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Abstract: In the present paper we apply the Gibbs Sampling approach to estimate the parameters of a Markov
Switching Model which we use to model financial time series. In particular, we estimate the standard deviation
of the time series in order to obtain an indicator similar to the VIX index. The Markov Switching technique has
been chosen because of the presence of exogenous factors which can have a large impact on the market, making it
behave differently in different time periods. We also perform a case study on the S&P500 index for the period 3
January, 2007 - 29 December, 2014.
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1 Introduction
Most standard approaches to time series analysis as-
sume stationarity, i.e. that the mean and variance of
the set of observations do not change over time. While
this assumption is true for a large number of situa-
tions, it fails when the data being analyzed are prone
to structural breaks.

The main idea behind Markov Switching Models
(MSM) is that in order to catch these changes we al-
low the distribution of the observations to change over
time by making it dependent on past observations as
well as on the state. This model is of the form:

yt = f(St, θ, ψt−1)

St = g
(
S̃t−1, ψt−1

)
St ∈ Λ

(1)

where ψt := {yk : k = 1, . . . , t}, S̃t := {S1, ..., St},
Λ = {1, ...,M} is the set of all states and g is the func-
tion that governs the transitions between the states.
The function f defines how the observation at time
t depends on St, θ, and ψt−1.

This type model is extremely useful for model-
ing financial or economic data. In econometrics two
state models are the most prevalent. One of the states
is used to model sluggish economic growth while the
other is used for rapid expansion, see e.g. [8]. In
finance three state models are the preference with
the states being interpreted as low, medium and high
volatility. We opt for a four state model in which the
fourth state will be used for situations where there is
very high volatility, caused by stock market crashes,

economic crises etc.
One thing we would like to point out here is how

the transition law g is modeled. In the simpler two
state case the transition law tends to be more compli-
cated that in the three state case. This can be consid-
ered as a kind of trade-off between a larger number
of states and a more intricate transition law. In the
analysis that follows we use Markov transition prob-
abilities, meaning that the state at time t + 1 depends
only on the state at time t.

2 The Markov Switching Model
In the proposed model we assume that our data fol-
low a symmetric α-stable distribution, more precisely
yt ∼ Sα,0(γSt , µSt). Here Sα,β(γ, µ) is the notation
for an α-stable distribution with stability parameter α,
skewness parameter β, scale parameter γ and location
parameter µ. The full model is:

yt ∼ Sα,0(γSt , µSt)
St ∈ {1, ...,M}
γSt = γj if St = j, ∀j ∈ {1, ...,M}
µSt = µj if St = j, ∀j ∈ {1, ...,M}
α ∈ (1, 2)

pij = P(St = j|St−1 = i)

π0 = [P(S0 = 1), ...,P(S0 = M)]

(2)

The motivation for using the above model is twofold.
First, financial data exhibit fat tails which can not be
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well described using the Normal distribution. We be-
lieve that the use of α-stable distributions with α < 2
is much better suited to this problem. Second, fi-
nancial data often exhibit structural breaks because of
abrupt changes in the market. The sub-prime mort-
gage credit crisis of 2008 is a prime example of this
which is why we make the scale and location parame-
ters state-dependent.

Computationally this framework is not very con-
venient since (in general) there is no closed form for
the density of an α-stable distribution. We circumvent
this using the fact that yt can be (conditionally) repre-
sented as a Normal random variable, see [3, 7]. This
is done by introducing the random variable λ.

If: λ ∼ Sα
2 ,1

(2

(
cos(

πα

4
)

) 2
α

, 0)

Then: yt|λ ∼ N (µSt , λγ
2
St)

There are three main points that need to be ad-
dressed in order for MSM to be effective. First, the
number of states in the model has to be specified or
inferred from the data. Second, the parameter val-
ues and the transition probabilities need to be esti-
mated. And finally, the state vector S̃T needs to be
sampled somehow. In this paper we build on the
four-state model proposed in [1], therefore there is no
need to worry about the first point. We simply take
Λ = {1, 2, 3, 4}. The four states will be interpreted
as low, medium, high and very high volatility. We
deal with the second point using Gibbs sampling. Fi-
nally, the problem in the third point is solved using the
the Hamilton filter (see [4]) and a simulation method
which can be found in [5].

3 Bayesian Inference

Bayesian Inference is a branch of statistical inference
that assumes the parameter (or parameters) of a prob-
ability distribution to be randomly distributed accord-
ing to a ”prior” distribution. The Bayes’ rule (together
with observed data) is then used to generate the ”pos-
terior” distribution of the parameter (parameters). The
posterior distribution can be interpreted as the distri-
bution of the parameter once we have taken into ac-
count both our subjective belief about the parameter
(the prior) and the data. Mathematically we can rep-
resent this model in the following way:

θ ∼ π(θ)

y|θ ∼ f(y|θ)

f(θ|y) =
π(θ)f(y|θ)

f(y)
(3)

Here π(θ) is the prior distribution, f(y|θ) is the dis-
tribution of the data (which depends on the parameter
θ) and f(θ|y) is the posterior of θ. Finally, f(y) is the
marginal distribution of y, i.e.

f(y) =

∫
f(y, θ)dθ =

∫
π(θ)f(y|θ)dθ (4)

Clearly the choice of prior can have a large impact on
the posterior. A particularly convenient form of prior
is what is known as a conjugate prior. We say that
a prior distribution is conjugate if the posterior dis-
tribution that is obtained from it belongs to the same
family. A good example of this the Beta-Bernoulli
pair.

π(θ) = θα−1(1− θ)β−1

f(y|θ) =

(
n

y

)
θy(1− θ)n−y

f(y|θ) ∝ θ(α+y)−1(1− θ)(β+n−y)−1

∝ Beta(α+ y, β + n− y)

It should be noted that it is not necessary for the prior
to be conjugate. Picking a non-conjugate prior that
results in a well known posterior is just as effective
for what is needed in the next point, which is samples
from the posterior distribution. In order to make this
process as efficient as possible, a posterior which can
be simulated using an inbuilt R package is desirable.

4 Gibbs Sampling

Assume that we have a model with k parameters,
θ = (θ1, ..., θk) and we want to find the full poste-
rior distribution f(θ1, ..., θk|y). This can be quite dif-
ficult since the multivariate simulation of distributions
is much more tasking than its univariate counterpart.
Gibbs sampling allows us to sample f(θ1, ..., θk|y)
knowing only f(θi|θ1, ..., θi−1, θi+1, ..., θk,y),∀i ∈
{1, ..., k}.

4.1 Gibbs Sampler

Let N be the number of simulations we want to per-
form. We assign arbitrary starting values (θ01, ..., θ

0
k)

to each of the parameters. Then, for every j ∈
{1, ..., N}, we do the following:

Step 1: Draw θj1 from f(θj1|θ
j−1
2 , ..., θj−1

k ,y).

Step 2: Draw θj2 from f(θj2|θ
j
1, θ

j−1
3 , ..., θj−1

k ,y).

...

Step k: Draw θjk from f(θjk|θ
j
1, ..., θ

j
k−1,y).
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Using this method we can simulate each of the param-
eters in this model. The first J simulations are dis-
carded (this is known as the burn in period) in order
to get rid of the simulations that are a result of the arbi-
trary starting point (θ01, ..., θ

0
k). The remaining N − J

values are then assumed to be an approximation of the
real distribution. The number of iterations should be
chosen carefully. Too large an N can make the com-
putations cumbersome while a small value might not
allow the sampler to converge.

5 State Simulation

In this section our goal is to simulate the state vector
S̃T . In order to accomplish this we need to obtain the
values P(S1|ỹ1), ...,P(ST |ỹT ) first. We do this by set-
ting arbitrary values for the parameters and then using
the following expression:

g(S̃T |ỹT ) = g(ST |ỹT )
T−1∏
t=1

g(St|St+1, ỹt)

= g(ST |ỹT )
T−1∏
t=1

g(St+1|St)g(St|ỹt)

Notice now that we can sample from S̃T if we
have g(St+1|St) (which is nothing more than the
transition probability from one state to another) and
g(St|ỹt) (which can be obtained from Hamilton’s fil-
ter), ∀t ∈ {1, ..., T} .

Hamilton’s filter

The basic Hamilton filter can be described as input-
output-byproduct.

input: g(St−1 = st−1|ỹt−1)
output: g(St = st|ỹt)
byproduct: f(yt|ỹt−1)

Running the Hamilton filter for t ∈ {1, ..., T} we
get the desired values g(S1|ỹ1), ..., g(ST |ỹT ). These
values are then used in the process below in order to
generate S̃T .

P(ST = i|ỹT ) =
g(ST = i|ỹT )∑4
j=1 g(ST = j|ỹT )

This probability is used to draw a sample of ST .

P(ST−1 = i|ỹT−1) =
g(ST−1 = i|ỹT−1)∑4
j=1 g(ST−1 = j|ỹT−1)

=
g(ST |ST−1 = i)g(ST−1 = i|ỹT−1)∑4
j=1 g(ST |ST−1 = j)g(ST−1 = j|ỹT−1)

The above probability and the the previously simu-
lated ST are used to simulate ST−1.

...

P(S1 = i|ỹ1) =
g(S1 = i|ỹ1)∑4
j=1 g(S1 = j|ỹ1)

=
g(S2|S1 = i)g(S1 = i|ỹ1)∑4
j=1 g(S2|S1 = j)g(S1 = j|ỹ1)

Using the S2 and the above expression we can simu-
late S1 which gives us the last component of S̃T . This
means that for every t ∈ {1, ..., T} we know what the
distribution of yt is since we know which state we are
in.

6 Case Study

Our case study deals with applying the above theory to
an indicator that would play a role similar to that of the
VIX index. The data set we will be using is the set of
S&P500 weekly prices while the chosen time interval
is 3 January, 2007 to 29 December, 2014. We picked
this interval to include the sub-prime mortgage crash
of 2008 as well as the subsequent period of relative
calm in order to see how the model performs in both
situations. In particular we improve on [1], see also
[2] where the model was very effective in periods of
high volatility but much too smooth when volatility
was low. Our results are summarized below.

Parameter Estimated Value
λ 0.00252163
γ21 0.1197211
γ22 0.2479246
γ23 0.4250766
γ24 1.370165

We estimate the variance of yt|λ using:

E[λγ2t |ψt] = λ
(
P(St = 1|ψt)γ21 + P(St = 2|ψt)γ22

+P(St = 3|ψt)γ23 + P(St = 4|ψt)γ24
)

=: σ̂t

We now compare σ̂t to the VIX index.
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Figure 1: Visual comparison between the VIX and the
expected standard deviation. We have applied a linear
scaling function.

Looking at the graph we can be quite happy with
the result. The estimate catches the peaks well al-
though it tends to overshoot a bit on some of them.
The problem of estimator smoothness has been solved
and the way in which the estimated standard devia-
tion mimics the VIX when there is low volatility in
the market is satisfactory.

7 Conclusion and Future Develop-
ments

In this paper we applied Gibbs Sampling to the prob-
lem of estimating the parameters of a Markov Switch-
ing Model. Although most papers model the data us-
ing a Normal distribution we decided to use α-stable
distributions in order to model the fat tails that finan-
cial data exhibit. We got around the problem of not
having a closed form of the density of an α-stable dis-
tribution by representing it as a conditionally Normal
distribution. This form was sufficient for the Gibbs
Sampling approach since it utilizes conditional distri-
butions for sampling.

Regarding future developments there are multiple
ways to improve the model. The main point of interest
are the transition probabilities, which in this model are
in their simplest form. Using transition probabilities
that that depend on multiple past states, that depend
on the length of time the data has been in a certain
state or that depend on other observable variables are
all things that should be tried in order to make this
model more accurate and robust.

References:

[1] Di Persio, L. , Frigo, M. ”Gibbs sampling ap-
proach to regime switching analysis of financial
time series.” Journal of Computational and Ap-
plied Mathematics (2016).

[2] Di Persio, L. , Frigo, M. ”Maximum Likeli-
hood Approach to Markov Switching Models.”,
WSEAS Transactions on Business and Eco-
nomics, , Volume 12, 2015, Art.21, pp. 239-242

[3] Salas-Gonzalez, D., Kuruoglu, E. E. , Ruiz, D.
P. ”Modelling with mixture of symmetric stable
distributions using Gibbs sampling.” Signal Pro-
cessing (2010).

[4] Hamilton, J. D. ”A new approach to the eco-
nomic analysis of nonstationary time series and
the business cycle.” Econometrica: Journal of
the Econometric Society (1989).

[5] Kim, C-J. , Nelson, C. R. ”State-space mod-
els with regime switching: classical and Gibbs-
sampling approaches with applications.” MIT
Press Books 1 (1999).

[6] Carlin, B. P. , Louis, T. A. ”Bayesian Methods
for Data Analysis, Third Edition.” Chapman &
Hall/CRC Texts in Statistical Science (2009).

[7] Samorodnitsky G., Taqqu M. S. ”Stable Non-
Gaussian Random Processes: Stochastic Models
with Infinite Variance.” Chapman & Hall/CRC
(1994).

[8] Chauvet M. ”An Econometric Characterization
of Business Cycle Dynamics with Factor Struc-
ture and Regime Switching.” International Eco-
nomic Review (1998).

L. Di Persio, V. Jovic
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 185 Volume 1, 2016




