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Abstract: We consider a two-station fluid model that can be approximated under heavy-traffic by a reflected frac-
tional Browian motion (rfBm) process on a convex polyhedron. Specifically, we prove a heavy-traffic limit theorem
for a two single-server workstation fluid model with feedback and flexible servers. Flexibility here means that one
of the servers is capable to help the other. The non-deterministic arrival process is generated by a large enough
number of heavy-tailed On/Off sources,N . We introduce the adequate definition ofworkload, and scaling con-
veniently by a factorr and byN , and lettingN andr approach infinity (in this order), we prove that the scaled
workload process converges to a rfBm on a convex polyhedron.
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1 Introduction

The aim of this paper is to investigate the asymptotic
behavior of a fluid model under heavy-traffic. The
model consists of a network composed of two single-
server workstations that process continuous fluid, with
an infinite-capacity buffer at each one. The model,
which is portrayed schematically in Figure 1, allows
feedback and one of the servers to help the other.

There are two fluid classes, and class-j fluid (j =
1, 2) is primarily assigned to serverj, which works at
stationj. We assume that fluid is processed in a first-
in-first-out (FIFO) basis within each class. The sense
in which one of the servers can help the other is the
following: whenever station2 becomes empty while
class-1 fluid is awaiting at station1, a floodgate opens
and fluid begins to be transferred to station2 so that
while the situation persists, class-1 fluid is simultane-
ously processed by both servers (possibly at different
speeds). We assume that there is no travel delay (setup
time). The situation continues until either the amount
of class-1 fluid in the system runs out, in which case
both servers are at rest thereafter until new fluid ar-
rive, or class-2 fluid reaches station2 from outside,
whichever happens first. In the latter case, the fluid
transfer immediately ceases (the floodgate closes) and
server2 starts processing of class-2 fluid, while class-
1 fluid processing continues by server1. Is in this
sense that we say that server2 is flexible, since it gives

support to the other, although the converse is not al-
lowed. We assume that server1 cannot be idle if there
is class-1 fluid awaiting for processing at station1,
while server2 cannot be idle if there is fluid awaiting
at any of the two stations (nonidling policy).

Models with flexible servers have been used in
real-life systems, including service centers, produc-
tion systems, computer networks with rescheduling
of jobs, parallel computing systems where processors
have overlapping capabilities, and manufacturing ap-
plications in which machines may have differing pri-
mary functions and some overlapping secondary ones.
See for instance [6], [7] and references therein.

Moreover, feedback is allowed: after processing
of class-1 fluid (by either server), a proportionp11
needs reprocessing and is sent back to station1, while
the rest goes outside the network. Similarly, after pro-
cessing (by server2), a proportionp22 of class-2 fluid
needs to be reprocessed by server2, while a propor-
tion p21 needs reprocessing but as class-1 fluid, and
consequently switches class and is directed to station
1; the rest goes outside the network.

Actually, this paper presents a hybrid between the
fluid model with feedback introduced in [1], with two
workstations, and the cascade fluid model of [5] in
which server2 is flexible in agreement wit our def-
inition of flexibility. Our objective is to explore the
implications on the asymptotic behavior under heavy
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traffic of allowing flexibility in the fluid model with
feedback of [1], as well as that of allowing feedback
in the cascade fluid model of [5].

We assume that for each fluid class, the process
of external arrivals is a non-deterministic aggregated
cumulative process generated by a large enough num-
ber of heavy tailed On/Off sources,N . This assump-
tion relies on the presence of long-range dependence
and self-similar traffic pattern in modern high-speed
network traffic, and the fact that one simple physical
explanation for this phenomenon is the superposition
of many heavy-tailed On/Off sources (see [10], [1]).

We consider a double sequence of fluid models
indexed byr (a parameter of change of scale) and
N , the number of On/Off sources, whose traffic in-
tensities tend to1 in some sense asr and N go
to infinity (heavy-traffic condition), and we prove a
limit theorem for the two-dimensional workload pro-
cess. Indeed, in Theorem 9 we prove that after ad-
equate scaling, the workload process converges to a
two-dimensionalreflected fractional Brownian mo-
tion (rfBm) process living in a convex polyhedron
(which is not the positive orthant).

The organization of the paper is as follows. In
Section 2 we set up notation and preliminary defini-
tions. Section 3 is devoted to the introduction of the
model, the processes used to measure its performance
and the heavy-traffic condition. In Section 4 our main
result is stated and proved, and in the Appendix we
present anInvariant Principle, which is a key ingredi-
ent in the proof of the heavy-traffic limit theorem.

2 Notations and preliminaries
Vectors will be column vectors andvT means the
transpose of a vector (or a matrix)v. By diag(v)
we denote the diagonal matrix with diagonal elements
the components of vectorv (in the same order). In-
equalities for vectors must be understood in the com-
ponentwise sense. For any fixedd ≥ 1, the iden-
tity matrix of dimensiond is denoted byId . For
any d × m matrix A = (aij)i=1,...,d, j=1,...,m , let

|A| def
= max

1≤j≤m

( d∑

i=1

|aij |
)

(where|x| denotes the ab-

solute value ofx ∈ IR), anddet(A) denotes the deter-
minant ofA if d = m. We will say that a sequence of
d×m matrices{An}n converges to ad×m matrixA
if |An−A| → 0 asn tends to+∞ (this convergence is
equivalent to the convergence in the component-wise
sense), and we will denote it simplylim

n→+∞
An = A

or An → A. The inner product of a couple of vectors
u, v ∈ IRd is 〈u, v〉 =∑d

i=1 ui vi .

Let Cd be the space of continuous functionsω

from [0, +∞) to IRd, with the topology of the uni-
form convergence on compact time intervals, andDd

the space of continuous on the right with limits on
the left functions, endowed with the usual Skorokhod
J1−topology. All stochastic processes in this paper
will be assumed to have paths inDd, for somed ≥ 1.

A sequence of stochastic processes{Xn}n≥1 is
said to betight if the induced measures onDd form a
tight sequence (that is, the sequence of induced mea-
sures is weakly relatively compact in the space of
probability measures onDd).

We will useD − lim to denote theconvergence in
distributiononCd or Dd (or weak convergence). That
is, we writeD − lim

n→+∞
Xn = X if the sequence of

probability measures induced inDd by {Xn}n con-
verges weakly to that induced byX .

The sequence of processes{Xn}n is called
C−tight if it is tight, and if each weak limit point, ob-
tained as a weak limit along a subsequence, almost
surely has sample paths inCd .

Reflected fractional Brownian motion (rfBm) is
a stochastic process that has been widely used in the
context of heavy-traffic limit theorems when the ar-
rival processes are generated by a large number of
heavy-tailed On/Off sources. See for instance [1]-[3],
in which the rfBm lives in the positive orthant, and
[4], [5], in which lives in a convex polyhedron with
constant directions of reflection along each face. We
reproduce here this last definition for the sake of com-
pleteness.

Definition 1 (convex polyhedron) A convex polyhe-
dronS on IRd can be defined algebraically as the set
of solutions to a system of linear inequalities:

S
def
={x ∈ IRd : 〈vℓ, x〉 ≥ 0 for all ℓ = 1, . . . , d}
={x ∈ IRd : Υx ≥ 0}

wherev1, . . . , vd ∈ IRd, Υ being thed × d matrix
whose row vectors arev1, . . . , vd . That is, S =⋂d

ℓ=1Gℓ whereGℓ = {x ∈ IRd : 〈vℓ, x〉 ≥ 0}. The
boundary ofS is ∂S = ∪d

ℓ=1Fℓ, whereFℓ = {x ∈
S : 〈vℓ, x〉 = 0}, ℓ = 1, . . . , d, are the boundary
faces ofS.

We write S(Υ) to emphasize that the convex
polyhedron is determined by the matrixΥ. It is as-
sumed that the interior ofS(Υ) is not empty and the
set{v1, . . . , vd} is minimal. Then,nℓ = vℓ

||vℓ||
is the

inward unit normal toFℓ that points into the interior
of S.

Associated to the convex polyhedronS(Υ) we in-
troduce thedirections of reflection, which are constant
along each face, as the column vectors of ad× d ma-
trix R, which are denoted byu1, . . . , ud.
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Definition 2 (rfBm on a convex polyhedron) Let
S(Υ) be a d−dimensional convex polyhedron as in
Definition 1, with associatedd×d matrix of directions
of reflectionR. A reflected fractional Brownian mo-
tion on S(Υ) associated with data(x, H, θ, Γ, R),
wherex ∈ S(Υ),H ∈ (0, 1), θ ∈ IRd andΓ is ad×d
positive definite matrix, is ad−dimensional process
W = {W (t) = (W1(t), . . . , Wd(t))

T , t ≥ 0} such
that
(i) W has continuous paths andW (t) ∈ S(Υ) for all
t ≥ 0 a.s.,
(ii) W = X + RV a.s., withX andV two d− di-
mensional processes defined on the same probability
space and verifying:
(iii) X is a fractional Brownian motion (fBm) pro-
cess with associated data(x, H, θ, Γ), that is, it
is a continuous Gaussian process starting fromx,
with mean functionE

(
X(t)

)
= x + θ t for any

t ≥ 0, and with covariance function given by

Cov
(
X(t),X(s)

)
= E

((
X(t)− (x+ θ t)

)(
X(s)−

(x + θs)
)T)

= ΓH(s, t)Γ if t, s ≥ 0, where

ΓH(s, t) =
1

2

(
t2H + s2H − |t− s|2H

)
, and

(iv) V has continuous and non-decreasing paths, and
for eachℓ = 1, . . . , d , a.s.,Vℓ(0) = 0 andVℓ(t) =
t∫
0

1{W (s)∈Fℓ} dVℓ(s) for all t ≥ 0 (that is,Vℓ can only

increase whenW is on the boundary faceFℓ).
If conditions (i), (ii) and (iv) are met, we say that the
pair (W, V ) is a solution of the Skorokhod Problem
associated toX on the convex polyhedronS(Υ) with
associated matrix of directions of reflectionR.

Remark 3 Strong existence and uniqueness of the so-
lution of a Skorokhod problem can be ensured if the
column vectors ofR are linearly independent, and
matrixΨ = ΥR verifies that the entries off the diago-
nal are non-negative and the following condition (the
generalized Harrison-Reiman condition), holds:

The matrixΘ obtained fromΨ− Id by

(HR) replacing its entries by their absolute values,

has spectral radius strictly less than1 .

(See Remark 1 [4] for a detailed justification.)

Loosely speaking, the rfBm process starts in the
interior ofS and behaves like a fBm being constrained
to remain withinS by reflection on the boundary.
Vector uℓ, gives the direction of the reflection at the
boundary faceFℓ, andvℓ its intensity. On the intersec-
tion of two or more faces, the direction of reflection is
given by a linear combination of the corresponding re-
flection vectors.

3 The two-station fluid model with
flexible servers

This section provides a detailed exposition of the
model and makes preparations for the heavy-traffic
limit theorem. For facilitate access to the topics, the
subsections are rendered as self-contained as possible.

3.1 Introducing the model
The basic features of the model have been explained
in the Introduction. Now we go deeper into it. We
assume0 ≤ p11 < 1 and0 ≤ p22 + p21 < 1, and

P
def
=

(
p11 0
p21 p22

)

is the (sub-stochastic)“flow” or “routing” matrix of
the fluid model.

As in [1]-[5], we assume that for each station
j = 1, 2, there areN i.i.d. external sources send-
ing fluid to it, and that each source can be On or Off.
We suppose that the lengths of the On-periods are in-
dependent, those of the Off-periods are independent,
and the lengths of On- and Off-periods are indepen-
dent of each other. Letfon andfoff be the probability
density functions corresponding to the lengths of On
and Off-periods, which are non-negative and heavy-
tailed. Therefore, their (positive) expected values are

µon def
=

∫ +∞

0
ufon(u)du, µoff def

=

∫ +∞

0
ufoff(u)du.

Assume that asx → +∞ ,
∫ +∞

x
fon(u) du ∼ x−βon

Lon(x), (1)

∫ +∞

x
foff(u) du ∼ x−βoff

Loff(x) ,

where1 < βon, βoff < 2 and Lon, Loff are posi-
tive slowly varying functions at infinity such that if
βon = βoff , thenlimx→+∞

Lon(x)
Loff (x)

exists and belongs

to (0, +∞) . Note thatµon andµoff are finite while
variances are not.

In what follows, we use subindexj to denote
the quantities related to class-j fluid, j = 1, 2, and
subindex12 specifically to that quantities related to
processing of class-1 fluid by server2. We define the
cumulative external class-j fluid arrived up to timet
(by theN sources) at stationj by:

EN
j (t)

def
= αN

j

∫ t

0

1

N

( N∑

n=1

U
(n)
j (u)

)
du , (2)
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where{U (n)
j (t), t ≥ 0}, n = 1, . . . , N, is a family

of binary time series withU (n)
j (t) = 1 meaning that

at time t the sourcen of station j is On (and it is
sending fluid to stationj at constant rateαN

j > 0),

andU (n)
j (t) = 0 meaning that it is Off. LetαN =

(αN
1 , αN

2 )T . The two component processes of the
(non-deterministic)cumulative external fluid arrival
processEN = {EN (t) =

(
EN

1 (t), EN
2 (t)

)T
, t ≥

0}, are assumed to be independent. Letα̃N def
=

αN µon

µon+µoff and defineλN = (λN
1 , λN

2 )T to be the
unique two-dimensional vector solution to thetraffic
equation

λN = α̃N + P T λN ,

that is, λN = Qα̃N where Q
def
= (I2 − P T )−1,

which is well defined since matrixP has spectral ra-
dius less than one. Note thatλN

j can be thought as
the long run fluid rate into stationj . Assume that
λ = limN→+∞ λN exists,λ = (λ1, λ2)

T . This im-
plies thatα = (α1, α2)

T = limN→+∞(αN
1 , αN

2 )T

also exists.

For anyr > 0 real valued parameter, we can con-
sider a sequence of fluid models indexed by(r, N),
whereN is the number of On/Off sources feeding the
system. We will user as a scalar parameter in time.
For the(r, N) fluid model, suppose that server1 pro-
cesses class-1 fluid at a constant rateµr,N

1 > 0 if sta-
tion 1 were never idle, and server2 processes class-2

fluid at constant rateµr,N
2 > 0 if server2 devote all

time to class-2 fluid, and processes class-1 fluid at a
constant rateµr,N

12 > 0, not necessarily equal toµr,N
1

nor toµr,N
2 , if station2 devoted all time to this fluid

class. We assume thatlimN→+∞(µr,N
1 , µr,N

2 , µr,N
12 )

exists and is positive, and does not depend onr; we
denote it by(µ1, µ2, µ12) . We also introduce the
fluid traffic intensityρr,N = (ρr,N1 , ρr,N2 )T by

ρr,N1
def
=

λN
1

µr.N
1

, ρr,N2
def
=

λN
1 − µr,N

1

µr,N
12

+
λN
2

µr,N
2

. (3)

3.2 Performance processes
To measure the performance of our model we intro-
duce some processes. Our definition ofworkload pro-
cessW r,N = (W r,N

1 , W r,N
2 )T , which is not as triv-

ial as it might initially seem, is adopted from [5] and
agrees with the one given in [8]:W r,N

1 (t) represents
the total time of service that would be required to com-
plete processing of the amount of class-1 fluid in the
system at timet, if server 1 were required to com-
plete its processing without future help from server

α1 α2

λ1 λ2

µ12

p11 p22

1 − (p21 + p22)1 − p11

p21

µ1

Station 1
µ2

Station 2

Figure 1: A two-station fluid model with feedback and
flexible servers.

2, while W r,N
2 (t) represents the total time of service

that would be required to complete processing of all
the class-1 and class-2 fluid in the system at timet,
if server 2 were required to complete the process-
ing of both without help from server1. We assume
W r,N(0) = 0 .

The cumulative idle-time processY r,N =

(Y r,N
1 , Y r,N

2 )T is defined by:Y r,N
j (t) is the cumula-

tive amount of time that serverj has been idle during
the time interval[0, t], that is,

Y r,N
1 (t)

def
=

∫ t

0
1
{W r,N

1
(s)=0}

ds,

Y r,N
2 (t)

def
=

∫ t

0
1{W r,N (s)=0} ds . (4)

The total service time processT r,N =

(T r,N
1 , T r,N

2 , T r,N
12 )T is defined by:T r,N

j (t) is the to-
tal service time devoted to class-j fluid (by serverj)
in the interval[0, t], j = 1, 2, andT r,N

12 (t) is the total
service time devoted to class-1 by server2 in the same
time interval.

Directly related to feedback, we also introduce
processesAr,N = (Ar,N

1 , Ar,N
2 )T and Dr,N =

(Dr,N
1 , Dr,N

2 )T by: Ar,N
1 (t) is the total fluid arriving

at station1 (as class-1 fluid) up to timet, including
both feedback flow (from both stations) and external
input. Ar,N

2 (t) is the total fluid arriving at station2
(as class-2 fluid) up to time t, including both feed-
back flow (from station2) and external input. Note
that in the definition ofAr,N

2 we do not include fluid
transferred from station1 when the floodgate is open,
which is class-1 fluid. Dr,N

1 (t) is the total amount of
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class-1 fluid departing from station1 or from station
2 (either by leaving the network or not) up to time
t. Dr,N

2 (t) is the total amount of class-2 fluid depart-
ing from station2 (either by leaving the network or
not), up to timet. We assumeAr,N

j (0) = Dr,N
j (0) =

0, j = 1, 2 .
These processes are related by means of the

equalities:

W r,N
1 (t) =

AN
1 (t)

µr,N
1

−
(
T r,N
1 (t) +

µr,N
12

µr,N
1

T r,N
12 (t)

)
,

(5)

W r,N
2 (t) =

AN
2 (t)

µr,N
2

− T r,N
2 (t) +

µr,N
1

µr,N
12

W r,N
1 (t), (6)

Y r,N
1 (t) = t− T r,N

1 (t), (7)

Y r,N
2 (t) = t−

(
T r,N
2 (t) + T r,N

12 (t)). (8)

The interpretation of (5) is thatAN
1 (t)/µr,N

1 is the
amount of time required by server1 to process all
the class-1 fluid arrived up to timet to station 1,

while T r,N
1 (t) +

µr,N
12

µr,N
1

T r,N
12 (t) represents the part of

this time yet consumed at instantt, by server1, which
is T r,N

1 (t), and by server2, which isT r,N
12 (t) conve-

niently rescaled since the service time for class-1 fluid
is different when processed by server1 or by server
2. With respect to (6),AN

2 (t)/µr,N
2 − T r,N

2 (t), is the
amount of time required by server2 to process all the
class-2 fluid arrived to station2 up to timet minus
the amount of time devoted to this processing. By the
other part, we addW r,N

1 (t) conveniently rescaled rep-
resenting the amount of time required by server2 to
process all the class-1 fluid at buffer 1 at timet. For-
mulae (7) and (8) are self-explanatory: the length of
the interval[0, t] can be split into two parts: idle time
Y r,N
j (t), and working time (T r,N

1 (t) for server1, and

T r,N
2 (t) + T r,N

12 (t) for server2).
As in [5], we introduce the following notation:

W̃ r,N
2 (t) is the portion of the workloadW r,N

2 that is
exclusively due to class-2 fluid, that is,

W̃ r,N
2 (t)

def
=

AN
2 (t)

µr,N
2

− T r,N
2 (t) .

Then, by (6) it follows that

W r,N
2 (t) = W̃ r,N

2 (t) +
µr,N
1

µr,N
12

W r,N
1 (t) . (9)

By (7) and (4),

T r,N
1 (t) =

∫ t

0
1
{W r,N

1
(s)>0}

ds,

and by definition ofW̃ r,N
2 , T r,N

2 andT r,N
12 , we can

write

T r,N
2 (t) =

∫ t

0
1
{W̃ r,N

2
(s)>0}

ds ,

T r,N
12 (t) =

∫ t

0
1
{W r,N

1
(s)>0, W̃ r,N

2
(s)=0}

ds , (10)

using (8), (4) and that

W r,N = 0 ⇐⇒ W r,N
1 = W̃ r,N

2 = 0 .

Finally, we introduce the processV r,N =

(V r,N
1 , V r,N

2 )T as the function ofY r,N and T r,N

given by:

V r,N
1 (t)

def
=Y r,N

1 (t) +
µr,N
12

µr,N
1

Y r,N
2 (t), (11)

V r,N
2 (t)

def
=Y r,N

2 (t) + T r,N
12 (t) . (12)

We are interested in express workload process in
terms of the external arrival processEr,N and pro-
cessV r,N . From this relation, that will be proved in
Lemma 5, we will deduce in Lemma 7 the Skorokhod
representation needed to prove the heavy-traffic limit
theorem. We begin with the expression of process
Ar,N in terms ofEr,N andW r,N , which is set in the
next lemma.

Lemma 4 ProcessesAr,N , Er,N and W r,N are re-
lated by means of the following identity:

Ar,N(t) = QEr,N (t)−QP T (M r,N )−1W r,N(t)
(13)

where

M r,N =

( 1

µr,N
1

0

1

µr,N
12

1

µr,N
2

)
.

Proof: By definition of processAr,N ,

Ar,N (t) = Er,N (t) + P TDr,N(t) (14)

sinceP TDr,N (t) is the total amount of fluid arriv-
ing from feedback. By the other way, according to
definition of processDr,N , Dr,N

1 (t) = Ar,N
1 (t) −

µr,N
1 W r,N

1 (t) andDr,N
2 (t) = Ar,N

2 (t)−µr,N
2 W̃ r,N

2 (t),
which in matricial form can be expressed as

Dr,N (t) = Ar,N(t)− (M r,N )−1W r,N (15)

from (9) and the fact that

(M r,N )−1 =


 µr,N

1 0

−µr,N
1

µr,N
2

µr,N
12

µr,N
2


 .
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Substituting (15) into (14) yieldsAr,N (t) =
Er,N (t)+P TAr,N (t)−P T (M r,N )−1W r,N(t), which
establishes the identity of the lemma on account of the
definition of matrixQ. ⊓⊔

Lemma 5 ProcessesW r,N , Er,N and V r,N verify
the following relation:

W r,N(t) = M r,NEr,N (t)− Cr,Nδr,N t+Rr,NV r,N (t)
(16)

where

Cr,N = M r,N Q−1 (M r,N )−1, δr,N = (1, 1 +
µr,N
1

µr,N
12

)T

andRr,N = Cr,NBr,N , with

Br,N =




1 −µr,N
12

µr,N
1

µr,N
1

µr,N
12

0


 .

Proof: From (5), (7), (11) and (12) we can rewrite
W r,N

1 as

W r,N
1 (t) =

Ar,N
1 (t)

µr,N
1

− t+ V r,N
1 (t)− µr,N

12

µr,N
1

V r,N
2 (t).

(17)

Substituting (5) into (6), and then combining (7) with
(8), yields

W r,N
2 (t) =

Ar,N
1 (t)

µr,N
12

+
Ar,N

2 (t)

µr,N
2

− (1 +
µr,N
1

µr,N
12

)t+
µr,N
1

µr,N
12

Y r,N
1 (t) + Y r,N

2 (t),

that applying (11) can be rewritten as

W r,N
2 (t) =

Ar,N
1 (t)

µr,N
12

+
Ar,N

2 (t)

µr,N
2

− (1 +
µr,N
1

µr,N
12

)t+
µr,N
1

µr,N
12

V r,N
1 (t). (18)

We can express (17) and (18) in matricial form as

W r,N(t) = M r,NAr,N (t)− δr,N t+Br,NV r,N (t).
(19)

Substituting (13) into (19) we can assert that

W r,N (t) = M r,NQEr,N (t)

−M r,NQP T (M r,N )−1W r,N(t)

− δr,N t+Br,NV r,N (t),

that is,

(I2 +M r,NQP T (M r,N )−1)W r,N (t)

= M r,NQEr,N (t)− δr,N t+Br,NV r,N (t). (20)

It is straightforward to see that I2 +
M r,NQP T (M r,N )−1 = M r,NQ(M r,N )−1, whose
inverse isCr,N . It follows immediately from (20)
thatW r,N(t) = Cr,NM r,NQEr,N (t)− Cr,Nδr,N t+
Cr,NBr,NV r,N(t), which gives the desired re-
sult since Cr,NBr,N = Rr,N by definition and
Cr,NM r,NQ = M r,N . ⊓⊔

Remark 6 We clearly see the existence of the follo-
wing limits:

M = lim
N→+∞

M r,N =

(
1
µ1

0
1

µ12

1
µ2

)
,

B = lim
N→+∞

Br,N =

(
1 −µ12

µ1
µ1

µ12
0

)
,

C = lim
N→+∞

Cr,N = MQ−1M−1,

R = lim
N→+∞

Rr,N = CB (21)

=

(
1− p11 −µ12

µ1
(1− p11)− µ2

µ1
p21

µ1

µ12
(1− p11) p11 − p22 − µ2

µ12
p21

)
.

3.3 Sequence of convex polyhedra inIR2

Let us define

G1
def
= {(x, y) ∈ IR2 : x ≥ 0},

G2
def
= {(x, y) ∈ IR2 : y ≥ µ1

µ12
x},

andS
def
= G1 ∩ G2 . Then,S is a convex polyhedron

in IR2 determined by matrix

Υ =

(
1 0

− µ1

µ12
1

)
, (22)

the set of row vectors{v1, v2} with v1 = (1, 0)T and
v2 = (− µ1

µ12
, 1)T , is minimal, the boundary faces are

F1 = {(x, y) ∈ S : x = 0},
F2 = {(x, y) ∈ S : y =

µ1

µ12
x},

and the boundary ofS is ∂S = F1 ∪ F2 (Figure 2).
We also introduce a sequence of convex polyhe-

dra: for the(r,N) model, the corresponding convex
polyhedronSr,N is introduced analogously toS by
replacingµ1 andµ12 by µr,N

1 andµr,N
12 , respectively.
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F1

F2

y

x

x = 0

y =
µ1

µ12

x

S

(0, 0)

n1

n2

u1

u2

Figure 2: The convex polyhedron.

We will use superscriptr,N to refer to items asso-
ciated toSr,N . For instance,Sr,N = Sr,N (Υr,N ),
where

Υr,N =

(
1 0

−µr,N
1

µr,N
12

1

)
. (23)

(Note thatlimN→+∞Υr,N = Υ.)
We wish to stress that the key technical difficulty

of our main result (Theorem 9) stems from the fact
that the faces of the convex polyhedronS(Υr,N ), as-
sociated to the(r,N) model, do depend onr andN .

3.4 Scaled processes
In order to define thescaled processesassociated with
the (r, N) model we have to introduce some no-
tation that goes back as far as the work of Taqqu,
Willinger and Sherman [10] (see also [1], [2], [5]).

Set aon
def
= Γ(2−βon)

(βon−1) and aoff
def
= Γ(2−βoff )

(βoff−1)
, where

βon andβoff are defined by (1). The normalization

factors used below depend onb, defined by b
def
=

limt→+∞
Lon(t)
Loff (t)

tβ
off−βon

, which exists although it
could be infinite. If 0 < b < +∞ (implying

βon = βoff andb = lim
t→+∞

Lon(t)

Loff(t)
), setβ

def
= βon =

βoff , L
def
= Loff and

σ2,lim def
=

2
(
(µoff)2 aon b+ (µon)2 aoff

)
(
µon + µoff

)3
Γ(4− β)

.

If, on the other hand,b = +∞ (βoff > βon), setL
def
=

Lon, β
def
= βon and

σ2,lim def
=

2 (µoff )2 aon
(
µon + µoff

)3
Γ(4− β)

.

If b = 0 (βoff < βon), setL
def
= Loff , β

def
= βoff and

σ2,lim def
=

2 (µon)2 aoff
(
µon + µoff

)3
Γ(4− β)

.

In either case,β ∈ (1, 2). Let us define

H
def
=

3− β

2

(
∈ (

1

2
, 1)

)
. (24)

Now we can introduce theheavy-traffic condition,
which establishes that thefluid traffic intensityρr,N

defined by (3) tends toe = (1, 1)T in the following
sense:

(HT)

{
limN→+∞

√
N(ρr,N − e) = γ̂r ∈ IR2 and

limr→+∞
r1−H

L1/2(r)
γ̂r = γ ∈ IR2.

We can introduce thescaled processesassociated
with the (r, N) fluid model and use a hat to denote
them:Ŵ r,N = (Ŵ r,N

1 , Ŵ r,N
2 ) is defined by

Ŵ r,N
j (t)

def
=
√
N

W r,N
j (r t)

rH L1/2(r)
, (25)

and similarly for the other processes except for
Êr,N = (Êr,N

1 , Êr,N
2 ), defined by

Êr,N
j (t)

def
=
√
N

EN
j (r t)− α̃N

j r t

rH L1/2(r)
. (26)

(wherej = 1, 2). From (11) and (12) we obtain

V̂ r,N
1 (t) = Ŷ r,N

1 (t) +
µr,N
12

µr,N
1

Ŷ r,N
2 (t), (27)

V̂ r,N
2 = Ŷ r,N

2 (t) + T̂ r,N
12 (t) , (28)

from (4) it follows that

Ŷ r,N
1 (t) =

√
N

r1−H

L1/2(r)

∫ t

0
1
{Ŵ r,N

1
(s)=0}

ds, (29)

Ŷ r,N
2 (t) =

√
N

r1−H

L1/2(r)

∫ t

0
1
{Ŵ r,N (s)=0}

ds, (30)

and from (10) we deduce that

T̂ r,N
12 (t) =

√
Nr1−H

L1/2(r)

∫ t

0
1
{Ŵ r,N

1
(s)>0,

̂̃
W

r,N

2 (s)=0}
ds.

(31)

The following lemma provides a Skorokhod decom-
position that will prove extremely useful in the proof
of Theorem 9 below.
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Lemma 7 The scaled processes are related by means
of

Ŵ r,N (t) = X̂r,N (t) +Rr,N V̂ r,N (t) ,

with

X̂r,N = M r,N Êr,N (t) +

√
Nr1−H

L1/2(r)
Cr,N(ρr,N − e)t.

(32)

Proof: From (25), (16) and (26) we obtain

Ŵ r,N (t) =
√
N

W r,N(r t)

rH L1/2(r)

=

√
N

rH L1/2(r)

(
M r,NEr,N (rt)−Cr,Nδr,Nrt

+Rr,NV r,N (rt)
)

= M r,NÊr,N (rt) +

√
Nr1−H

L1/2(r)
M r,N α̃N t

−
√
Nr1−H

L1/2(r)
Cr,Nδr,N t+Rr,N V̂ r,N (rt).

By using thatα̃N = Q−1λN , we can rewrite this ex-
pression as:

Ŵ r,N(t) = M r,N Êr,N (rt)

+

√
Nr1−H

L1/2(r)

(
M r,NQ−1λN − Cr,Nδr,N

)
t

+Rr,N V̂ r,N (rt),

which is our claim, due to the fact that

M r,NQ−1λN −Cr,Nδr,N

= Cr,N
(
M r,NλN − δr,N

)
= Cr,N(ρr,N − e).�

Lemma 8 For the(r,N) fluid model, the column vec-
tors of matrixRr,N given by Lemma 5 are linearly
independent and the product of matricesΨr,N =
Υr,N Rr,N verify that the entries outside the main dia-
gonal are nonpositive and also condition(HR) (see
Remark 3), where matrixΥr,N is given by(23). More-
over, by taking the limit asN → +∞ (which does not
depend onr) the column vectors of matrixR are lin-
early independent, andΨ = ΥR verifies that the en-
tries outside the main diagonal are nonpositive and
also condition(HR), where matricesR and Υ are
given by(21) and(22), respectively.

The proof of this lemma is straightforward and
omitted.

4 The heavy-traffic limit
Our goal now is to state that the scaled workload
processŴ r,N converges in distribution to a two-
dimensional rfBm process on the convex polyhedron
S(Υ), whenN first and thenr, tend to infinity in this
order, under heavy-traffic. The following result may
be proved in much the same way as Theorem 1 [1] and
Theorem 1 [5].

Theorem 9 (heavy-traffic limit) Under the heavy-
traffic condition(HT) the following limits exist inC2:

̂̂
W

r

= D − limN→+∞Ŵ r,N ,

W = D − limr→+∞
̂̂
W

r

,

andW is a two-dimensional rfBm process on the con-
vex polyhedronS(Υ) with Υ given by(22) and asso-
ciated data

(x = 0, H, θ = Cγ, Γ, R) ,

whereH ∈ (12 , 1) is defined by(24), γ ∈ IR2 is given
by condition(HT) ,

Γ = σ2,lim




α2
1

µ2
1

α2
1

µ1 µ12

α2
1

µ1 µ12

α2
1

µ2
12

+
α2
2

µ2
2


 (33)

with σ2,lim given bySection 3.4, and C and R are
given by Remark 6.

Proof:
Fix r > 0. Let us first show that Proposi-

tion 10 in the Appendix can be applied to the se-
quence(Ŵ r,N , X̂r,N , V̂ r,N)N . To see this, note
that (Sr,N , Rr,N) verifies conditions (A1)-(A5) [9]
for any N , which is clear from Lemma 8, where
Sr,N = Sr,N (Υr,N ). It remains to prove that
(Ŵ r,N , X̂r,N , V̂ r,N )N verifies conditions (i)-(iv) in
Assumption (h) in the Appendix. Indeed,

(i) Ŵ r,N
1 ,

̂̃
W

r,N

2 ≥ 0, and from (25) and (9) it follows
that

Ŵ r,N
2 (t) =

̂̃
W

r,N

2 (r t) +
µr,N
1

µr,N
12

Ŵ r,N
1 (t) ,

which impliesŴ r,N
2 (t) ≥ µr,N

1

µr,N
12

Ŵ r,N
1 (t). This clearly

forcesŴ r,N(t) ∈ Sr,N for all t ≥ 0 .
(ii) the Skorokhod decomposition has been proved in
Lemma 7.
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(iii) By (27), (29) and (30) we get

V̂ r,N
1 (t) =

∫ t

0
1
{Ŵ r,N (s)∈F r,N

1
}
dV̂ r,N

1 (s)

and by (28), (30) and (31) we analogously obtain

V̂ r,N
2 (t) =

∫ t

0
1
{Ŵ r,N (s)∈F r,N

2
}
dV̂ r,N

2 (s),

taking into account thatF r,N
1 = {(x, y) ∈ Sr,N :

x = 0} andF r,N
2 = {(x, y) ∈ Sr,N : y =

µr,N
1

µr,N
12

x}.
(iv) is consequence of the weak convergence ofX̂r,N

asN → +∞, which, in turn, is a consequence of
Theorem 1 [10] and Theorem 7.2.5 [11]. Indeed, for
anyj = 1, 2 , from (26) and (2) we can write

Êr,N
j (t) =

αN
j

rH L1/2(r)

1√
N

N∑

n=1

( ∫ r t

0
U

(n)
j (u) du

− µon

µon + µoff
r t
)

and deduce the existence of the limit̂̂E
r

= D −
limN→+∞ Êr,N , which has paths inC2, and the exis-
tence of the limit

D − lim
r→+∞

̂̂
E

r

= BH , (34)

BH being a two-dimensional fBm process with as-
sociated data(x = 0, H, θ = 0, diag(α)2 σ2,lim ),
which is condition (a) in Proposition 10.

Combining (32),(HT) and thecontinuous map-

ping theorem, according to the above limit̂̂E
r

, we de-

duce the existence of̂̂X
r

= D − limN→+∞ X̂r,N ,
which verifies that

̂̂
X

r

(t) = M
̂̂
E

r

(t) +
r1−H

L1/2(r)
Cγ̂rt, (35)

implying the continuity of the paths of̂̂X
r

and (iv).
Secondly, since hypothesis (b) is accomplished by

Lemma 8 and Remark 3, we can apply Proposition 10
to obtain that there exists the following limit:

D − lim
N→+∞

(
Ŵ r,N , X̂r,N , V̂ r,N

)
= (
̂̂
W

r

,
̂̂
X

r

,
̂̂
V

r

),

and that the limit satisfies conditions (i), (ii) and (iv)

of Definition 2, that is,(
̂̂
W

r

,
̂̂
V

r

) is a solution of the

Skorokhod Problem associated tô̂X
r

on the convex
polyhedronS(Υ) with associated matrix of directions
of reflectionR.

The repeated application of Proposition 10, in

this case to the sequence{
(̂̂
W

r

,
̂̂
X

r

,
̂̂
V

r)
}r, enables

us to complete the proof. Indeed, from (35), (34),
(HT) and thecontinuous mapping theorem, we can

ensure the existence ofD − lim
r→+∞

̂̂
X

r

= X , with

X(t) = MBH(t)+Cγt, which is a two-dimensional
fBm process with associated data

(
x = 0, H, θ =

Cγ, Γ
)
, whereΓ = σ2,limMdiag(α)2MT is given

by (33). Moreover, by Lemma 8 we can assert that
(b) in Proposition 10 holds, by Remark 3, and from
Proposition 10 it follows the existence of

D − lim
r→+∞

(̂̂
W

r

,
̂̂
X

r

,
̂̂
V

r)
= (W, X, V ) ,

where the triplet(W, X, V ) satisfies conditions (i)-
(iv) of the Definition 2.

Thus,W = X +RV is a two-dimensional rfBm
on the convex polyhedronS(Υ) with associated data
(x = 0, H, θ = Cγ, Γ, R) , which is our claim. ⊓⊔

5 Appendix: The invariance princi-
ple

Kang and Williams prove in Theorem 4.3 [9] an
Invariance Principle for Semimartingale reflecting
Brownian motions (SRBMs) living in the closure of
a domain with piecewise smooth boundaries. This
provides sufficient conditions for a process that satis-
fies the definition of a SRBM except for small random
perturbations in the defining conditions, to be close in
distribution to an SRBM. The version of this result
stated in [5] gives sufficient conditions for validating
approximations involving rfBm processes on a convex
polyhedron with a constant reflection vector field on
each face, in such a way the approximating processes
live in a sequence of convex polyhedra. For the conve-
nience of the reader, we reproduce here the invariance
principle in [5] without proof, thus making our expo-
sition self-contained. Let{Sn}n denote a sequence of
convex polyhedra that converges to the convex poly-
hedronS. The invariance principle requires the fol-
lowing hypothesis, which is a version of Assumption
4.1 [9]:

Assumption (h) For each positive integern, there
are processesW n, Xn having paths inDd and V n

having paths inCd defined on some probability space
(Ωn, Fn, Pn) such thatXn(0) ∈ Sn and:

(i) Pn−a.s.,W n(t) ∈ Sn for all t ≥ 0 ,

(ii) Pn−a.s.,W n(t) = Xn(t) + Rn V n(t) for all
t ≥ 0,
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(iii) Pn−a.s., for each i = 1, . . . , d ,
V n
i (0) = 0, V n

i is nondecreasing and
V n
i (t) =

∫ t
0 1{Wn(s)∈Fn

i } dV
n
i (s) ,

(iv) {Xn}n is C−tight.

Proposition 10 (The Invariance Principle)
Suppose thatAssumption (h) and assumptions
(A1)-(A5) [9] hold, and also thatlimn→+∞Rn = R.
Then, the sequence{(W n, Xn, V n)}n is C−tight
and any (weak) limit point of this sequence is of
the form (W, X, V ) whereW, X and V are con-
tinuous d−dimensional processes defined on some
probability space(Ω, F , P ), such that conditions
(i), (ii) and (iv) of Definition 2 hold,W (0) = X(0)
and V (0) = 0, that is, (W, V ) is a solution of the
Skorokhod Problem associated toX on the convex
polyhedronS with associated matrix of directions of
reflectionR. If, in addition,

(a) {Xn}n converges in distribution to ad−di-
mensional fBm process with associated data
(x, H, θ, Γ) , and

(b) the Skorokhod Problem associated toX on the
convex polyhedronS with associated matrix of direc-
tions of reflectionR has a unique strong solution,

thenW is a rfBm process onS with associated data
(x, H, θ, Γ, R) .
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