
A Lexisearch Algorithm for the Distance-constrained Vehicle Routing 
Problem 

 
ZAKIR HUSSAIN AHMED 

Department of Computer Science 
Al Imam Mohammad Ibn Saud Islamic University 

P.O. Box No. 5701, Riyadh-11432 
KINGDOM OF SAUDI ARABIA 

E-mail: zhahmed@ccis.imamu.edu.sa 
  
 
Abstract: - The vehicle routing problem (VRP), belongs to the class of NP-hard problems, is considered as one 
of the most difficult problems. The problem aims to serve a number of customers with a fleet of vehicles that 
can be defined as to find an optimal set of tours with minimum cost to connect the depot to n customers with m 
vehicles, such that every customer is visited exactly once; every vehicle starts and ends its tour at the depot. 
Out of many variations of the problem, we consider here distance-constrained VRP (DVRP) where the total 
travelled distance by each vehicle in the solution is less than or equal to the maximum possible travelled 
distance. The problem has many applications in real-life and no any polynomial time exact algorithm is 
available to solve the problem, and even small sized instances may require long computation time. However, 
there are some situations where exact solution is required. Therefore, we look for exact solution to the problem, 
and accordingly, we develop a lexisearch algorithm to obtain exact solution to the problem, and present 
solution for the DVRP using some TSPLIB instances of various sizes. 
 
Key-Words: - The vehicle routing problem, distance-constrained, exact algorithm, lexisearch. 
 
 
 
1 Introduction 
The vehicle routing problem (VRP) can be defined 
as a problem of finding the optimal routes of 
delivery or collection from one or several depots to 
a number of cities or customers, while satisfying 
some constraints. The objective is to minimize the 
cost (time or distance) for all tours. The cost of the 
tours can be fuel cost, driver wages, and so on. It is 
an NP hard problem [1]. The classical VRP can be 
defined as follows [2]:  

Let G = (V, A) be a graph, where V = {1, 2, …., 
n} is a set of vertices (nodes) representing cities 
with the depot located at vertex 1, and A is the set of 
arcs with every arc (i, j), i ≠ j, associated a non-
negative distance matrix D = (dij). In some contexts, 
dij can be interpreted as a travel cost or travel time. 
When D is symmetric, it is often convenient to 
replace A by a set E of undirected edges. In 
addition, assume that there are m available vehicles 
based at the depot, where mL< m <mU. When mL = 
mU, m is said to be fixed. When mL = 1 and mU = n - 
1, m is said to be free. When m is not fixed, it often 
makes sense to associate a fixed cost f on the use of 

a vehicle. The VRP consists of designing a set of 
least-cost vehicle routes in such a way that:  
(i) each city in V \ {1} is visited exactly once by 

exactly one vehicle;  
(ii) all vehicle routes start and end at the depot;  
(iii) some side constraints are satisfied. 

Collection of household waste, gasoline delivery 
trucks, goods distribution, street cleaning, 
distribution of commodities, design 
telecommunication, transportation networks, school 
bus routing, dial-a-ride systems, transportation of 
handicapped persons, and routing of sales people 
and maintenance units, snow plough and mail 
delivery are the most used applications of the VRP. 
The VRP plays a vital role in distribution and 
logistics. Huge research efforts have been devoted 
to studying the VRP since 1959 where Dantzig and 
Ramser [3] have described the problem as a 
generalized problem of multiple travelling salesman 
problem (m-TSP), which is also an NP-hard 
problem. Lenstra and Rinnooy Kan [4] suggested 
transforming VRP into m-TSP by adding (m - 1) 
dummy vertices (where m is the number of 
vehicles). The number of vehicles in the VRP 

Z. H. Ahmed
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 165 Volume 1, 2016



corresponds to the number of salesmen. There are 
many variations of VRPs: based on data (static and 
dynamic); based on constraints (constrained and 
unconstrained) (see [2, 5-7]). 

The distance-constrained vehicle routing 
problem (DVRP) is defined as follows: find the 
optimal set of tours to connect the depot to n 
customers with m vehicles, such that: 
(i) Every customer is served exactly once. 
(ii) Every vehicle starts and ends its tour at the 

depot. 
(iii) The total distance travelled by each vehicle in 

the solution is less than or equal to the 
maximum distance allowed (Dmax). 

If we have only one vehicle with no distance 
constraint, the DVRP will be equivalent to the TSP. 
The solution in this case entails looking for one tour 
over all customers with minimum travelled distance. 

The aim and objective of this paper is to develop 
an exact algorithm to solve the DVRP. Since, the 
problem is NP-hard, it is very difficult to solve, and 
in fact, till the date no exact algorithm has been 
found, which is able to solve the problem in 
polynomial time. Finding an exact solution to the 
problem is usually very time consuming or even 
impossible. Because of this nature of the problem, a 
very few literatures on exact methods have been 
used to solve the instances of the problem. 
However, there are some situations where only 
exact solutions to the instances of the problem are 
required. Hence, we go for exact solution of the 
problem. 

This paper is organized as follows: Section 2 
presents literature review on the problem. Section 3 
presents a formulation of the problem. A lexisearch 
algorithm is developed in Section 4. Computational 
experience for the algorithm has been reported in 
Section 5. Finally, Section 6 presents comments and 
concluding remarks. 

 
 

2 Literature review 
The VRP belongs to the class of NP-hard problems 
and is considered as one of the most difficult 
problems. Because of the extreme difficulty of the 
problem, exact solution methods have been often 
implemented on high-performance computers. 
Methods to solve the VRP as well as any 
combinatorial optimization problem are classified 
into two broad categories – exact and heuristic. 
Exact methods give exact solution to the problem. 
An implicit way of solving the VRP is simply to list 
all the feasible solutions, evaluate their objective 
function values, and pick out the best. However it is 
obvious that this ‘brute-force technique’ is grossly 

inefficient and impracticable because of vast 
number of possible solutions to the problem, even 
for problem of moderate size. In fact, computational 
time grows exponentially with the problem size. For 
example, we are listing our n customers in some 
order (which can be done in exactly n! ways), and 
we then place m –1 delimiters that determine when 
a route has ended after m− 1 out of the n − 1 
(placing it after the last customer creates an empty 
vehicle) customers, which can be done in exactly 

�𝑛𝑛 − 1
𝑚𝑚 − 1� ways, creating a total of 

𝑛𝑛 !�𝑛𝑛−1
𝑚𝑚−1�

𝑚𝑚 !
possible 

solutions (we divide by m! because the order of the 
vehicles is irrelevant). One can imagine that with 
more than 10 customers and 3 vehicles, this method 
will soon be way too complex. Even though there 
are smarter ways of implementing a solver for the 
VRP with a brute-force technique, because the 
problem is NP-hard, it is highly unlikely that we 
will ever find the exact solution with a brute-force 
technique. We will have to try to be a little smarter. 

Quite a few special exact algorithms have been 
developed, which can solve the problem much more 
efficiently than brute-force technique. However, it is 
observed that as the problem size increases 
obtaining exact solution to the problem is very 
difficult. On the other hand, heuristic methods don’t 
guarantee the optimality of the solution, but give 
near exact solution very quickly. However, there are 
situations where exact solutions are very important. 

In this paper, we consider the distance-
constrained VRP (DVRP) where the total travelled 
distance by each vehicle in the solution is less than 
or equal to the maximum possible travelled distance. 
If the distance from city i to city j differs from that 
of city j to city i, we call this problem asymmetric 
(ADVRP), otherwise it is called as symmetric 
(SDVRP). We seek exact solution to the DVRP of 
both cases. 

The different methods used to achieve a global 
optimum for the VRP and its variations include 
branch-and-bound, cutting planes or combinations 
of these methods, like branch-and-cut and dynamic 
programming. Branch-and-bounds are the most 
known and used algorithms and are defined from 
allocation and cutting rules, which define lower 
bounds for the problem . 

A branch-and-bound algorithm for the VRP 
clearly requires a lower bound, because we have to 
minimize the total cost. Over the past 50 years, 
many lower bounds have been suggested for the 
VRP. An excellent survey of lower bounds is given 
in [8]. In Fisher [9], a description of a branch-and-
bound algorithm for the VRP is given. This 
algorithm converts the VRP into a so-called “K-

Z. H. Ahmed
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 166 Volume 1, 2016



tree”, a structure for which a polynomial algorithm 
exists to find shortest paths. Amongst other smart 
things, this algorithm partitions the problem by 
fixing the edges between certain clustered 
customers. Some side constraints that take care of 
the vehicle capacity and the fact that each customer 
is visited at most once are also added. This 
algorithm has produced proven optimal solutions for 
a number of difficult problems, including a well-
known problem with 100 customers. However, it 
still leaves certain 50-customer problems unsolved . 

Recent solution techniques are mostly based on 
branch-and-cut, branch-and-cut-and-price, or 
column generation [7, 10-12]. Though there is a rich 
literature for the VRP, however, there is very poor 
literature for the DVRP. 

Laporte and Desrochers [13] developed two 
exact algorithms for DVRP - one is based on 
Gomory cutting planes and other one is based on 
branch and bound. They deal with symmetric 
Euclidean and non-Euclidean instances. They 
concluded that solving non-Euclidean instances is 
easier than solving Euclidean. Both of their 
algorithms are able to find the optimal solution with 
up to 50 customers in Euclidean and 60 in non-
Euclidean instances. Also, it is observed that the 
cutting plane algorithm performs better than branch 
and bound algorithm. Furthermore, in both 
algorithms, solving instances become more difficult 
when the maximum distance allowed is decreased. 

Laporte et al. [14] presented an integer linear 
programming algorithm to solve VRP with distance 
and capacity constraints. They use relaxation 
constraints and subtour elimination constraints. 
They could solve the model with up to 60 customers 
using Euclidean and non-Euclidean instances. 

Laporte et al. [15] developed another exact 
algorithm for solving ADVRP by using the branch 
and bound method where the relaxation problem is 
the modified assignment problem. They extended 
the distance matrix based on the technique of 
Lenstra and Rinnooy [4] by adding (m - 1) dummy 
depots where m represents the number of vehicles. 
The solution is feasible to the problem if following 
two conditions are satisfied- (a) the solution 
contains m Hamiltonian circuits, and (b) the length 
for each of them is less than or equal to the 
maximum distance allowed. If an infeasible solution 
is obtained, the infeasible circuit is eliminated by 
adding a new constraint. This means the illegal 
subtour is eliminated by branching the infeasible 
subproblem into subproblems. First feasible solution 
is obtained by adapting Clarke and Wright's 
algorithm [16]. If it does not obtain a feasible 
solution then the upper bound (UB) is increased by 

setting UB = m X Dmax, where Dmax represents the 
maximum distance allowed. If the total length of a 
subtour is greater than Dmax, then it is eliminated by 
excluding arcs. The algorithm is then applied on 
randomly generated instances, and reported the 
solution up to 100 customers. 

Li et al. [17] considered two objective functions 
to DVRP - minimize total distance and minimize 
number of vehicles. The DVRP is transferred into a 
multiple traveling salesman problem with time 
windows (mTSPTW), where the time window 
constraint [ai, bi] for any customer i means that it is 
not allowed to serve customer i before ai or after bi. 
In other words, the vehicle has to wait until time ai 
to start before dealing with customer i. In order to 
enable the transformation, the distance constraint is 
used as a time window constraint [0, Dmax] for all 
customers, and another copy of the depot is added to 
the graph. The time window for the first depot is [0, 
0] (departure depot), and the time window for the 
last depot is [0, Dmax] (arrival depot). It is solved 
using a column generation approach. They 
presented and analyzed the worst case performance 
for DVRP with a heuristic and provided results with 
up to 100 customers. The comparison includes the 
length of the initial tour and the value of the lower 
bound. 

A new algorithm for solving ADVRP based on 
Branch and Bound (B&B) method has been 
proposed [18] and found good solutions. As in [15], 
the ADVRP is first transformed into the TSP. The 
lower bounds are obtained by relaxing subtour 
constraints and maximum distance constraint. Thus, 
the assignment problem (AP) is got and solved in 
each city of the search tree. The best-first-search 
strategy is used and tolerance based rules are 
adapted for branching. As reported, instances up to 
1000 cities could be solved . 

There are some heuristic algorithms based on 
simulated annealing, tabu search, genetic algorithms 
[6], variable neighborhood search [19-21]. 
However, we are not applying any heuristic 
algorithm. 
 
 
3 Formulation of the problem 
Let V = {1, 2 . . . , n} denote the set of customers 
(cities), where 1 is the index of the depot. A set of 
edges is denoted by E, E = {(i, j) ϵ VxV, i≠j}. The 
matrix D is defined as D=[dij], where dij presents the 
travelled distance from city i to city j. The number 
of vehicles and the maximum distance allowed are 
denoted by m and Dmax respectively. The problem is 
to find an optimal set of tours with minimum 
distance to connect the depot to n-1 cities 

Z. H. Ahmed
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 167 Volume 1, 2016



(customers) with m vehicles, such that every city is 
visited exactly once; every vehicle starts and ends 
its tour at the depot, and the total travelled distance 
by each vehicle in the solution is less than or equal 
to Dmax. If these constraints are relaxed, the VRP 
reduces to a TSP if m = 1 and to a m-TSP if m>1. 
The VRP appears to be much more difficult to solve 
than the TSP or the m-TSP involving the same 
number of cities.  

There are many formulations of the DVRP. We 
consider the following mathematical programming 
formulations of the problem. This formulation is 
based on transformation of DVRP to TSP. We use 
its relaxation in our lexisearch algorithm.  

The TSP formulation may be obtained by adding 
m - 1 copies of the depot to V [4]. Now, there are n 
+ m - 1 cities in the new augmented directed graph 
G(V, A), where V = V U {n + 1, n + 2, . . . , n + m – 
1}. The new distance matrix D’ = [d’ij] is obtained 
from given D by the following transformation rules 
where i,j ∈ V: 

𝑑𝑑′𝑖𝑖𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧𝑑𝑑𝑖𝑖𝑖𝑖     𝑖𝑖𝑖𝑖  (1 ≤ 𝑖𝑖, 𝑖𝑖 ≤ 𝑛𝑛; 𝑖𝑖 ≠ 𝑖𝑖)

𝑑𝑑1𝑖𝑖   𝑖𝑖𝑖𝑖 (𝑖𝑖 > 𝑛𝑛,   1 < 𝑖𝑖 ≤ 𝑛𝑛)   
𝑑𝑑𝑖𝑖1    𝑖𝑖𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 𝑖𝑖 ≥ 𝑛𝑛)   
∞                                               

� 

Then the formulation of TSP [22] given below (1)–
(4) is as follows: 
𝑖𝑖(𝑆𝑆) = 𝑚𝑚𝑖𝑖𝑛𝑛 � 𝑑𝑑′𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖

(𝑖𝑖,𝑖𝑖 )∈𝐴𝐴

                                      (1) 

where xij satisfies these conditions 
�𝑥𝑥𝑖𝑖𝑖𝑖 = 1    ∀ 𝑖𝑖 ∈ 𝑉𝑉                                              (2)
𝑖𝑖∈𝑉𝑉

 

�𝑥𝑥𝑖𝑖𝑖𝑖 = 1    ∀ 𝑖𝑖 ∈ 𝑉𝑉                                              (3)
𝑖𝑖 ∈𝑉𝑉

 

�𝑥𝑥𝑖𝑖𝑖𝑖 ≤ |𝑈𝑈| − 1    ∀𝑈𝑈 ∈ 𝑉𝑉 \{1}, |𝑈𝑈| ≥ 2        (4)
𝑖𝑖∈𝑉𝑉

 

   Distance constraints                          (5) 
 
The constraints (2) and (3) ensure that in and out 

degrees of each city are equal to 1. The constraint 
(4) eliminates subtours, where U is any subset of 
V\{1}. To formulate DVRP in addition to (1)–(4), 
we need to add distance constraint (5) to check if the 
total distance for each tour is less than maximum 
distance allowed (Dmax). 

For an instance of six-city and two-vehicle 
problem with distance matrix given in Table 1, the 
augmented distance matrix, constructed by adding 1 
copy of the depot (city 1) row and column (i.e., 1st 
row and 1st column) to the given matrix, is reported 
in Table 2. 
 

Table 1: The distance matrix 
City 1 2 3 4 5 6 
1 999 2 11 10 8 7 
2 6 999 1 8 8 4 
3 5 12 999 11 8 12 
4 11 9 10 999 1 9 
5 11 11 9 4 999 2 
6 12 8 5 2 11 999 
 
Table 2: The augmented distance matrix 
City 1 2 3 4 5 6 7 
1 999 2 11 10 8 7 999 
2 6 999 1 8 8 4 6 
3 5 12 999 11 8 12 5 
4 11 9 10 999 1 9 11 
5 11 11 9 4 999 2 11 
6 12 8 5 2 11 999 12 
7 999 2 11 10 8 7 999 
 
 
4 A lexisearch algorithm for the 
problem 
In lexisearch algorithm, the set of all possible 
solutions to a problem is arranged in a hierarchy, 
such that each incomplete word represents the block 
of words with this incomplete word as the leader. 
For the VRP, each node is considered as a letter in 
an alphabet and tour set can be represented as a 
word with this alphabet. Thus the entire set of words 
in this dictionary (namely, the set of solutions) is 
partitioned into blocks. Bounds are computed for the 
values of the objective function over the blocks of 
words, which are then compared with the 'best 
solution value' found so far. If no word in the block 
can be better than the 'best solution value' found so 
far, jump over the block to the next one. If the 
current block, which is to be jumped over, is the last 
block of the present super-block, then jump out to 
the next super-block. Further, if the value of the 
current leader is already greater than or equal to the 
‘best solution value'; no need for checking the 
subsequent blocks within this super-block. 
However, if the bound indicates a possibility of 
better solutions in the block, enter into the sub block 
by concatenating the present leader with appropriate 
letter and set a bound for the new sub-block so 
obtained [23-27].  
 
 
4.1 Alphabet table 

Z. H. Ahmed
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 168 Volume 1, 2016



Alphabet matrix, A=[a(i,j)], is a matrix of order 
nX(n+m-1) formed by positions of elements of the 
augmented distance matrix, D=[dij]. The ith row of 
matrix A consists of the positions of the elements in 
the ith row of the matrix D when they are arranged 
in the non-decreasing order of their values. If a(i,p) 
stands for the pth element in the ith row of A, then 
a(i,1) corresponds to the position of smallest 
element in ith row of the matrix D [23]. Alphabet 
table " ]),([ ),(, jiaidjia − " is the combination of 
elements of matrix A and their values as show in 
Table 3. 
 
Table 3: The alphabet table (C is a city and W is the 
value of the city) 

City C-W C-W C-W C-W C-W C-W C-W 

1  2-2  6-7  5-8  4-10  3-11  1-999  7-999 

2  3-1  6-4  1-6  7-6  4-8  5-8  2-999 

3  1-5  7-5  5-8  4-11  2-12  6-12  3-999 

4  5-1  2-9  6-9  3-10  1-11  7-11  4-999 

5  6-2  4-4  3-9  1-11  2-11  7-11  5-999 

6  4-2  3-5  2-8  5-11  1-12  7-12  6-999 

7  2-2  6-7  5-8  4-10  3-11  1-999  7-999 

 
 
4.2 Incomplete word and block 
An incomplete route (α1, α2,….., αk) of k cities, 
where k≤n, is called an incomplete word or a leader 
of length k. This incomplete word is also called a 
leader of length k. A block Q with a leader (α1, α2, 
α3) of length three consists of all the words 
beginning with (α1, α2, α3) as the string of first three 
letters. The block P with leader (α1, α2) of length 2 
is the immediate super-block of Q and includes Q as 
one of its sub-blocks. The block R with leader (α1, 
α2, α3, α4) is a sub-block of Q. The block Q consists 
of many sub-blocks (α1, α2, α3, αr) one for each αr. 
The block Q is the immediate super-block of block 
R [23]. 
 
 
4.3 Lower bound 
In lexisearch algorithm [23], solution does not 
depend on lower bound, unlike branch-and-bound 
algorithm. The lower bound for each block leader 
on the objective function value is set to skip as 
many subproblems in the search procedure as 
possible. A subproblem is skipped if its lower bound 
exceeds the 'best solution value' found so far (i.e., 
upper bound) in the process. The higher the lower 
bound the larger the set of subproblems that are 

skipped. Following method is used for setting lower 
bound for each leader. 

Suppose the partial tour is (1=α1, α2, α3) and 
'city α4' is selected for concatenation. Before 
concatenation, we check bound for the leader (α1, 
α2, α3, α4). For that, we start our computation from 
2nd row of the 'alphabet table' and traverse up to the 
nth row, and sum up the values of the first 
'legitimate' city (the city which is not present in the 
tour), including 'city 1', in each row, excluding α2-th 
and α3-th rows. This sum is the lower bound for the 
leader (α1, α2, α3, α4).  
 
 
4.4 The algorithm 
Step 0: Suppose, n be the number of cities including 

depot, m be the number of vehicles, distance 
travelled by the vehicles are Dist[i] for 1≤i≤m, 
‘city 1’ be the depot, and Dmax be the maximum 
distance allowed by each vehicle. Set ‘best 
solution value (BS)’ as large as possible, 
Dist[i]=0 for 1≤i≤m. Since ‘city 1’ is the starting 
city, we start our computation from 1st row of the 
'alphabet table'. Initialize 'partial tour value 
(PT)'=0, k=1 and go to step 1. 

Step 1: - Go to kth element of the row (say, city p) 
with value as present city value (W). If (PT+W)≥ 
(BS or Dmax), go to step 7, else, go to step 2. 

Step 2: - If all the vertices are visited, add an edge 
connecting the 'city p' to 'city 1', compute the 
complete tour value (CT) and go to step 3, else 
go to step 4. 

Step 3: - If (CT≥BS), go to step 7, else, BS=CT and 
go to step 7. 

Step 4: - Calculate the lower bound (LB) for the 
present leader on the objective function value 
and go to step 5. 

Step 5:- If (LB+PT+W)≥BS, drop the 'city p', 
increment k by 1, and go to step 6; else, accept 
the 'city p', compute PT=PT+W, update Dist[k] 
for the present vehicle k, and go to step 1. 

Step 6: - For any vehicle k, if (Dist[k]<Dmax) go to 
step 1, else, go to step 7. 

Step 7: - Jump this block, i.e., drop the present city, 
go back to the previous city in the tour (say, city 
q), i.e., go to the qth row of the 'alphabet table' 
and increment k by 1, where p was the index of 
the last 'checked' city in that row. If vertex q = 1 
and k = n, go to step 8, else, go to step 1. 

Step 8: Now BS is the optimal solution value and 
calculate the maximum distance travelled by any 
vehicle (Max), and then stop. 

 
 

Z. H. Ahmed
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 169 Volume 1, 2016



4.3 Illustration of the algorithm 
Working of the above algorithm is explained 
through a six-city and two-vehicle example with 
distance matrix given in Table 1. We obtain 
augmented distance matrix by adding 1 copy of the 
depot (city 1) row and column (i.e., 1st row and 1st 
column) to the given matrix, which is reported in 
Table 2. We will consider two problems with this 
dataset, i.e., they will have two different values of 
the parameter Dmax. 

The logic-flow of the algorithm at various stages 
is indicated in a search table that sequentially 
records the intermediate results, with decision taken 
(i.e., remarks) at these steps. The symbols used 
therein are listed below: 

GS: Go to sub-block. 
JB: Jump the current block. 
JO: Jump out to the next, higher order block. 
 

Problem 1: First, the value of Dmax is set to very 
large number, say, 999. 
 
Illustration of the example: We initialize BS = 999 
and PT=0, and Dist[1]=Dist[2]=0. We start from 1st 
row of the 'alphabet table'. Here, a(1,1)=2 with 
W=d12=2, and (PT+W<BS) and (Dist[1]+W<Dmax). 
Now we go for bound calculation for the present 
leader (1, 2). The bound will guide us whether the 
city 2 will be accepted or not. 
 
𝐿𝐿𝐿𝐿 = 𝑑𝑑2,𝑎𝑎(2,1) + 𝑑𝑑3,𝑎𝑎(3,2) + 𝑑𝑑4,𝑎𝑎(4,1) + 𝑑𝑑5,𝑎𝑎(5,1) + 𝑑𝑑6,𝑎𝑎(6,1)

+ 𝑑𝑑7,𝑎𝑎(7,2) 
      = 𝑑𝑑2,3 + 𝑑𝑑3,7 + 𝑑𝑑4,5 + 𝑑𝑑5,6 + 𝑑𝑑6,4 + 𝑑𝑑7,6 
     = 1 + 5 + 1 + 2 + 2 + 7 = 18  
 
Note that for calculating d2,a(2,1), we first find a(2,1) 
which is 3, then we find d2,3 which is 1, and 
accordingly we calculate LB. Now, since 
(LB+PT+W=18+0+2=20< BS), we accept the city 2 
that leads to the partial tour {1→2} with 
PT=PT+W=0+2=2, Dist[1]=2. Note that in the 

search table, 
 1 → 2 (2)        
(0) + 18,𝐺𝐺𝑆𝑆  means W=2, PT=0, 

LB=18 and remark is GS. 
Next, we go to 2th row of the 'alphabet table'. 

Since a(2,1) = 3 with W=d23=1, and (PT+W<BS) 
and (Dist[1]+W< Dmax), we go for bound calculation 
for the present leader (1, 2, 3). 

 
𝐿𝐿𝐿𝐿 = 𝑑𝑑3,𝑎𝑎(3,2) + 𝑑𝑑4,𝑎𝑎(4,1) + 𝑑𝑑5,𝑎𝑎(5,1) + 𝑑𝑑6,𝑎𝑎(6,1) + 𝑑𝑑7,𝑎𝑎(7,2) 
      = 𝑑𝑑3,7 + 𝑑𝑑4,5 + 𝑑𝑑5,6 + 𝑑𝑑6,4 + 𝑑𝑑7,6 
     = 5 + 1 + 2 + 2 + 7 = 17  

 
Since, (LB+PT+W=17+2+1=20 < BS), we accept 
the city 3 that leads to the partial tour {1→2→3} 

with PT=PT+W=2+1=3. Proceeding in this way we 
obtain the complete tour for the first vehicle as 
{1→2→3→7} with Dist[1]=8, and the tour for the 
second vehicle is {7→6→4→5→1} with 
Dist[2]=21. So the complete 1st tour is 
{1→2→3→7→6→4→5→1} and BS = 29 and 
Max=21. Now, we jump out to the next higher order 
block, i.e., {1→2→3→7→6→4}, and try to 
compute another complete tour with lesser tour 
value. Finally, we obtain the optimal tour as 
{1→2→3→7→6→4→5→1} with BS = 29 and 
Max=21. Optimal tours for the vehicles are 
{1→2→3→1} and {1→6→4→5→1} with their 
distances 8 and 21 respectively, and Max=21. The 
logic-flow of the algorithm at various stages is 
indicated in Table 4. 
 
Problem 2: The longest tour in the optimal solution 
of Problem 1 is 21. The new value of Dmax is 
calculated as Dmax = 0.97x21=20.37 with respect to 
the matrix.  We choose Dmax = 20.37 and run the 
same example. Then our algorithm obtains the 
optimal tour as {1→2→6→4→5→7→3→1} with 
BS = 36 and Max=20. Optimal tours for the vehicles 
are {1→2→6→4→5→1} and {1→3→1} with their 
distances 20 and 16 respectively, and Max=20. 
 
5 Computational experience 
The lexisearch algorithm (LSA) has been encoded 
in Visual C++ on a PC with Intel(R) Core(TM) i7-
3770 CPU @ 3.40GHz and 8.00GB RAM under MS 
Windows 7.  We have selected some TSPLIB [28] 
instances of size from 17 to 45 with optimal solution 
value are reported within brackets for the usual TSP. 
We report the solutions (Max and Total) that are 
obtained within three hours (CTime, in seconds) on 
the machine as well as computational time when the 
final best solution is seen for the first time (FTime) 
for different number of vehicles (m) and different 
values of Dmax. First value of Dmax is ∞ is used to 
find Max(1), whereas second value of Dmax is set as 
0.9*Max(1) to find Max(2) and new solution value. 

Table 5 reports results on asymmetric TSPLIB 
instances, whereas Table 6 reports results on 
symmetric TSPLIB instances. It is to be noted that 
no modification of the algorithm is required to solve 
different kind of problem instances. It is shown that 
whenever number of vehicle is one, the problem 
becomes usual TSP. As the number of vehicles 
increases the computational time as well as the 
solution value also increases, and the problem is 
found to be more difficult. Also, for the same 
problem instance, as the value of Dmax decreases 
problem becomes more difficult. However, to the 

Z. H. Ahmed
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 170 Volume 1, 2016



best of our knowledge, no literature report optimal 
solution for the instances, and hence, we could not 
report comparative study. Except for the instances 
reported in the table, LSA could not prove the 
optimality of the solution of the instances within 
three hours of computational time. 
 
 
6 Conclusion 
We presented lexisearch algorithm for the distance-
constrained vehicle routing problem to obtain exact 
optimal solution to the problem. We report 
best/optimal solution value and total computational 
time as well as the computational time when the 
final best solution is seen for the first time on the 
TSPLIB instances of various types. Of course, we 
did no modification in the algorithm for applying on 
different types of instances. It is seen that as the 
number of vehicles increases the computational time 
and optimal solution value also increase. 

In general, a lexisearch algorithm first finds an 
optimal solution and then proves the optimality of 
that solution. The lexisearch algorithm spends a 
relatively large amount of time on finding 
optimal/best solution [23-27]. For our problem also 
we have the same observation. Except for the 
reported instances, our algorithm could not prove 
the optimality of the solutions within three hours of 
computational time. However, the results are 
supposed to be basis for the future study.  

The algorithm certainly depends upon the 
structure of the instances. So a closer look at the 
structure of the instances and then developing a 
data-guided module may reduce the computational 
time and obtain optimal solution for the larger 
problem instances. Also, it is seen that the 
best/optimal solution is obtained very quickly, 
which suggests that applying a tight lower bound 
method may reduce the computational time 
drastically, which are under our investigations. 
 
 
Acknowledgements 
The author is very much thankful to Prof. Emdad 
Khan, Maharishi University of Management 
(MUM), USA, for his valuable comments and 
constructive suggestions which helped the author to 
improve the paper. This research was supported by 
Deanery of Academic Research, Al Imam 
Mohammad Ibn Saud Islamic University, Saudi 
Arabia vide Grant No. 340904. 
 
 

References: 
 
[1] VT. Paschos, An overview on polynomial 

approximation of np-hard problems, Yugoslav 
Journal of Operations Research, 19(1), 2009, 
pp. 3-40. 

[2] G. Laporte, The vehicle routing problem: An 
overview of exact and approximate algorithms, 
European Journal of Operational Research, 
59(3), 1992, pp. 345–358. 

[3] GB. Dantzig, and JH. Ramser, The truck 
dispatching problem, Management Science, 6, 
1959, pp. 80–91. 

[4] JK. Lenstra, and AHG. Rinnooy Kan, Some 
simple applications of the travelling salesman 
problem, Operational Research Quarterly, 
26(4), 1975, pp. 717-733. 

[5] GL. Nemhauser, and LA. Wolsey, Discrete 
Mathematics and Optimization, Wiley, New 
York, Chichester, 1988.  

[6] P. Toth, and D. Vigo, The Vehicle Routing 
Problem, SIAM Monographs on Discrete 
Mathematics and Applications, Society for 
Industrial and Applied Mathematics, 
Philadelphia, PA, 2002.  

[7] R. Baldacci, A. Mingozzi, and R. Roberti, 
Recent exact algorithms for solving the vehicle 
routing problem under capacity and time 
window constraints (invited review), European 
Journal of Operational Research, 218(1), 
2012, pp. 1–6. 

[8] R. Baldacci, and A. Mingozzi, Lower bounds 
and an exact method for the Capacitated 
Vehicle Routing Problem, Service Systems and 
Service Management, 2, 2006, pp. 1536–1540. 

[9] ML. Fisher, Optimal solution of Vehicle 
Routing Problems using minimum k-trees, 
Operations Research, 42, 1988, pp. 626–642. 

[10] R. Baldacci, P. Toth, and D. Vigo, Recent 
advances in vehicle routing exact algorithms, 
4OR, 5(4), 2007, pp. 269–298. 

[11] A. Pessoa, M. Poggi de Arago, and E. Uchoa, 
Robust branch-cut-and-price algorithms for 
vehicle routing problems, In: B. Golden, et al. 
(Eds.), The Vehicle Routing Problem Latest 
Advances and New Challenges, Operations 
Research/Computer Science Interfaces Series, 
vol. 43, Part II, 2008, pp. 297–325. 

[12] J. Gondzio, P. Gonzlez-Brevis, and P. Munari, 
New developments in the primal dual column 
generation technique, European Journal of 
Operational Research, 224(1), 2013, pp. 41–
51. 

[13] G. Laporte, and M. Desrochers, Two exact 
algorithms for the distance-constrained vehicle 

Z. H. Ahmed
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 171 Volume 1, 2016



routing problem, Networks, 14, 1984, pp. 161-
172. 

[14] G. Laporte, Y. Nobert, and M. Desrochers, 
Optimal routing under capacity and distance 
restrictions, Operations Research, 33(5), 1985, 
pp. 1050-1073. 

[15] G. Laporte, Y. Nobert, and S. Taillefer, A 
branch and bound algorithm for the 
asymmetrical distance-constrained vehicle 
routing problem, Mathematical Modelling, 
9(12), 1987, pp. 875-868. 

[16] G. Clarke, and JW. Wright, Scheduling of 
vehicles from a central depot to a number of 
delivery points, Operations Research, 12(4), 
1964, pp. 568-581. 

[17] CL. Li, D. Simchi-Levi, and M. Desrochers, 
On the distance constrained vehicle routing 
problem, Operations Research, 40(4), 1992, 
pp. 790-799. 

[18] S. Almoustafa, S. Hanafi, and N. Mladenovic, 
New exact method for large asymmetric 
distance-constrained vehicle routing problem, 
European Journal of Operational Research, 
226, 2013, pp. 386–394. 

[19] J. Brimberg, P. Hansen, and N. Mladenovic, 
Attraction probabilities in variable 
neighborhood search, 4OR, 8, 2010, pp. 181–
194. 

[20] P. Hansen, N. Mladenovic, and JA. Moreno 
Prez, Variable neighbourhood search: methods 
and applications, Annals of Operations 
Research, 175(1), 2010, pp. 367–407. 

[21] N. Mladenovic, D. Urosevic, S. Hanafi, and A. 
Ilic, A General variable neighborhood search 

for the One-commodity pickup-and-delivery 
travelling salesman problem, European 
Journal of Operational Research, 220(1), 
2012, pp. 270–285. 

[22] GB. Dantzig, DR. Fulkerson, and SM. 
Johnson, Solution of a large-scale traveling 
salesman problem, Operations Research, 2, 
1954, pp. 393–410. 

[23] ZH. Ahmed, A lexisearch algorithm for the 
bottleneck traveling salesman problem, 
International Journal of Computer Science and 
Security, 3(6), 2010, pp. 569-577. 

[24] ZH. Ahmed, A data-guided lexisearch 
algorithm for the asymmetric traveling 
salesman problem, Mathematical Problems in 
Engineering, Vol. 2011, Article ID 750968, 18 
pages, doi:10.1155/2011/750968. 

[25] ZH. Ahmed, A data-guided lexisearch 
algorithm for the bottleneck traveling salesman 
problem, International Journal of Operational 
Research, 12(1), 2011, pp. 20-33. 

[26] ZH. Ahmed, An exact algorithm for the 
clustered traveling salesman problem, 
OPSEARCH, 50 (2), 2013, pp. 215-228.  

[27] ZH Ahmed, A new reformulation and an exact 
algorithm for the quadratic assignment 
problem, Indian Journal of Science and 
Technology, 6(4), 2013, pp. 4368-4377. 

[28] TSPLIB Website, http://comopt.ifi.uni-
heidelberg.de/software/TSPLIB95/  

 
 

  

Z. H. Ahmed
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 172 Volume 1, 2016



Appendix 
 
Table 4: The search table 
α1→α2 α2→α3 α3→α4 α4→α5 α5→α6 α6→α7 α7→1 
1 -> 2 (2)  
(0) + 18, GS 

2 -> 3 (1)  
(2) + 17, GS 

3 -> 7 (5)  
(3) + 12, GS 

7 -> 6 (7)  
(8) + 7, GS 

6 -> 4 (2)  
(15) + 12, GS 

4 -> 5 (1)  
(17) + 11, GS 

5 -> 1 (11)  
BS=29, Max=21, JO 

    
6 -> 5 (11)  
(15) + 15, JO   

   
7 -> 5 (8)  
(8) + 13, JO    

  
3 -> 5 (8)  
(3) + 20, JO     

 
2 -> 6 (4)  
(2) + 20, GS 

6 -> 4 (2)  
(6) + 23, JO     

 
2 -> 7 (6)  
(2) + 17, GS 

7 -> 6 (7)  
(8) + 12, GS 

6 -> 4 (2)  
(15) + 15, JO    

  
7 -> 5 (8)  
(8) + 18, JO     

 
2 -> 4 (8)  
(2) + 20, JO      

1 -> 6 (7)  
(0) + 15, GS 

6 -> 4 (2)  
(7) + 18, GS 

4 -> 5 (1)  
(9) + 17, GS 

5 -> 3 (9)  
(10) + 13, JO    

  
4 -> 2 (9)  
(9) + 23, JO     

 
6 -> 3 (5)  
(7) + 18, JO      

1 -> 5 (8)  
(0) + 21, JO 
STOP       

 
 
Table 5: Results by LSA for asymmetric TSPLIB instances 

Instance n m 
Dmax = ∞  Dmax  =  0.9*Max(1) 

Max(1) Total Ftime CTime  Max(2) Total Ftime CTime 
br17 
(39) 

17 
 

1 39 39 4.32 37.82      
2 39 39 2.50 65.10  31 42 13.99 160.82 

Ftv33 
(1286) 
 

34 
 
 

1 187 1286 17.7 53.53      
2 1195 1302 36.40 103.74  934 1325 107.51 353.72 
3 1195 1328 30.92 620.21  934 1362 265.16 4250.68 

Ftv35 
(1473) 
 

36 
 
 

1 225 1473 24.94 599.18      
2 1382 1489 29.02 1220.43  829 1491 410.08 1432.98 
3 1393 1511 908.30 7046.78  1147 1511 1013.48 7264.91 

Ftv38 
(1530) 
 
 

39 
 
 

1 209 1530 117.60 1127.35      
2 1439 1546 320.37 2198.90  829 1548 7022.31 9976.10 
3 1467 1569 469.87 8864.32  1021 1576 5773.08 9193.51 

Ftv44 
(1613) 
 
 

45 
 
 

1 221 1613 3308.86 4928.17      
2 1589 1615 398.61 1801.88  ---- ------ ------- --------- 
3 1536 1654 1855.49 9041.08  1282 1654 7874.39 ------ 

 
 
 
 

Z. H. Ahmed
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 173 Volume 1, 2016



 
 
Table 6: Results by LSA for symmetric TSPLIB instances 

Instance n m 
Dmax = ∞  Dmax =  0.9*Max(1) 

Max(1) Total Ftime CTime  Max(2) Total Ftime CTime 
burma14 
(3323) 

14 
 

1 39 39 4.32 37.82      
2 39 39 2.50 65.10  31 42 13.99 160.82 

ulysses16  
(6859) 

16 
 

1 1530 6840 0.05 0.18      
2 6840 6960 0.28 0.86   5579 7011 0.23 0.78 

gr17 
(2085)  

17 
 

1 516 2085 0.08 0.19      
2 2000 2188 0.00 0.53  1460 2224 0.20 0.93 

gr21 
(2707)  

21 
 

1 411 2707 0.00 0.01      
2 2703 2839 0.02 0.07  2464 2953 .06 0.30 

ulysses22 
(7013) 

22 
 

1 1927 7013 18.23 44.24      
2 6987 7107 13.82 117.37  5598 7165 281.15 414.39 

gr24 
(1272)  

24 
 

1 247 1272 5.00 7.47      
2 1281 1389 47.41 73.37  -------- ------ ------- ------ 

fri26 
(937) 
 
 

26 
 
 
 

1 181 937 5.17 14.95      
2 904 1070 25.72 60.21  664 1085 13.94 56.72 
3 792 1214 232.45 450.21  664 1221 110.93 330.63 

bayg29 
(1610 ) 
 
 

29 
 
 
 

1 229 1610 23.22 30.18      
2 1584 1652 5.04 28.86  1074 1678 202.21 269.06 
3 1534 1718 17.15 307.08  1074 1720 14.69 303.32 

bays29 
(2020)  
 
 

29 
 
 
 

1 361 2020 0.05 36.99      
2 1351 2074 86.32 180.63  ---- ------ ------- --------- 
3 1351 2139 53.09 675.47  1208 2279 2306.37 8525.76 

 
 
 

Z. H. Ahmed
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 174 Volume 1, 2016


	References:



