have

ψ0(Y)
ψ1(Y)

=
exp

{
−1

2‖ϕg1‖2
HWP0

+
∫
D g1dY

}

exp
{
−1

2‖ϕg1+f0‖2
HWP0

+
∫
D(g1 + f0)dY

}

= exp
{

1
2
‖ϕf0‖2

HWP0

−
∫

D
f0dY

}

= exp
{

1
2
‖f0‖2

L2
−

∫

D
f0 dY

}
.

Here‖ϕg1+f0‖2
HWP0

= ‖ϕg1‖2
HWP0

+ ‖f0‖2
HWP0

and

〈g1, f0〉L2 = 0 by the orthogonality betweeng1 andf0.
Furthermore, forY(·) = ϕg1 +WP0 it holds

∫

D
f0dY = 〈f0, g1〉L2 +

∫

D
f0dWP0 .

Hence for a predeterminedα and a constantk we get

P

{
ψ0(Y)
ψ1(Y)

≤ k|H0

}
= α

⇔ P

(
exp

{
1
2
‖ϕf0‖2

HWP0

−
∫

D
f0dY

}
≤ k

)
= α

⇔
P

{‖f0‖2
L2

2
− 〈f0, g1〉L2 −

∫

D
f0 dWP0 ≤ lnk

}
= α

⇔ P

{∫

D
f0 dWP0 ≥

1
2
‖f0‖2

L2
− lnk

}
= α

⇔ P

{
1

‖f0‖L2

∫

D
f0 dWP0 ≥ k∗

}
= α,

where k∗ := 1
2‖f0‖L2 − lnk

‖f0‖L2
. Moreover, since

1
‖f0‖L2

∫
D f0 dWP0 ∼ N(0, 1), then we chose for

k∗ = z1−α, wherez1−α is the(1 − α)-th quantile of
the standard normal distribution. Hence we get

k = exp
{

1
2
‖f0‖2

L2
− z1−α‖f0‖L2

}
.

Thusby theNeyman-Pearson theorem (cf. Theorem
3.2.1 in Lehmann and Romano [12]) a uniformly most
powerful test of sizeα for the hypothesesH0 : ϕg2 ≡ 0
againstH1 : ϕg2 ≡ f0 for somef0 ∈ V ∩WC will
rejectH0 if and only if

T := exp
{

1
2
‖f0‖2

L2
−

∫

D
f0dY

}
≤ k,

for the constantk defined above. Equivalently,H0 is
rejected at levelα if and only if

∫

D
f0dY ≥ z1−α‖f0‖L2 .

The following is the algorithm for conducting a
model check in asymptotic regression involving theA-
indexed Brownian sheet as the noise:

1. Transform the the observation into the partial
sums processY by using the operatorSn.

2. Compute the constantk.

3. Compute the test statisticT .

4. Draw decision by comparingT andk. RejectH0

if T ≤ k.

As an example we consider a first order model
Y (t, s) = β0 + β1t + β2s + ε(t, s), for (t, s) ∈ I2.
For technical reason supposeP0 is the uniform prob-
ability measure onB(I2). By assuming that a con-
stant model is adequate we admit a decomposition
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g(t, s) = g1(t, s) ⊕ g2(t, s), with g1(t, s) = β0 and
g2(t, s) = β1t + β2s, for (t, s) ∈ I2. Hence the hy-
potheses of interest areH0 : g2 ≡ 0 againstH1 :
g2(t, s) = f0(t, s) = β1t + β2s. By a little compu-
tation we get

‖f0‖L2 =

√
β2

1

6
+

β1β2

4
+

β2
2

6

and
∫

I2
f0 dY =

∫

I2
(β1t + β2s)dY(t, s).

4 Evaluating the Power

The power function of a the test derived above is de-
fined as the probability of rejection ofH0 evaluated at
any f ∈ V ∩ WC . Let us denote this function by
Ψ : V ∩WC → [0, 1] defined by

Ψ(f) := P
{

1
‖f0‖L2

∫

D
f0dY ≥ z1−α| ϕg2 ≡ ϕf

}
.

If ϕg2 ≡ ϕf , then the sample is generated from the
model

Y(·) = ϕg1(·) + ϕf (·) +WP0(·).
Hence, we further have

1
‖f0‖L2

∫

D
f0dY =

1
‖f0‖L2

∫

D
f0d(ϕg1 + ϕf +WP0)

=
1

‖f0‖L2

(∫

D
f0dϕg1 +

∫

D
f0dϕf +

∫

D
f0dWP0

)

=
1

‖f0‖L2

(
〈f0, g1〉L2 + 〈f0, f〉L2 +

∫

D
f0dWP0

)

=
1

‖f0‖L2

(
〈f0, f〉L2 +

∫

D
f0dWP0

)
.

Thenthe value ofΨ evaluated at anyf is given by

Ψ(f) := P
{

1
‖f0‖L2

∫

D
f0dWP0 ≥ z1−α − 〈f0, f〉L2

‖f0‖L2

}

= 1− Φ
(

z1−α − 〈f0, f〉L2

‖f0‖L2

)
,

whereΦ is theprobabilitydistribution function of the
standard normal distribution.

We notice that underH0, that is whenf ≡ 0, we
haveΨ(0) = 1 − Φ(z1−α) = α which is the size of

the test. Conversely, since
〈f0,f〉L2
‖f0‖L2

> 0 for any f ∈
V ∩WC with f 6= 0, we getΨ(f) ≥ α. this means
that the test maximizes the power under alternatives.

Figure1: Thescatter plot of the percentage of Ni with
respect to the position of bores
.

5 Application
In this section we study the application of the pro-
posed method to a mining data obtained from a mining
company PT. ANEKA TAMBANG Tbk. in Pomalaa,
Southeast Sulawesi, which is available also in Tahir
[22]. The data consists of the percentage of nickel (Ni)
observed over14 × 7 lattice positions of bores on the
exploration region with 14 equidistance rows running
from south to north, and 7 equidistance column run-
ning from west to east. The measurements of the per-
centage of Ni are regarded as a realization of14 × 7
dimensional matrix of independent response variables
whose three dimensional scatter plot is presented in
Figure 1 which shows more curvatures instead of pla-
nar. By this reason an adequate model for describing
the relations between the position on the exploration
region and the percentage of Ni is the second-order
model.

Model check based on the partial sums of the
residuals of this observation has been conducted in the
work of [20, 21] which have been leading to the con-
clusion that a second-order model was significant for
Ni data. Similarly we also consider the same hypothe-
ses in the present paper. That is we testH0 : g2 ≡ 0
againstH1 : g2 ≡ f0, wheref0(t, s) = t2s + ts2, for
(t, s) ∈ I2. We get

‖f0‖L2 =

√∫

I2
(t2s + ts2)2dtds =

√
31/120

For computationalreason we consider in this example
the indexes{[0, t] × [0, s] : 0 ≤ t, s ≤ 1} instead of
the family of all convex sets. HenceY(t, s) is approx-
imated by the partial sums defined in [9], [18], [19],
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[20], [21] and[23]. That is

Y(t, s) ≈ Sn(Y (Ξn1×n2))([n1t]/n1, [n2s]/n2)

=
1√

n1n2

[n1t]∑

`=1

[n2s]∑

k=1

Y`k,

where Y`kis the percentageof Ni on the point
(`/14, k/7), for 1 ≤ ` ≤ 14 and1 ≤ k ≤ 7. The
integral

∫
I2 f0(t, s) dY(t, s) is approximated by the

Riemann-Stieltjes sum, given by
∫

I2
f0(t, s) dY(t, s)

≈
14∑

`=1

7∑

k=1

f0(`/14, k/7)∆`kSn(Y (Ξn1×n2)),

where

∆`kSn(Yn1×n2) := Sn(Yn1×n2)(`/n1, k/n2)
−Sn(Yn1×n2)((`− 1)/n1, k/n2)
−Sn(Yn1×n2)(`/n1, (k − 1)/n2)

+Sn(Yn1×n2)((`− 1)/n1, (k − 1)/n2).

After a set of computations using computer software
R version 3.1.2, we get the approximated value of∫
I2 f0(t, s)dY(t, s) = 0.80100. Hence we obtain

1
‖f0‖L2

∫

I2
f0(t, s)dY(t, s) =

0.80100√
31/120

= 1.575949.

Since for α = 0.05 the value ofz0.95 = 1.64485,
then we lead to the conclusion of the acceptance ofH0.
Thus a similar result as in the computation conducted
by [20] and [21] appears for the Nickel data.

6 Conclusion
The Cameron-Martin translation formula can be ap-
plied in obtaining the Neyman-Pearson test in model
check for regression. Based on this approach an exact
formula for constructing the sizeα rejection region is
obtained.
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Appendix A

A.1. Integral with Respect toWP0

Definition A.1. (Lifshits [13]) Let f :=
∑m

j=1 aj1Aj

be any step function inL2(D, P0). The Wiener integral

of f with respect toWP0 is defined by

∫

D
f dWP0 =

m∑

j=1

cjWP0(Aj).

Proposition A.2. 1. For anyf1 :=
∑m

j=1 aj1Aj and
f2 :=

∑n
j=1 cj1Bj , if f1 = f2, then

m∑

j=1

ajWP0(Aj) =
n∑

j=1

cjWP0(Bj).

2. In the class of step functions it holds

∫

D
(cf + bg) dWP0 = c

∫

D
f dWP0 + b

∫

D
g dWP0 .

3. For any step functionsf andg it holds

E
(∫

D
f dWP0

∫

D
g dWP0

)
=

∫

D
fg dP0.

In particular
∫
D f dWP0 ∼ N(0, ‖f‖2

L2(D,P0)).

Definition A.3. (Lifshits [13]) For anyf ∈ L2(D, P0),∫
D f dWP0 := limn→∞

∫
D fn dWP0 , for a sequence

(fn)n≥1 of step functions that converges tof .

Remark A.4. Definition A.3 is well defined since the
class of step functions is dense in the spaceL2(D, P0).
The limit exists and it does not depend on the choice
of the sequence(fn)n≥1.

Proposition A.5. 1. For anyf1, f2 ∈ L2(D, P0), if
f1 = f2, then

∫

E
f1 dWP0 =

∫

E
f2 dWP0 .

2. For anyf, g ∈ L2(D,P0) and constantsc, b it holds

∫

D
(cf + bg) dWP0 = c

∫

D
f dWP0 + b

∫

D
g dWP0 .

3. For anyf, g ∈ L2(D,P0) we have

E
(∫

D
f dWP0

∫

D
g dWP0

)
=

∫

D
fg dP0.
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