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Abstract: We consider a two-station fluid model that can be approximated under heavy-traffic by a reflected frac-
tional Browian motion (rfBm) process on a convex polyhedron. Specifically, we prove a heavy-traffic limit theorem
for a two single-server workstation fluid model with feedback and flexible servers. Flexibility here means that one
of the servers is capable to help the other. The non-deterministic arrival process is generated by a large enough
number of heavy-tailed On/Off source¥, We introduce the adequate definitionwbrkload and scaling con-
veniently by a factor and by /N, and letting/N andr approach infinity (in this order), we prove that the scaled
workload process converges to a rfBm on a convex polyhedron.
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1 Introduction

The aim of this paper is to investigate the asymptotic
behavior of a fluid model under heavy-traffic. The
model consists of a network composed of two single-
server workstations that process continuous fluid, with
an infinite-capacity buffer at each one. The model,
which is portrayed schematically in Figure 1, allows
feedback and one of the servers to help the other.
There are two fluid classes, and clgstdid (7 =
1, 2) is primarily assigned to servegr which works at
stationj. We assume that fluid is processed in a first-
in-first-out (FIFO) basis within each class. The sense
in which one of the servers can help the other is the
following: whenever statio2 becomes empty while
classi fluid is awaiting at station, a floodgate opens
and fluid begins to be transferred to statibso that
while the situation persists, classtuid is simultane-

support to the other, although the converse is not al-
lowed. We assume that serviecannot be idle if there

is classt fluid awaiting for processing at statioh
while server2 cannot be idle if there is fluid awaiting
at any of the two stations (nonidling policy).

Models with flexible servers have been used in
real-life systems, including service centers, produc-
tion systems, computer networks with rescheduling
of jobs, parallel computing systems where processors
have overlapping capabilities, and manufacturing ap-
plications in which machines may have differing pri-
mary functions and some overlapping secondary ones.
See for instance [6], [7] and references therein.

Moreover, feedback is allowed: after processing
of classi fluid (by either server), a proportiop;;
needs reprocessing and is sent back to stdtievhile
the rest goes outside the network. Similarly, after pro-

ously processed by both servers (possibly at different cessing (by servel), a proportionps; of classz2 fluid
speeds). We assume that there is no travel delay (setupn€€ds to be reprocessed by seewhile a propor-
time). The situation continues until either the amount  tion p21 needs reprocessing but as classuid, and

of classi fluid in the system runs out, in which case
both servers are at rest thereafter until new fluid ar-
rive, or class2 fluid reaches statio from outside,
whichever happens first. In the latter case, the fluid

conseguently switches class and is directed to station
1; the rest goes outside the network.

Actually, this paper presents a hybrid between the
fluid model with feedback introduced in [1], with two

transfer immediately ceases (the floodgate closes) and workstations, and the cascade fluid model of [5] in

server2 starts processing of clagsfuid, while class-
1 fluid processing continues by server Is in this
sense that we say that ser@as flexible, since it gives
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which server2 is flexible in agreement wit our def-
inition of flexibility. Our objective is to explore the
implications on the asymptotic behavior under heavy
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traffic of allowing flexibility in the fluid model with from [0, +o00) to IR?, with the topology of the uni-

feedback of [1], as well as that of allowing feedback form convergence on compact time intervals, 4rmd

in the cascade fluid model of [5]. the space of continuous on the right with limits on
We assume that for each fluid class, the process the left functions, endowed with the usual Skorokhod

of external arrivals is a hon-deterministic aggregated J;—topology. All stochastic processes in this paper

cumulative process generated by a large enough num- will be assumed to have pathsif, for somed > 1.

ber of heavy tailed On/Off sourceg]. This assump- A sequence of stochastic proces4es”™}, > is

tion relies on the presence of long-range dependence said to betight if the induced measures @ form a

and self-similar traffic pattern in modern high-speed tight sequence (that is, the sequence of induced mea-

network traffic, and the fact that one simple physical sures is weakly relatively compact in the space of

explanation for this phenomenon is the superposition probability measures oR?).

of many heavy-tailed On/Off sources (see [10], [1]). We will useD — lim to denote theonvergence in
We consider a double sequence of fluid models distributiononC¢ or D¢ (or weak convergengeThat

indexed byr (a parameter of change of scale) and is, we writeD — lim X" = X if the sequence of

N, the number of On/Off sources, whose traffic in- . e d n

tensities tend tal in some sense ag and N go probability measures _mduced % by {X"}, con-

to infinity (heavy-traffic conditiop and we prove a verges weakly to that induced by . n

limit theorem for the two-dimensional workload pro- The_ seéquence of .processe{s?( }" s palled

cess. Indeed, in Theorem 9 we prove that after ad- Cft'ght ifitis tight, ‘."‘n.d if each weak limit point, ob-

equate scaling, the workload process converges to atalned as a weak limit along a subsequence, almost

two-dimensionalreflected fractional Brownian mo- surely has sample pathsgH .

tion (rfBm) process living in a convex polyhedron tRer:‘Ie(if[ed fractlontil tBLownt;an mo_téorll (ran(;il)_ ISth
(which is not the positive orthant). a stochastic process that has been widely used in the

The organization of the paper is as follows. In context of heavy-traffic limit theorems when the ar-
Section 2 we set up notation and preliminary defini- leal prIO(_:Iezsgs /%rf? generateg byf a .Iargt;e numlbeg of
tions. Section 3 is devoted to the introduction of the |'cavy-taled n sources. See for instance [1]-[3],

model, the processes used to measure its performanceIn which the rfBm lives in the positive orthant, and

and the heavy-traffic condition. In Section 4 our main [4], [5], in Wh'c.h lives in a convex polyhedron with
result is stated and proved, and in the Appendix we constant directions of reflection along each face. We

present arnvariant Principle which is a key ingredi- reproduce here this last definition for the sake of com-

ent in the proof of the heavy-traffic limit theorem. pleteness.
Definition 1 (convex polyhedron) A convex polyhe-
dron S onIR¢ can be defined algebraically as the set

2 Notations and preliminaries of solutions to a system of linear inequalities:
Vectors will be column vectors and” means the Sdgf{x cR? . <U€7x> >0 forall¢=1,...,d}
transpose of a vector (or a matrix) By diag(v) d N
we denote the diagonal matrix with diagonal elements ={z € R": Tz >0}
the components of vectar (in the same order). In- wherev!, ..., v? € IR%, T being thed x d matrix
equalities for vectors must be understood in the com- 1ose row vectors are!. ... v?. That is. § —
ponentwise sense. For any fixdd> 1, the iden- d e R - () > O
tity matrix of dimensiond is denoted byl,;. For i G Where_Gg {z EdIR + (v, z) >0} The
: _ boundary ofS is 0S = UJ_, F,, whereF, = {x €
any d x m matrix A = (aij)i=1,..d j=1,...m, let ’ =1
d AT S : (vz) =0}, ¢ =1,...,d, are the boundary
4] & max (D laij|) (where|z| denotes the ab- faces of5.
== We write S(Y) to emphasize that the convex

solute value of: € IR), anddet(A) denotes the deter-  polyhedron is determined by the matfix It is as-

minant of A if d = m. We will say that a sequence of  sumed that the interior o§(Y) is not empty and the
d x m matrices{ A" },, converges to d x m matrix A set{v!, ..., v?} is minimal. Thenp! — HZ—EH is the

if |[A"—A| — 0 asn tends totoo (this convergence is . . o N
equivalent to the convergence in the component-wise inward unit normal taFy that points into the interior

; . . n_ of S.
sense), and we \_M” denote it S|mp7llyl_1>rfooA =4 Associated to the convex polyhedrSiY) we in-
or A" — A. The inner product of a couple of vectors  trgduce thairections of reflectionwhich are constant
u, v € RYis (u,v) = Zle Uj; V; along each face, as the column vectors dfxad ma-
Let C? be the space of continuous functions trix R, which are denoted by!, ..., u¢.
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Definition 2 (rfBm on a convex polyhedron) Let
S(T) be ad—dimensional convex polyhedron as in
Definition 1, with associatedx d matrix of directions
of reflectionR. A reflected fractional Brownian mo-
tion on S(Y) associated with datdx, H, 6, I, R),
wherer € S(Y), H € (0, 1),0 € R?andTisadx d
positive definite matrix, is @—dimensional process
W = {W(t) = (Wi(t),..., Wu(t)T, t > 0} such
that

(i) W has continuous paths arid (t) € S(T) for all

t > 0a.s.,

(i) W =X+ RV as., withX andV two d— di-
mensional processes defined on the same probability
space and verifying:

(i) X is a fractional Brownian motion (fBm) pro-
cess with associated datar, H, 0, I'), that is, it
is a continuous Gaussian process starting fram
with mean functionE (X (t)) x + 0t for any

t > 0, and with covariance function given by

Cov(X(t), X(s)) = E((X(t) — (x4 01))(X(s) -
(x + 98))T)

1
Tu(st) =5 (1 + s — |t — 5?7, and
(iv) V has continuous and non-decreasing paths, and
foreach? = 1,...,d, a.s.,V;(0) = 0 and Vy(t) =

Ty(s, )l if t,s > 0, where

t
J Liw(s)er,) dVi(s) forall t > 0 (thatis,V; can only
0

increase wheV is on the boundary facép).

If conditions (i), (ii) and (iv) are met, we say that the
pair (W, V) is a solution of the Skorokhod Problem
associated toX on the convex polyhedra$i(Y') with
associated matrix of directions of reflectiéh

Remark 3 Strong existence and uniqueness of the so-
lution of a Skorokhod problem can be ensured if the
column vectors ofk are linearly independent, and
matrix W = T R verifies that the entries off the diago-
nal are non-negative and the following condition (the
generalized Harrison-Reiman condition), holds:

The matrix© obtained from¥ — I; by

(HR) replacing its entries by their absolute values,

has spectral radius strictly less than

(See Remark 1 [4] for a detailed justification.)

Loosely speaking, the rfBm process starts in the
interior of S and behaves like a fBm being constrained
to remain within S by reflection on the boundary.
Vector u!, gives the direction of the reflection at the
boundary face, andv’ its intensity. On the intersec-
tion of two or more faces, the direction of reflection is
given by a linear combination of the corresponding re-
flection vectors.
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3 The two-station fluid model with
flexible servers

This section provides a detailed exposition of the
model and makes preparations for the heavy-traffic
limit theorem. For facilitate access to the topics, the
subsections are rendered as self-contained as possible.

3.1 Introducing the model

The basic features of the model have been explained
in the Introduction. Now we go deeper into it. We
assumé < p1; < 1 and0 < poy + po1 < 1, and

PEG )

is the (sub-stochasti¢flow” or “routing” matrix of
the fluid model.

As in [1]-[5], we assume that for each station
j = 1, 2, there areN i.i.d. external sources send-
ing fluid to it, and that each source can be On or Off.
We suppose that the lengths of the On-periods are in-
dependent, those of the Off-periods are independent,
and the lengths of On- and Off-periods are indepen-
dent of each other. Leto™ and f°f be the probability
density functions corresponding to the lengths of On
and Off-periods, which are non-negative and heavy-
tailed. Therefore, their (positive) expected values are

+o0 +oo
e A R e
0 0

Assume that as — +o0,

0
D22

P11
P21

+oo

Fou) du ~ a7 L (2), 1)

xT

+o0 off
/ £ () du o 2= L2

wherel < po, goff < 2 and Lo, L°f are posi-
tive slowly varying functions at infinity such that if

Bon = o thenlim,_, oo L&) exists and belongs

Loff(m)
to (0, +-00). Note thatu°® and u° are finite while
variances are not.

In what follows, we use subindex to denote
the quantities related to clagsfluid, j = 1, 2, and
subindex12 specifically to that quantities related to
processing of class-fluid by server2. We define the
cumulative external clasgfluid arrived up to time
(by the V sources) at statiop by:

Ny def N ! a (n)
EN() Y of /ON(ZU]. (W) du, (2)
n=1
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where{Uj(")(t), t >0}, n=1...,N,is a family

of binary time series witty (™) (t) = 1 meaning that
at timet the sourcen of stationj is On (and it is
sending fluid to statiory at constant rate@V > 0),

and U](") (t) = 0 meaning that it is Off. Let’Y
(), ol)T. The two component processes of the
(non-deterministic)cumulative external fluid arrival
processe” = {EN(t) = (EY (1), EéV(t))T, t >

0}, are assumed to be independent. ket dof
N ___ and define\y = (AN, AY)T to be the
_pon et ) 1o 72 )
unique two-dimensional vector solution to ttraffic

equation

MV =aN 4 pT AN,

that is, ANV = Qa&a" where Q def (I, — P11,
which is well defined since matri® has spectral ra-
dius less than one. Note thaf’ can be thought as
the long run fluid rate into statiori. Assume that
A = limpy 00 AV exists,A = (A\q, A2)T. This im-

plies thato (1, a2)? = limy_4oo(ad, ad)T
also exists.

For anyr > 0 real valued parameter, we can con-
sider a sequence of fluid models indexed(byN),
whereN is the number of On/Off sources feeding the
system. We will use- as a scalar parameter in time.
For the(r, N) fluid model, suppose that servepro-
cesses class{luid at a constant ratp{’N > 0 if sta-
tion 1 were never idle, and servermprocesses class-
fluid at constant ratg™ > 0 if server2 devote all
time to class2 fluid, and processes clas<fluid at a
constant ratejl"’ZN > 0, not necessarily equal udl"’N
nor to MQN, if station 2 devoted all time to this fluid
class. We assume thiiny o0 (1), 1™, 1y )
exists and is positive, and does not depend-owe
denote it by(u1, e, n12) . We also introduce the

fluid traffic intensityp™ = (7N, po™)T by

N N rN N
rNdet AT Nt M T A 3)
P = N P2 = r,N r,N*
My H12 o

3.2 Performance processes

To measure the performance of our model we intro-
duce some processes. Our definitiomairkload pro-
cesswN = (W™, wy™)T, which is not as triv-

ial as it might initially seem, is adopted from [5] and
agrees with the one given in [8]F/] N (t) represents
the total time of service that would be required to com-
plete processing of the amount of clasfluid in the
system at time, if server1 were required to com-
plete its processing without future help from server
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A1 A2

Station 2
M2

Station 1
M1

P11 p21 D22

1—pnn 1 — (pa1 + p22)

Figure 1: A two-station fluid model with feedback and
flexible servers.

2, while W5 (¢) represents the total time of service
that would be required to complete processing of all
the classt and clas? fluid in the system at time,

if server 2 were required to complete the process-
ing of both without help from server. We assume
WrN(0) =0.

The cumulative idle-time procesy™™V
(YN, v5™)T is defined by:y"" (t) is the cumula-
tive amount of time that serverhas been idle during
the time interval0, ¢], that is,

t

/0 Liwyp (9)=0p 45
t

/O 1{Wr,N(s):0} ds.

The total service time processT™V
(TN, o™ TN s defined by 77V (t) is the to-
tal service time devoted to clagsuid (by servery)
in the intervall0, ¢], 7 = 1, 2, andT73" (¢) is the total
service time devoted to clagddy server2 in the same
time interval.

Directly related to feedback, we also introduce
processesA™ = (ATN, AT and DN =
(DPN, DM by: A7 (¢) s the total fluid arriving
at stationl (as classt fluid) up to timet, including
both feedback flow (from both stations) and external
input. AQ’N(t) is the total fluid arriving at statioR
(as clas fluid) up to timet, including both feed-
back flow (from statior2) and external input. Note
that in the definition of4}" we do not include fluid
transferred from statioh when the floodgate is open,
which is classt fluid. D{’N(t) is the total amount of

def

r,N
Y ()

vy () < (4)
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classi fluid departing from statiort or from station

2 (either by leaving the network or not) up to time
t. DQ’N (t) is the total amount of clasafluid depart-
ing from station2 (either by leaving the network or
not), up to timet. We assumed’;™ (0) = D™ (0) =
0,j=1,2.

These processes are related by means of the

equalities:
, AV wy
Wi () = N (TN () + i,zNTlﬁN(t))7
Hq Hq
(5)
r AN t T N r
Wy () = iﬁ—%”@+@mew,@
o H12
YN () =t — 10N (1), 7)
Vo) =t — (15N (1) + 1157 (1)) 8)

The interpretation of (5) is thatiy (t)//jl”’N is the
amount of time required by servérto process all
the classt fluid arrived up to timet to stationl,

r,N

while 77 () + Z}.?N 773" (t) represents the part of
this time yet consﬁmed at instanty serverl, which

is 70" (t), and by servee, which isT}3" (¢) conve-
niently rescaled since the service time for claghsid

is different when processed by serdeor by server
2. With respect to (6)AY (¢)/uy™ — T5N (t), is the
amount of time required by servito process all the
class2 fluid arrived to statior2 up to timet minus

the amount of time devoted to this processing. By the

other part, we ad@l’; AV (t) conveniently rescaled rep-
resenting the amount of time required by ser¥do
process all the claskfluid at buffer 1 at timet. For-
mulae (7) and (8) are self-explanatory: the length of
the interval[0, ¢] can be split into two parts: idle time
Y/ (t), and working time (7" (¢) for serverl, and
Ty () + 103" (¢) for server).

__Asiin [5], we introduce the following notation:
Wy (t) is the portion of the workload, " that is
exclusively due to clasg-luid, that is,

def A (1)
2
Mo

Then, by (6) it follows that

Wy (t) TN (1) .

r,N
N N I N
Wy () = Wy (t) + ,Ul—N W (t) .
12

(9)

By (7) and (4),

t
r, N o
Tl (t) — /0\ 1{W{’N(s)>0}d87
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and by definition ofi;"", T3 and 773", we can
write

t
r, N o
T, (t) = /0 l{wg-,z\r(s)>0} ds,

t
r,N o N
T, (t)_/O I{W{-,N(S)>O’W27-,N(S):O} ds, (10)
using (8), (4) and that
W =0 = wN =wyN =o0.

Finally, we introduce the procesg/"" =
VN, v™M)T as the function ofy”N and 7"
given by:

r,N

Vi e Sy e + By Ne, @
Hq

VN () Ly N () + TN (). (12)

We are interested in express workload process in
terms of the external arrival procegg> and pro-
cessV"™N. From this relation, that will be proved in
Lemma 5, we will deduce in Lemma 7 the Skorokhod
representation needed to prove the heavy-traffic limit
theorem. We begin with the expression of process
A™N in terms of E™Y and W™, which is set in the
next lemma.

Lemma 4 ProcessesA”™, E™N and W™V are re-
lated by means of the following identity:

APN(E) = Q BN (1) — QPT (M)W (1)

(13)
where
1
N 0
M = ( AU ) :
N r,N
H12 Ho
Proof: By definition of processi™",
AN (t) = EN(t) + PT DN (t) (14)

since PT D"V (t) is the total amount of fluid arriv-
ing from feedback By the other way, according to

definition of processD™, D™ (t) = APN(t) —
r,Nyy 1N r,N r,N r,N17-m,N

N WP () and DN (1) = AN (6) -y N W N (),

which in matricial form can be expressed as
DT,N(t) — AT,N(t) _ (MT,N)—IWT,N

from (9) and the fact that

(15)

r,N 0
(MmN~ = A
- _ BT HY N
N 2
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Substituting (15) into (14) vyieldsA™V(t)
EPN () +PT AN (1) — PT(M™N)=1W N (t), which
establishes the identity of the lemma on account of the
definition of matrix@. O

Lemma 5 ProcessesiV™V, E™N and V"V verify
the following relation:

WT,N(t) — Mr,NEr,N(t) _ Cr,Nér,Nt + RT,NvT,N(t)

(16)
where
r,N
Cr,N — MT,N Q—l (]\47’,N)—17 5T,N — (1’ 1+ MiN)T
Hi2
andR™N = CmN BN with
Lo
BN — N u
b 0
Hi2

Proof: From (5), (7), (11) and (12) we can rewrite

wiN as

AN (¢ .
v -
Hq M1

T, N T,
WM () = 12%Nm.

17)

Substituting (5) into (6), and then combining (7) with
(8), yields

ATJV(t) AT,N(t)
r,N
W2 (t) = 11",N 2T,N
Hi2 Ha
[y N N N
ﬂ+iwﬂ-aW”@+wwm
Ko Hi2
that applying (11) can be rewritten as
ATJV({;) AT,N(t)
r,N
W2 (t) =— r,N 2 r,N
Hi2 Ha
a+%N> BN, as)
K1 N12
We can express (17) and (18) in matricial form as
WT,N(t) — Mr,NAr,N(t) _ 6T,Nt + BT‘,NVT,N(t)‘
(19)
Substituting (13) into (19) we can assert that
Wr,N(t) — MT,NQET,N(t)
_ MT,NQPT(MT,N)fle,N(t)
_ 5r,Nt + BT’NVT’N(t),
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that is,

(I2 + MT,NQPT(MT,N)—I)WT,N(t)

= M"NQE™N () — 6™Nt + BANVTN (1), (20)
It is straightforward to see thatl, +
MT,NQPT(MT,N)—I — MT,NQ(MT,N)—I’ whose
inverse isC™Y. It follows immediately from (20)
thatWw N (t) = C»NM™NQE™N (t) — CmNm Nt +
CcrNBrNyTN(t), which gives the desired re-
sult since CN BmN R™N by definition and
CT,NMT,NQ — M"™N. 0

Remark 6 We clearly see the existence of the follo-
wing limits:

1
= 0
M= lim M"N=| w | |,
N—+o0 Tz 2
1 Hi12
B= lim B"N = i 51 ,
N—+o0 ey
C= lim C™"N=MQ ‘M1,
N—+o0
R= lim R"N =CB (21)
N—+o0
_ L —pn —LE2(1—pu) — Bpn
(1 —-pu) P11 —p22 — £2pn '

3.3 Sequence of convex polyhedra ifiR?
Let us define

def

G1 = {(z,y) e R? : z >0},
Gr € {(zy) e R2 1y > "ha},
K12

ands & G1 N Ge. Then,S is a convex polyhedron

in IR? determined by matrix
0
1 9

o

the set of row vector§v!, v?} with v! =

1
you
H12

(22)

(1,0)” and

v? = (—5712, 1)T, is minimal, the boundary faces are
Fr={(z,y) €S : z =0},
FQ_{(:Cay)ES : y:ﬂx )

K12

and the boundary of is 0S = F; U F; (Figure 2).

We also introduce a sequence of convex polyhe-
dra: for the(r, N) model, the corresponding convex
polyhedronS™" is introduced analogously t8 by

replacingu; andpq2 by up’ andu12 , respectively.
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n Hi2
ul
(0,0) x

Figure 2: The convex polyhedron.

We will use superscript, N to refer to items asso-

ciated toS™". For instanceS™V = SmN(rV),
where
1 0
TT’N = N‘?N 1 . (23)
TN
H12

(Note thatlimpy_s o, Y™V = 1)

We wish to stress that the key technical difficulty
of our main result (Theorem 9) stems from the fact
that the faces of the convex polyhedrS(Y™V), as-
sociated to thér, V) model, do depend onand N .

3.4 Scaled processes

In order to define thecaled processesssociated with
the (r, N) model we have to introduce some no-
tation that goes back as far as the work of Taqqu,
Willinger and Sherman [10] (see also [1], [2], [5]).
def —pon def —poft
Seta™ = F(gof 1)) and ¢° = F((;offﬂ,l)),
o™ and g°f are defined by (1). The normalization

factors used below depend én defined by b def

limy_y 4 oo 528 878" which exists although it

could be infinite. If0 < b < +oo (implying

pon = pof andb = hm Lon(t)) setf & gon =

oo LOfi(t)

IBOH’ L

JQ,lim déf 9 ((,uoff)Q a p + ('uon)Q aoff)
(pom + poF) (4 - )

where

def
= L°ff and

def

If, on the other handh = 400 (5° > g°), setl =

Lon’ ,8 def /Bon and
) (uoﬁf)2 a°n

2 lim def
g~ = 3 .
(pon + pof)"T(4 - B)
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If b =0 (8°F < go), setl & roff, g goff gng

O_Q,lim def Q(Mon)Q off .
(kon + o)1 (4= )
In either casej € (1, 2). Let us define
def 3= 1
H= —— (e (5 1)). (24)

Now we can introduce theeavy-traffic condition
which establishes that thtuid traffic intensityp”V
defined by (3) tends te = (1, 1)7 in the following
sense:

~r

(HT) {limNHJroo VN (pN —e) =7" € R? and

~ 2 Ar — 4 e R2.

hm?"HJrOO L172(r )’Y

We can introduce thscaled processeasssociated

with the( N) fluid model and use a hat to denote
them: W~ = (WY Wi is defined by
r N
def (T t)
J ( ) = \/_ rH L1/2( ) (25)

and similarly for the other processes except for
E™N = (EPN | EDN)Y, defined by

(r t) — déyrt
rH L1/2(r)

oM (1) €VN (26)

(wherej =1, 2). From (11) and (12) we obtain

T = 0+ M T, (@)
M1
Vo = YN ) + 1757 (1), (28)
from (4) it follows that
N
Yi(t) = L1/2 /{WTN —oyds,  (29)
N
Y () L1/2 / {WrN (30)
and from (10) we deduce that
N 1-H
TlréN(t) - \/NT _/ 1 —~nrN ds.
L'2(r) Jo (WY )>0W, (s)=0}
(31)

The following lemma provides a Skorokhod decom-
position that will prove extremely useful in the proof
of Theorem 9 below.
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Lemma 7 The scaled processes are related by means
of

WT’N(ZL,) _ )?T,N(t) + Rr,N ‘77‘,N(t) 7
with

\/er_H rN

)?T,N _ MT‘,NE\T',N t
( ) + Ll/Z(T)

("N — e)t.
(32)

Proof. From (25), (16) and (26) we obtain

_JN WrN(rt)

WrN (¢
®) rH LV2(r)

VN
CrH L2(r)
+ RNV (1))

(MT’NET’N(rt) — NNt

VNt
_|_ R —

r,N ~N
L1/2(r) M5 ot

= M"NE™N (rt)

\/erfH

_ N ¢r.N rN{r,N
Firagy O RN ),

By using thata = Q~'A\Y, we can rewrite this ex-
pression as:

WrN () = MPNEPN (r)
\/ﬁrlfH
LY/2(r)
+ RONVTN (),

+ (MT,NQ—l)\N . CT,N(ST,N)t

which is our claim, due to the fact that

Mr,NQfl)\N _ Cr,Nér,N
— CT,N (MT,N)\N _ 51",N) — CT,N(pr,N _ 6). 0

Lemma 8 For the(r, NV) fluid model, the column vec-
tors of matrix RV given by Lemma 5 are linearly
independent and the product of matric@sy =
TN RN verify that the entries outside the main dia-
gonal are nonpositive and also conditidhlR) (see
Remark 3), where matriX™ is given by(23). More-
over, by taking the limit a&v — +oo (which does not
depend orr) the column vectors of matrik are lin-
early independent, andt = Y R verifies that the en-
tries outside the main diagonal are nonpositive and
also condition(HR), where matriceskR and T are
given by(21) and(22), respectively.

The proof of this lemma is straightforward and
omitted.
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4  The heavy-traffic limit

Our goa/l\now is to state that the scaled workload
processW"™Y converges in distribution to a two-
dimensional rfBm process on the convex polyhedron
S(T), whenN first and thenr, tend to infinity in this
order, under heavy-traffic. The following result may
be proved in much the same way as Theorem 1 [1] and
Theorem 1 [5].

Theorem 9 (heavy-traffic limit) Under the heavy-
traffic condition(HT) the following limits exist irC:

—r
= ‘ —. N
W =D —limn_oiocc W,

=r

W=D —limy oW ,

and W is a two-dimensional rfBm process on the con-
vex polyhedrort(Y) with T given by(22) and asso-
ciated data

(x=0,H,6=Cv,T, R),

whereH € (3, 1) is defined by24), v € IR? is given
by condition(HT),

of af
' ui 1 p12
T = O_2,hm (33)
O‘% O‘_% + O‘_g
£ b2 wiy K3

with o>!™ given bySection 3.4 and C' and R are
given by Remark 6.

Proof:

Fix » > 0. Let us first show that Proposi-
tion 10 in the Appendix can be applied to the se-
quence (WY, XnN UnN) . To see this, note
that (S™V, R™") verifies conditions (A1)-(A5) [9]
for any N, which is clear from Lemma 8, where
SN = gnN(YmN) It remains to prove that
(WnN, XrN {rN) - verifies conditions (i)-(iv) in
Assumption (h) in the Appendix. Indeed,

—~r,N
() WrN, W, >0, and from (25) and (9) it follows
that

— QT‘,N HT’N o~
Wan(t) =W, (rt)+ M}"’N WlnN(t) ,
12

r,N
M
r,N
/\ H12
forcesW ™ (¢t) € S~V forallt > 0.
(i) the Skorokhod decomposition has been proved in
Lemma?.

which impliesi; Y (¢) > Lo W (¢). This clearly
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(i) By (27), (29) and (30) we get

R t
TNO = [ Vspery 07 6)

and by (28), (30) and (31) we analogously obtain

rN N
V2 / {WTN S)EFTN} dVZ ( )7
taking into account thaFf’N = {(z,y) € 5"V :
r,N
z=0}andFyN = {(z,y) € SN : y =

(iv) is consequence of the weak convergencé?ﬁf\’
as N — +o0, which, in turn, is a consequence of
Theorem 1 [10] and Theorem 7.2.5 [11]. Indeed, for
anyj =1, 2, from (26) and (2) we can write

N

J (t) = THL1/2 \/—Z

Mon .
on | off r
o+ p

and deduce the existence of the linft = D —
limy_ 400 E™V , which has paths id?, and the exis-
tence of the limit
D— lim F =BY, (34)
r—-+00

B peing a two-dimensional fBm process with as-
sociated datdz = 0, H, 0 = 0, diag(a)? o>''™),
which is condition (a) in Proposition 10.

Combining (32),(HT) and thecontinuous map-

ping theoremaccordlng to the above IlmE we de-

D — im0 X"V,

duce the existence OK
which verifies that

~T 1-H

X (t) = ME (1) + Lﬁ/i%c%, (35)

implying the continuity of the paths of and (iv).

Secondly, since hypothesis (b) is accomplished by
Lemma 8 and Remark 3, we can apply Proposition 10
to obtain that there exists the following limit:

=T xr =T

D— lim (WN, XN VN =W, X, V),

N—+o0
and that the limit satlsfles condltlons (1), (i) and (iv)
of Definition 2, that |s(W V ) is a solution of the

Skorokhod Problem associated ® on the convex
polyhedronS(Y') with associated matrix of directions
of reflectionR.
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The repeated application of Proposition 10,

this case to the sequen¢éV , X , V )},, enables
us to complete the proof. Indeed from (35), (34),
(HT) and thecontinuous mapping theorermve can

ensure the existence @ — lim X = X, with
r——+00

X(t) = M B (t) + C~t, which is a two-dimensional
fBm process with associated da(tﬁ =0,H, 0 =
C~,T), whereT' = o™ Mdiag(e)> M7 is given

by (33). Moreover, by Lemma 8 we can assert that
(b) in Proposition 10 holds, by Remark 3, and from
Proposition 10 it follows the existence of

T o~ ~r
— ~ -~

D— lim (W,X,V)

r—-+o00

=W, X, V),

where the triplet(WW, X, V') satisfies conditions (i)-
(iv) of the Definition 2.

Thus,W = X + RV is atwo-dimensional rfBm
on the convex polyhedrof(Y) with associated data
(x=0, H, 6§ =C~, T, R),whichis our claim. O

5 Appendix: The invariance princi-
ple

Kang and Williams prove in Theorem 4.3 [9] an
Invariance Principle for Semimartingale reflecting
Brownian motions (SRBMS) living in the closure of

a domain with piecewise smooth boundaries. This
provides sufficient conditions for a process that satis-
fies the definition of a SRBM except for small random
perturbations in the defining conditions, to be close in
distribution to an SRBM. The version of this result
stated in [5] gives sufficient conditions for validating
approximations involving rfBm processes on a convex
polyhedron with a constant reflection vector field on
each face, in such a way the approximating processes
live in a sequence of convex polyhedra. For the conve-
nience of the reader, we reproduce here the invariance
principle in [5] without proof, thus making our expo-
sition self-contained. LefS™},, denote a sequence of
convex polyhedra that converges to the convex poly-
hedronS. The invariance principle requires the fol-
lowing hypothesis, which is a version of Assumption
4.11[9]:

Assumption (h) For each positive integen, there
are processe$?™, X" having paths inD? and V'™
having paths irc? defined on some probability space
(Qm, F*, P™) such thatX™(0) € S™ and:

(i) Pr—a.s.,W"(t)e S"forallt>0,
(i) P"—a.s.,Wn"(t) = X"™(t) + R"V"(t) for all
t>0,
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(i) P*—a.s., for each i = 1,...,d,
V*0) = 0,V is nondecreasing and

vet) = [y Liwn(s)erry dV;"(s),

(iv) {X"™}, isC—tight.

Proposition 10 (The Invariance Principle)

Suppose thatAssumption (h) and assumptions
(A1)-(A5) [9] hold, and also thatim,, 1~ R™ = R.
Then, the sequencéW”, X" V")}, is C—tight
and any (weak) limit point of this sequence is of
the form (W, X, V) where W, X and V' are con-
tinuous d—dimensional processes defined on some
probability space((2, F, P), such that conditions
(i), (i) and (iv) of Definition 2 hold,IW(0) = X(0)
and V(0) = 0, that is, (W, V) is a solution of the
Skorokhod Problem associated 6 on the convex
polyhedronS with associated matrix of directions of
reflectionR. If, in addition,

(a) {X™}, converges in distribution to al—di-

mensional

fBm process with associated data

(z, H,6,T),and

(b) the Skorokhod Problem associated Xoon the
convex polyhedro’ with associated matrix of direc-
tions of reflectionk has a unique strong solution,

thenTV is a rfBm process or% with associated data
(Q:7 H? 07 F? R) "
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