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Abstract: In this work we establish an optimal test for checking the appropriateness of a spatial regression model.
In the study of model check for regression, the correctness of an assumed model is investigated by the partial sum
of the residuals. In this work an inverted procedure is proposed in that we firstly embed the observation into a
partial sums process to get the corresponding asymptotic regression model. Instead of considering the residuals «
the model, we derive the Cameron-Martin density of the observation. For simple hypothese&yadarell as
underH; we derive the Neyman-Person test based on the ratio of the densitiesHindied H . Interestingly, the
rejection region can be exactly computed as an integral with respect to the partial sums process of the observatior
An application of the procedure to a real data is also discussed.
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1 Introduction tions of the processes under the hypotheses. In con-
trast to the methods studied in the literatures mentioned
The application of partial sums method in spatial re- ahove in this paper we use unequally spaced experi-
gression has been studied in many literatures. Macmental design obtained by sampling the observations
Neill and Jandhyalla [16] and Xie and MacNeill [23] according to a probability measure, see Bischoff [6]
utilized respectively the ordinary and set-indexed par-and Somayasa [19]. So that from the practical view
tial sums of the spatial least squares residuals of poly-our proposed method seems to be more flexible in the
nomial regressions in detecting the existence of asense of economic, technical or ecological reasons.

boundary in the experimental region. They derived | et us consider a spatial regression model
the limit process by adopting the technique proposed

in MacNeill [14, 15]. Recently Somayasa and at al. Y (x) = g(x) +e(x), x € D C RY,
[20, 21] developed asymptotic method in model check _ , L
for spatial regression based on the set-indexed par’VN€reg is an unknown function of bounded variation
tial sums of the residuals. By considering an equally ©" the experimental regiol ande is unobservzzad ran-
spaced experimental design (regular lattice) as thedOm errorwithE(e(x)) = 0andVar(s(x)) = o” > 0
experimental design they obtained the limit process'©f €veryx € D. Inthis paper we restrict the consider-
which is a functional of the set-indexed Brownian sheet &ti0n to the experimental region given by a two dimen-
by extending the geometric approach of Bischoff [7], Sional rectangle) := [ay, az] x [b, bo], for a1 < as
Bischoff and Somayasa [9] and Somayasa [18] and byandb1 < b2._ Result for _hlgher d_|men3|onal re_c_tangle
applying the existing uniform central limit theorem in- €& be obtained immediately. Given a probability mea-
vestigated in Alexander and Pyke [1] and Pyke [17]. SuréFb on the Borelr-algebral3(D) we construct the

In this paper we establish asymptotic model-checkexloerlmental design
for spatial regression by proposing a different approach
in that instead of considering the partial sums of the
residuals we firstly attach the observations into the set-on D by performing a sampling procedure according to
indexed stochastic process (random function). Next wethe method proposed in [19]. By this sampling scheme
derive Neyman-Pearson test procedure which is mosE,, is not necessarily a regular lattice, unldgsis a
powerful test based on the ratio of the density func- uniform probability measures ofi(D). Let P, be a

En = {(tnéasnk) 1<k L n}
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discreteprobabilitymeasuren B(D) associated t&,, of the observation of Model 3 undéf, and undetd;.
defined by In [19] the limit process of the ordinary partial sums
. process pf the residual was investigated. ' '

Z Z . BeB(D) In th_|s paper we (_embed the _observatlons_ into a
— (tne>Snr) ’ stochastic process using the set-indexed partial sums
o operator defined below. Beforehand we give a formal
where for afixedt,, snk) € Zn, 0(¢,,,,s,,,) 1S the Dirac definition of set-indexed Brownian sheet.

measure in the poirtt,,¢, s, ), See Bauer [4]. We note _
POirttnc, sni) 4] Definition 1 (Gaenssler [10]) LetA C B(D) be

that £5, can also be equivalently written as a Vapnik-Chervonenkis class (VCC) of subsets of
1 D. A pseudo metrieip, on A x A is defined by
ni Z Z nZv snk B S B(D)v de(Al,AQ) = Po(AlﬂAg) LetEOO(A) be a subset
(=1k=1 of A defined by

wherel g is the indicator function of3. By this sam-
pling scheme we get the property thet = Fy as  (<(A) = {w A — R ||wl|a = sup |w(4)| < oo}
n — oo. Throughout the papes stands for the con- AcA

vergence in distribution in the sense of Billingsley [5].
let W and V be finite dimensional Furthermore letU/?(A,dp,) be the space of functions

spaces defined byW := [f,...,f,] and in £>°(A) that is dp,-uniformly continuous. A cen-
Vo= [fi, s for foir1r--» fm)y < m, where tered Gaussian procesd/p, := {Wp,(4), A € A}
fiy- s for forts -, fm are known regression func- is called A-indexed Brownian sheet (Gaussian white

tions which are assumed to be orthogonal as functiongioise) with the control measutg, if and only if for
in Ly (D, Py), whereL, (D, P,) is the space of squared every A, B € A, EWp,(A)Wp,(B)) = Py(AN
integrable functions o with respect taP,. Suppose  B). The sample paths dfVp, are concentrated in
g is decomposable ag = g1 @® g2, Wwhereg; € W U(A, dp,). The properties o¥Vp, is summarized be-
ancégg € VN W, such that(gy, g2)z, = 0, where  low:

W¢ is the complement oW. It is the purpose of the
present paper to develop an optimal test procedure for 1. Var(Wp,(4)) = Po(4), VA € A.

the hypotheses 2. If Ay, ..., A, are disjoint, then the random vari-
Hy:g€ W against Hy : g€V 1) ngjzxfoml)’ -+ Wey(n) are mutually inde-

so that upon testing the hypotheses it can be concluded 5 If A1, ..., A, are disjoint, then

whetherfy, ..., f, is adequate or we additionally need e ’

fp+1, ..., fm for representing;. By the assumption, n n

testing (1) is equivalent to the problem of testing the ZWPO<AJ> = Wp, U A

following j
Hy : go = 0against Hy : go = f, (2)

Definition 2 An operatorS,, : R™"*" — (>*(A), de-

for some functionf € V N W¢. Thus we consider fined by
underH, as well asH; simple hypotheses.

- 1 n n
LetY(Z,) = {Y (tne,snk) : 1 < £,k < n} be Sn(A il 0, k) Atk
the array of independent observationsofover =,,, n{Anxn) n Z;kz::l fnts on
such that

for everyA, ., = (am)p 1o € R andB € A
Y(Zn) = 9(Zn) +€(En), (3) s called A-indexed partial sums operator. See also
Gaenssler [10].

whereg(=,) = (g(tng,snk))’g’”lk , € R™", and

(Zn) = (e(tnes snk)ply gy IS @nn x n matrix of  Theorem 3 Let £(Z,) = (e(tne, snk))) 1k=1 IN
random errors having independent and identically dis-Model 3 consist of independent and identically dis-
tributed components WitfE(e(t,¢, sn1)) = 0 and  tributed random variables WItfE (e (t,¢, sp1)) = 0

Var(e(tne, spk)) = 02 > 0,for1 < £,k < n. In andVar(e(tne, sni)) = 02, n > 1. Then we have
the classical study an approach for testing (1) and (2)

has been proposed by Arnold [2] and Arnold [3] by in- 1 = \\(. )
vestigating the ratio between the length of the residual US"(d“"))( )= Wh(), asn = oo
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Proof: We refer the reader to Gaenssler [10]. ly,b2]), for (z,y) € D. Then for everyy €
U*(A,dp,) andA € A we get
Based on the reason thate W is equivalent to

1g € Wforalln > 1, we test the hypotheses by (JT*p)(A) = / (I p) (2, y) Po(dw, dy)
observing the localized version of (3) defined by A

loc = 1 _ :/ p([, as] x [y, ba]) Po(dz, dy)
YU E,) = EQ(EN) +e(Zn). (4) A
= Li 1< Py(dx, dy)p(ds, dt
Then by the linearity 08,,, we have /D /D {(@y)eAyo<sy<ey Pl )il )
8 V(=) — S L) + S (c(E) = [ Ro(Anas,s) x o, t)a(ds, )
n Zn)) = dnl—g9(=n nle(En)).
" = (Kp)(A4),

ﬁmscr?o%v Eai?lati?lén??d (\;ar)l?té%r:vgﬁ) eI; E?]E:‘o?;lea:f)_ where K is the covariance operator of the process
y o On\p gi=n Y y Wr,. Thus the sufficient condition of Theorem 4.1 in

F9g € £2°(A), wherepy(A) := [, g(t,s)Po(dt,ds), | itshits [13] is fulfilled. Therefore it can be concluded
forany A € A. Thus combining this result with Theo-  h5t the RKHS oMVp, is given by
0

rem 3 we get

SV (E))() = V1= ~y() + Wh ()

g

Hyp, = {h: h(A) = /AMPO,E € LZ(DvPU)}‘

The spaceHyy, is furnished with the inner product

The last result shows that the partial sums of the lo'and norm defined by

calized model can be approximated pywhich is a
signal plus noise model with the signa}(-) and the hi,h = 0y, 05) 1., ||h — 14l
noiseWp,. Hence the problem of testing the hypoth- o heyrtg, := s ) o, [l = (1l
esisHy : g» = 0 can be han_dlec_i by observing th_e Let P be the distribution obVp, on U’(A, dp,).
asymptotic model) and considering the hypothesis .. any functionh € UY(A,dp,), let P, be the dis-

Ho : g, =0, sinCe= g(-) = 9, () + 9 (). TIS iy ign of onU’(A,d here for ever
test problem will be the main objective of the current Bloruell setB C—i(_]})/{./i) dp,) ](D:%B{)O)— V]\;(B 1) ';'/hey
) (WAl Ca .

work. Without loss of generality we.assum%': L. functionh is called a shift. In the cadec H,y, then
The rest of the present paper is organized as fol—h is called admissible shift. 0

lows. In Section 2 we investigate the Cameron-Martin Now we are ready to state the Cameron-Martin
formula for the density ofy. For that we adopt the theorem for the shifted Gaussian prockss W, .
technique proposed in Bischoff and Gegg [8] which is 0
inspired by the work of Lifshit [13]. In Section 3 we Theorem 4 P, is absolutely continuous with respect
establish the uniformly most powerful test for testing to P on U%(A, dp,) if and only ifh € Hwp, - If h €
the hypotheses formulated above. Application of theHWP with h(A) = [, ¢ dP, for A € A, then

test procedure will be presented in Section 4. We also 0

present conclusion and remark for future work at the dp;,

1 2
end of the paper. Jp (W) = exp {/DE dw — 5 [lhll3,,,, } , )
. for P-almostall w € U®(A,dp,), where the integral
2 Cameron-Martin Formula for the [ ¢ dw is in the sense of Wiener integral defined in
A-Indexed Gasussian Sheet appendix.

First we derive the reproducing kernel Hilbert space Proof. By recalling Theorem 5.1 of [13] we get the
(RKHS) of Wp, which plays important role through- general formula for the density df,, with respect to
out the work. LetJ : Ly(D, Py) — UY(A,dp,) be P thatis

a linear operator defined byd¢)(A) = [,¢ dF. dp, 1,

ThenJ is injective. The dual space &f°(A, dp,) is —p (W) =exp {Z(w) = 51l } ;

given by the space of signed measure.4ndenoted

by U™ (A, dp,). The duality is defined by, f) :=  for P-almostall w € U’(A, dp,), wherez is a linear

Ip £ dp, for (u, f) € U™(A,dp,) x U’(A,dp,).  measurable functional obi®(A, dp,) such thaflz =
Next we define the operataF* : U (A,dp,) — h. Comparing between this general formula and Equa-
Ly(D, Ry), defined by (J*u)(z,y) = wu([z,a] x tion 5 we only need to show th@lz)(A) = h(A) =
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J4 £ dP, forevery A € A. Interested reader is referred Hence for a predeterminedand a constank we get
to [13], pp. 22—-37 for a concise discussion regarding
the operatoll. We claim thatz(w) = [;, ¢ dw. Then P{wo( ) o |H0} o

for everyA € A we have V1Y) ~
_ _ T 1 2
(I2)(A) = 6a(12) = (5a,12) = (I*64, 2) &P (exp{QH(pfOHHWPO - /Dfody} < k:) .
= E(Wp,(A4)z2(Wr)) <
2
= E(/DlA dWPo/DEdWPo> P{Hﬁ)QHLQ—Uo, g1 / Jo dWhp, Slnk} =

= {dPy = h(A
/A b= h4) @P{/DfodWPo>2Hf0||%2—ln’f}:

Thus we show that our claim is correct and therefore 1 §
the proof in complete. Clearly,, andy; are inHyy,, <P {Hfo!L /D JodWp, > k } =a,
having theL, (D, Py)-densityg; and f, respectively. ?

wherek* = | follz. — it Moreover, since
2
3 Uniformly Most Powerful Test Tl Jp fo dWp, ~ N(0.1), then we chose for

k = Z1—qa, Wherez;_,, is the (1 — «)-th quantile of

We consider for the moment the simple hypotheses the standard normal distribution. Hence we get

Hy : ¢4, = 0 againstt; : ¢4, = ¢y,, for somefy €
V N WC. Under the situation off, the sample)(-) 1 )
is generated from the mod®l(-) = g, (-) + Wp, (-), k = exp {2|f0”L2 - Zla||f0|L2} :
whereas undeH, Y(-) = ¢g,+£(:) + Wp,(-). The
following theorem presents a most powerful test of size Thus by the Neyman-Pearson theorem (cf. Theorem
« for testing the simple hypotheses. A similar result 3.2.1 in Lehmann and Romano [12]) a uniformly most
was obtained in the work of Gegg [11] for Brownian powerful test of sizex for the hypotheseH|, : ¢4, =0
motion on|0, 1]. againstH; : ¢4, = fo for somefy € V.n W will
Theorem 5 Observing the mod@l = o, (-)+W(-),a  'ejectio if and only if
uniformly most powerful test of sizefor the hypothe- 1
sesHy : ¢, = 0 againstH; : ¢, = fo for some T:= eXP{2”f0|%2 —/ fody} <k,
fo € VN WE will reject Hy, if and only if P

for the constantt defined above. Equivalently/ is

/D fodY > 214l foll .- rejected at leved if and only if
wherez;_,, is the(1 — «) quantile of the standard nor- / FodY > 21—l follLs-
mal distribution. D - ?

Proof. Lety and be the density ofy under Hy The following is the algorithm for conducting a
and H4, respectively. Then by formula (5) we have model check in asymptotic regression involving fe
indexed Brownian sheet as the noise:

1 2
exps —s3 + d } Lo ;
Yo(Y) p{ 2H¢91HHWP0 Ipg1dY 1. Transform the the observation into the partial

sums procesy by using the operatds,,.

exb {41641 By, + Jolon + o)

1 } 2. Compute the constaht
:exp{Ql‘PfoH%-lW / dey}

3. Compute the test statistic.

1
= exp {2Hf0|%2 - / fo dy} . 4. Draw decision by comparirgj andk. RejectH,
if T <k.
Here 2 - and
H%lJrf“”HW Py HS%HHW ”fOHHW As an example we consider a first order model
(91, fo)r, = 0 bythe orthogonallty petweegq andfo Y(t,s) = Bo + Bt + Bas + e(t, s), for (t,5) € I2.
Furthermore, fod/() = ¢4, + Wp, it holds For technical reason suppo#k is the uniform prob-

ability measure or3(I?). By assuming that a con-
/Dfody = (f0,91) L +/Df0dWPo- stant model is adequate we admit a decomposition
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g(t,s) = g1(t,s) & ga(t, s), with g1 (¢, s) = oy and
go(t,s) = Pit + Bas, for (t,s) € I2. Hence the hy-
potheses of interest atHy : go = 0 againstH; :

g2(t,s) = fo(t,s) = pit + [a2s. By a little compu-
tation we get

Vol = \/ o

/ fody :/ (Bit + B2s)dY(t, s).
12 12

o

and

4 Evaluating the Power

The power function of a the test derived above is de-

fined as the probability of rejection @f, evaluated at
any f € VN WY, Let us denote this function by
¥ : VWY —[0,1] defined by

1
P AV > 21 ol g = 07 V.
{Hf0||L2/DfO Y 2 z1-al g <Pf}

If ¢4, = ¢y, then the sample is generated from the
model

U(f):=

V() =g, (1) + () + Wp, (+).

Hence, we further have

1 1
HfOHLQ/dey_HfOHLz/fod(Sogl +<Pf+Wp0)

||f0||L2 (/ Jodipg, + /fod@f+/ fode0>

(<f0791>L2 + (fo, f)r, + /D fodWP0>

_ ||f(]1||L2 <<f07f>L2 + /DdeWPO) :

Thenthe value of¥ evaluated at any is given by

B ”fOHLQ

ws) =P { - [ ot 10 %fﬂ”

where® is the probability distribution function of the
standard normal distribution.

We notice that undefi, that is whenf = 0, we
haveV(0) = 1 — ®(21_,) = a which is the size of
the test. Conversely, sinc ;OJ(&LQ > 0forary f €

2
VN WO with f # 0, we get¥(f) > a. this means
that the test maximizes the power under alternatives.
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Figurel: Thescatter plot of the percentage of Ni with
respect to the position of bores

5 Application

In this section we study the application of the pro-
posed method to a mining data obtained from a mining
company PT. ANEKA TAMBANG Tbk. in Pomalaa,
Southeast Sulawesi, which is available also in Tahir
[22]. The data consists of the percentage of nickel (Ni)
observed ovet4 x 7 lattice positions of bores on the
exploration region with 14 equidistance rows running
from south to north, and 7 equidistance column run-
ning from west to east. The measurements of the per-
centage of Ni are regarded as a realizatioriofx 7
dimensional matrix of independent response variables
whose three dimensional scatter plot is presented in
Figure 1 which shows more curvatures instead of pla-
nar. By this reason an adequate model for describing
the relations between the position on the exploration
region and the percentage of Ni is the second-order
model.

Model check based on the partial sums of the
residuals of this observation has been conducted in the
work of [20, 21] which have been leading to the con-
clusion that a second-order model was significant for
Ni data. Similarly we also consider the same hypothe-
ses in the present paper. That is we tHgt: go = 0
againstH : go = fo, wherefy(t, s) = t?s + ts?, for
(t,s) € I2. We get

| follz, = \//12(t23+t32)2dtds =4/31/120

For computationateason we consider in this example
the indexed[0,¢] x [0,s] : 0 < t¢,s < 1} instead of
the family of all convex sets. Hen¢g(¢, s) is approx-
imated by the partial sums defined in [9], [18], [19],
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[20], [21] and[23]. That is of f with respect tdVp, is defined by
Y(t,s) = Sn(Y (Enixny))([n1t]/n1, [n2s]/n2) m
| e /D fdWp, = ZCjWPo(Aj)-
= Z Z Yok, =1
mne =

Proposition A.2. 1. For anyf; := >’ a;14, and
where Yyis the percentageof Ni on the point  fo: =37, ¢jlp,,if fi = f2, then
(£/14,k)7),for1 < ¢ < 14 andl < k < 7. The

integral [1» fo(t,s) dY(t,s) is approximated by the m n
Riemann-Stieltjes sum, given by Y aiWey(4)) =D ¢;Wh,(Bj).
j=1 j=1
/12 folt,s) dY(t,s) 2. In the class of step functions it holds
14 7
YD foll/14,k/T)AuSu(Y (Enixns))s / (cf + bg) dWp, = c/ fdWp, + b/ g dWp,.
=1 k=1 D D D
where 3. For any step functiong andg it holds
Aéksn(Yme) = Sn(Ynlxnz)(g/nlak/'@) (/
E dw / dw ) :/ dP,.
=S (Vo) (€ = 1)1, o) ! VP [, 9DV ) = [ J9 4Ry

—=Sn(Ynysns ) (/n1, (K — 1) /n2)
+8n (Yo, xn ) (€ = 1)/, (B — 1) /n2).

After a set of computations using computer software Definition A.3. (Lifshits [13]) For anyf € Ly(D, F),
R version 3.1.2, we get the approximated value of.[p f @Wp, := limy oo [, fn dWp,, for a sequence

In particular [, f dWg, ~ N(0, ||f||%2(D,P0))-

Jiz fo(t, s)dY(t, s) = 0.80100. Hence we obtain (fn)n>1 Of step functions that converges fo
1 0.80100 Remark A.4. Definition A.3 is well defined since the
I follz, Jr2 folt, 5)dY(t, s) = V/31/120 = 1.575949. class of step functions is dense in the spageD, F).
The limit exists and it does not depend on the choice
Sincefor « = 0.05 the value ofzp9s = 1.64485, of the sequencéfy,)n>1.

then we lead to the conclusion of the acceptandépf
Thus a similar result as in the computation conductedproposition A.5. 1. For anyfi, fo € Ly(D, Py), if
by [20] and [21] appears for the Nickel data. f1 = fo, then

6 Conclusion /Efl dWp, Z[Efz dWhp,.

The Cameron-Martin translation formula can be ap-
plied in obtaining the Neyman-Pearson test in model
check for regression. Based on this approach an exact

formula for constructing the size rejection region is / (cf +bg) dWp, = C/ Jf dWp, + b/ g dWp,.
obtained. b p p

2. For anyf, g € Lyo(D, Py) and constants, b it holds
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