
A Partial Depth-Search Heuristic for Packing Spheres

HAKIM AKEB
ISC Paris Business School

22 Bd du Fort de Vaux, 75017 Paris
FRANCE

hakeb@iscparis.com

Abstract: This paper proposes a new heuristic for packing non-identical spheres into a three-dimensional container
of fixed dimensions. Given a set that contains n spheres, the objective is to place a subset of spheres so as to
maximize the volume occupied by these ones. The proposed heuristic is based on an idea that applies a two-level
look-forward search. The computational investigation indicates that the heuristic is effective since it improves most
of the best known results in the literature on the used instances.

Key–Words: Packing problems, Packing spheres, Heuristic, Look-Forward, Knapsack

1 Introduction

Cutting & Packing (C&P) problems have many indus-
trial and engineering applications. Two main cases
are known: the two-dimensional (2D) version and the
three-dimensional (3D) one.

The two dimensional version of a C&P problem
consists to cut/pack a given object from/into a given
container. The most known applications concern the
wood, textile, metal, and glass industries. The ob-
jective is often the same: saving material for cutting
problems and saving space for packing ones. The ob-
jects to cut or to pack may have rectangular shapes (cf.
Martello and Monaci [10] or Lópes and Beasley [9]),
circular shapes (cf. George et al. [2]), or irregular
shapes (cf. Alvez-Valdes et al. [1] and Martinez-
Sykora et al. [11]). For example, when cutting a given
set of objects from a rectangular plate, the objective
is to minimize the waste (surface between the cutted
shapes).

Even if 3D cutting-and-packing problems are
known since the 70’s (see for example [14]), they re-
ceived more attention in the recent years. In a 3D
C&P problem, the objects, as well as the container,
are three-dimensional. Packing of cubes inside a con-
taining cube is the most known problem because it has
a great number of real-life applications such as storage
and transportation (cf. Joung and Noh [6]).

A sphere packing problem (SPP)consists to pack
identical or different–sized spheres into a container
that may be a cube, a sphere or any other 3D geo-
metrical shape. SPP is for example used in Physics to
model some solid states or objects (cf. Zauner [15]) as
well as in Medicine (cf. Wang [16]).

Two main families can be distinguished in SPP.

The first one consists to pack identical spheres that
is for example used in random sphere packing which
is in relation with the study of granular material be-
havior. For example, Soontrapa and Chen [13] stud-
ied the problem of packing identical spheres into a
cube by applying a Monte Carlo based algorithm.
M’Hallah et al. [12] proposed a Variable Neighbor-
hood Search based algorithm, coupled with a Non–
Linear Programming in order to pack identical sphere
into the smallest containing sphere. Li and Ji [8] pro-
posed a Quasi-Dynamics Method for random sphere
packing and showed an example of packing identical
spheres into a cylinder.

The second family in SPP consists to pack non-
identical spheres. Hiti and Bernacki [4] used spheres
in order to model powder–based micro–structures and
proposed an algorithm that is based on a drop–and–
roll principle. The Monte Carlo technique was for ex-
ample used by He et al. [3] for the problem of random
sphere packing of unequal spheres into a cube.

In this paper, we consider the problem of pack-
ing non-identical spheres into a three-dimensional bin
of fixed dimensions. Given a set S = {s1, ..., sn} of
spheres, where sphere si ∈ S has radii ri, as well as a
three dimensional binB = L×H×D where L,H,D
represent the length, the height and the depth of B re-
spectively, the objective is to place a subset S′ ⊆ S
of spheres in order to maximize the volume occupied
in the bin by the placed spheres. It is to note that
each placed sphere must not overlap any other placed
sphere and no sphere exceeds the bin’s boundary. The
proposed method is based on a modified look-forward
strategy coupled with a local search method.

H. Akeb
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 120 Volume 1, 2016



2 Problem Formulation and a Con-
structive Heuristic for SPP

In this section, the mathematical formulation for the
studied problem will be given. Before that, here are
some definitions.

Definition 1 A partial solution Sin ⊆ S corresponds
to the set of spheres already placed inside the three-
dimensional bin B.

Definition 2 The set of spheres that are not placed is
denoted by Sout. Note that S = Sin∪Sout at any time.

Definition 3 The set of possible positions to place
spheres of set Sout is denoted by P such that each
placed sphere si at position p ∈ P must touch three
elements, an element may be an already placed sphere
or one of the six faces of the bin. The set containing
these three elements is denoted by T (p).

Definition 4 The density of a partial solution, de-
noted by density(Sin), corresponds to the sum of vol-
umes of spheres in set Sin divided by the volume ofB,
i.e., L×H ×D.

Definition 5 Bin B is characterized by its six faces
F = {left, right, top, bottom, front, back}.

Definition 6 The distance between spheres si and sj ,
denoted by dij , is equal to the distance between the
centers of si and sj minus the sum ri+rj as indicated
in (1). This is in fact the minimum distance between
the boundaries of the two spheres.

dij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2− (ri+ rj) (1)

In addition to the distance dij between two
spheres sj and sj , we need to define the distance be-
tween sphere si and the border of the container.

Definition 7 The distance between sphere si, placed
at coordinates (xi, yi, zi), and the six face of the bin
are defined as follows: di,left = xi − ri, di,right =
L− xi− ri, di,bottom = yi− ri, di,top = H − yi− ri,
di,back = zi − ri, di,front = D − zi − ri.

2.1 Problem Formulation

Container B is placed with its bottom–left–back cor-
ner at coordinates (0, 0, 0) in the 3D-Euclidean space
as indicated in Fig. 1. In addition, each sphere si ∈
S, 1 ≤ i ≤ n has radius ri and is placed with its cen-
ter at coordinates (xi, yi, zi) in the Euclidean space.

The formulation for the problem to solve is given
below. The objective to maximize is indicated in (2)
that represents the density of the placed spheres in-
side the container. Note that ti is a binary variable
indicating whether sphere si is placed (ti = 1) or not
(ti = 0). Non overlapping constraints are indicated
in (3), meaning that the distance between the bound-
aries of the placed spheres is greater than or equal to
zero. Constraints (4)–(6) ensure that each sphere does
not exceed the container boundary. For example, the
x−coordinate xi of sphere si must belong to the inter-
val [ri, . . . , L− ri].

max
4π

3× L×H ×D

n∑
i=1

(ri)
3 ti (2)

s.t.
(dij) titj ≥ 0 for 1 ≤ i < j ≤ n (3)

ri ≤ xi ≤ L− ri for 1 ≤ i ≤ n (4)
ri ≤ yi ≤ H − ri for 1 ≤ i ≤ n (5)
ri ≤ zi ≤ D − ri for 1 ≤ i ≤ n (6)

ti ∈ {0, 1} for 1 ≤ i ≤ n (7)

2.2 A Constructive Heuristic for SPP

A basic algorithm in C&P problems consists in a con-
structive heuristic that acts like a greedy algorithm.
The main steps of this heuristic can be summarized as
follows:

◦ Staring phase: Place the first sphere s1 at a given
place inside the container and compute the possi-
ble positions for the other spheres that are not yet
placed.

◦ Iterative phase: At each, step, place the next sphere
at the best position thanks to a given criterion.

◦ Final phase: Stop when no additional sphere can be
placed.

So constructing an effective heuristic needs to
find a good criterion that can evaluates the possible
positions for the next sphere to place (see Defini-
tion 3). One of the most known criterion in C&P
problems is called MHD (Maximum Hole Degree)
used for the first time in [5] for packing circles into
a rectangular container (so this is a two-dimensional
C&P problem) and can easily be adapted to the three-
dimensional case. The obtained heuristic is denoted
by 3DMHD and is explained below.

For example, Fig. 1 represents a given step of
the 3DMHD packing procedure when two spheres
(s1, s2) are already placed and there are six possible
positions where to place sphere s3. These positions

H. Akeb
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 121 Volume 1, 2016



Z X

Y

s1

s2

p1
3

p2
3

p3
3

p4
3p5

3
p6
3

Figure 1: The 3D-MHD heuristic

are denoted by P = {pk3}, k = 1, . . . , 6. Note that,
as indicated in Definition 3, each sphere placed must
touch three elements, for example if s3 is placed at
position p23, then it will touch spheres s1, s2 and the
left–edge of the container. So T (p23) = {s1, s2, left}.

The MHD heuristic uses a measure called Hole
Degree of a position. So at step i of the packing pro-
cess, i spheres are already placed, this corresponds to
set Sin. Let Pi+1 = {pki+1} be the set of positions to
place the next sphere si+1 ∈ Sout. The hole degree of
position pki+1 ∈ Pi+1, denoted by λ(pki+1), is defined
as follows:

λ(pki+1) = 1−
minj ∈ Sin ∪ F \ T (pki+1)

(
dki+1,j

)
rki+1

(8)

So the hole degree considers the minimum dis-
tance between sphere si+1 to place at position pki+1 of
radius rki+1 and all the other placed spheres (Sin) and
the six faces of the bin (F ) but excluding the elements
of T (pki+1) since the distance in this case is zero.

MHD (as well as 3DMHD) selects the position
p̃ ∈ Pi+1 with the maximum hole degree value to
place the next sphere si+1 as indicated in (9).

p̃ = argmax
pki+1∈Pi+1

λ(pki+1) (9)

Algorithm 1 summarizes how the constructive
3DMHD heuristic works. The algorithm receives as
input sets Sin, Sout and P. In the general case, Sin
may contain more than one sphere already placed.

Algorithm 1 The 3DMHD greedy heuristic
Require: Set of already placed spheres Sin, Sout that

contains the spheres that are not yet placed and
set P of possible positions for spheres in Sout.

Ensure: A feasible packing and its corresponding
density.

1: while (P 6= ∅) do
2: Compute/update the hole degree value λ for

each corner position p ∈ P ;
3: Place the next sphere si+1 at position p̃ that has

the maximum hole degree as shown in (9).
4: Move sphere si+1 from Sout to Sin;
5: Update set P by removing positions that over-

lap the new inserted sphere and compute new
positions by using the new inserted sphere and
the other objects already placed;

6: end while

The output of Algorithm 1 is a feasible solution where
a given set of spheres is placed inside the bin and no
additional sphere can be placed, i.e., P = ∅. At each
step of the 3DMHD heuristic, we compute or update
the hole degree value λ of each position p ∈ P, this is
done in Step 2. Step 3 consists then to place the next
sphere at the best position p̃. The new placed sphere
is then removed from Sout and added to Sin. We then
update the set of positions P (Step 5) by of course
removing the positions that overlap the new inserted
sphere and by computing new positions by using this
sphere. Steps 2–5 are repeated until P becomes empty
meaning that no additional sphere can be placed. Note
that if all spheres are placed, then the solution ob-
tained is optimal.

In order to compare the quality of two distinct so-
lutions, we use the density of each solution. The den-
sity is indicated in Definition (4). The best solution is
the solution that corresponds to the highest density.

2.3 The Look-Forward Principle

A greedy heuristic consists to select, at each step, the
best choice by using a given evaluation criterion. This
method can obtain solutions very quickly but the qual-
ity of these solutions is often not sufficient.

A simple way to improve the quality of the solu-
tion consists to evaluate several choices or all choices
at each step i of the greedy algorithm. This is done by
executing the greedy algorithm itself in order to com-
pute a final solution as indicated in Algorithm 1. The
choice that obtained the best final density is then cho-
sen in order to move to step i+1. The process is then
repeated at each level. This principle is for example

H. Akeb
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 122 Volume 1, 2016



used in [5] in order to improve the result obtained by
the MHD heuristic.

3 A New Look-Forward Based
Heuristic for SPP

In this work, we propose an enhanced look-forward
strategy by adding a new level to the standard look-
forward in order to enlarge the search space and then
to try to improve the solution quality.

3.1 Importance of the Starting Configura-
tion

It is well-known in Cutting–and–Packing (C&P) prob-
lems, that the placement of the first object(s) is very
important. One of the first heuristics proposed for
C&P problems is Bottom–Left that places the first ob-
ject at the bottom-left corner of the container. The
results indicate also that it is recommended to sort the
objects to cut or to pack in decreasing order of their
size. Indeed, packing for example the biggest objects
increases the chance to reach solutions of better qual-
ity.

This principle is adopted in the heuristic proposed
in this work. So the spheres in set S are sorted in de-
creasing order of their radii. But instead of placing
the first object (sphere) in the bottom–left–back cor-
ner of the bin, we only compute the coordinates of
each sphere at each corner (there are eight corners) of
the bin. Since these positions are “strategic”, we asso-
ciate the maximum possible value for the hole degree,
i.e., (λ = 1) for each of these positions. The objec-
tive is to allow the packing procedure to place spheres
at these positions at the earliest levels of the solution
construction.

The proposed strategy acts then like a depth–first
search by on only two levels of the search tree. This
is then a “partial” depth search.

3.2 Local Search to Improve the Final Solu-
tion

In combinatorial optimization, a way to try to improve
a computed solution is to use a local search. Local
Search (LS) can be applied at each step of the con-
struction of the solution or when the final solution is
obtained.

LS methods consist for example to modify a part
of the solution in order to escape from local optima.
For example, the 2-opt technique is very useful in Ve-
hicle Routing Problems (VRP). It consists to “break”
two arcs in the final solution and then rearrange these

arcs by connecting the corresponding vertices differ-
ently. The objective is to improve the solution quality.
LS can be applied to a large variety of optimization
problems.

In the heuristic proposed in this paper, we propose
to change the last sphere packed inside the bin. The
objective is to try to place other additional spheres in
order to improve the total volume of the sphere, i.e.,
the density.

3.3 A Partial Depth-Search Heuristic
(PDSH)

This section describes the proposed heuristic for pack-
ing spheres into a three-dimensional bin of fixed di-
mensions. We remember that the objective is to max-
imize the volume of the packed spheres. The solution
quality is then equivalent to the density of the packing,
i.e., the sum of volumes of placed spheres divided by
the volume of the container. Note of course that the
density is a real number that belongs to [0, 1].

Algorithm 2 describes the proposed heuristic.
PDSH receives as input parameters the set of spheres
S = {si, i = 1, . . . , n}to pack as well as the dimen-
sions of the bin. PDSH returns the best or optimal
solution computed.

In Step 1 of PDSH, the spheres are sorted in de-
creasing order of their radii values. After that, at
step 2, different sets are initialized. Then, Sout con-
tains the set of spheres to pack and set Sin is equal to
the empty set, meaning that, at this step, no sphere is
placed inside the bin. Finally, set of positions P is also
initialized to the empty set. Step 3 consists to gener-
ate the set of all possible positions at the eight corners
of the three–dimensional bin. After that, at step 4, the
value of the hole degree λ is set to 1 for each position
p ∈ P as described in Section 3.1.

PDSH contains a main loop (the while loop) that
corresponds to steps 5–23. This loop contains two
other nested for loops. In the while loop, we use a
variable denoted by Density (step 6) that will indicate
the best density obtained during the execution of the
two for loops. This is why the value of variable Den-
sity is reset to zero at each time.

The first for loop in Algorithm 2 corresponds
to the first level of the look–forward search and
the second one to the second look–forward level.
The first for loop consists to apply a look–forward
on the current configuration that can be denoted by
{Sin, Sout, P}. So the algorithm considers each po-
sition pi ∈ P. To do so, a copy {S1

in, S
1
out, P

1} of
the current configuration is created (step 8). The al-
gorithm “forces” the placement of the next sphere
at position pi and the different sets are then updated
by moving the new inserted sphere from S1

out to S1
in

H. Akeb
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 123 Volume 1, 2016



Algorithm 2 Heuristic PDSH
Require: Set S of spheres to pack and a three-

dimensional bin B of dimensions L×H ×D;
Ensure: A feasible packing and its corresponding

density;
1: Sort spheres of S in decreasing order of their

radii;
2: Set Sout = S; Sin = ∅; and P = ∅;
3: Generate all the possible positions for each sphere
si ∈ Sin at the eight corners of the bin B, add
these positions to set P ;

4: Set λp = 1 for each position p ∈ P ;
5: while (P 6= ∅) do
6: Density=0;
7: for each position pi ∈ P do
8: Set S1

in = Sin, S1
out = Sout and P 1 = P ;

9: Place the next sphere at position pi and up-
date sets S1

in, S
1
out and P 1;

10: for each position p1j ∈ P 1 do
11: Set S2

in = S1
in, S2

out = S1
out and P 2 =

P 1;
12: Place the next sphere at position p1j and

update sets S2
in, S

2
out and P 2;

13: Call 3DMHD(S2
in, S2

out, P
2);

14: Perform a local search on the solution
computed by 3DMHD (see Section 3.2);

15: Update the best known solution and value
of Density if a new best solution is com-
puted;

16: if all spheres are placed then
17: Stop the algorithm because an optimal

solution is obtained;
18: end if
19: end for
20: end for
21: Place the next sphere in the bin at the position

p∗i ∈ P that led to the best value of Density;
22: Update sets Sin, Sout and P ;
23: end while

and by updating the set of positions P 1. Just after
that, the second level of the look–forward search starts
(for loop at step 10). Here, we consider each posi-
tion p1j ∈ P 1. Like in the previous level, a copy
{S2

in, S
2
out, P

2} is created (step 11). We place the next
sphere at position p1j and the different sets are then
updated (step 12). Now PDSH calls the 3DMHD al-
gorithm (Algorithm 1) in order to compute a final so-
lution by executing the MHD greedy principle until
no additional sphere can be placed. 3DMHD returns

Table 1: Description of the instances used
Inst. n L H D

KBG1 30 11.103 10 10

KBG2 30 1.99 10 10

KBG3 30 17.985 10 10

KBG4 30 1.996 10 10

KBG5 30 1.924 10 10

KBG6 30 16.768 10 10

KBG7 50 13.71 10 10

KBG8 50 2.207 10 10

KBG9 50 27.965 10 10

KBG10 50 1.81 10 10

KBG11 50 5.04 10 10

KBG12 50 21.02 10 10

then to heuristic PDSH the final solution found and
its corresponding density. After that, heuristic PDSH
performs a local search , at step 14, on the solution
returned by 3DMHD (see section 3.2) by removing
the last sphere placed in order to try to place other
spheres, the objective is to try to increase the final
density. PDSH updates then the best solution found
is a new better solution is obtained (step 15). If all
spheres are placed, then an optimal solution is com-
puted, heuristic PDSH then stops (step 17). If no opti-
mal solution is obtained after performing the two for
loops, then the next sphere is effectively placed at po-
sition p∗i that led to the best value of Density (step 21).
Sets Sin, Sout and P are then updated in order to take
into account the new inserted sphere. Finally, heuris-
tic PDSH stops if set P becomes empty. The best so-
lution found so far is then taken as the output of the
algorithm.

4 Computational Results

In order to study the performance of the proposed
heuristic (PDSH), a computational investigation was
conducted on a set of 12 instances denoted by
KBGi, i = 1, . . . , 12 taken from Kubach et al. [7].
The characteristics of these instances are indicated
in Table 1. The six first instances KBG1,. . . ,KBG6
contain n = 30 spheres and the six other ones
KGB7,. . . ,KBG12 contain 50 spheres. Moreover, in-
stances KBG1, KBG2, KBG3, KBG7, KBG8, KBG9
are strongly heterogeneous because the radii of the
spheres in each instance are all different. In the six
other instances, the spheres are weakly heterogeneous

H. Akeb
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 124 Volume 1, 2016



because the number of spheres of different radii is
only 10%, so each radii (sphere) is duplicated ten
times. Finally, Table 1 indicates the size of the con-
tainer where only the length (L) differs from an in-
stance to another one, the height (H) and the depth
(D) are all fixed to 10.

Heuristic PDSH was developed in C++ and exe-
cuted under Linux environment on a computer with a
2.4GHz of frequency and 4 GB of Memory. The re-
sults of PDSH can then be directly compared to those
obtained by algorithm B1.6 [7] since the computer
used in this reference has the same characteristics.

The results of PDSH were compared to those
obtained by algorithm B1.6 proposed by Kubach et
al. [7]. B1.6 is a direct translation of algorithm B1.5,
proposed by Huang et al. [5] to pack circles into a rect-
angular container, to the three-dimensional case. It is
to note that the principle of B1.5, in addition to the use
of MHD heuristic and a look–forward strategy, is that
it uses a great number of starting configurations that
consist to pack two circles in two different corners of
the rectangle as well in the bottom-left corner of the
container. This lead to a great number of starting con-
figurations (exactly M = 5 × n(n − 1)/2 configura-
tions). So this is equivalent to execute the placement
procedure M times. Kubach et al. [7] uses exactly the
same principle by placing two spheres before calling
the packing procedure but they limited the number of
starting configurations to 1000.

In the proposed heuristic (PDSH), we generate
only positions at the eight corners of the container, no
sphere is effectively placed (this is done by the pack-
ing procedure). Moreover, we associate a value λ = 1
for the hole degree of each of these “strategic” posi-
tions generated at the initial step.

Table 2 indicates the results obtained by algo-
rithm B1.6 (that has, to our knowledge, the best
known results in the literature on these instances) for
a computation time limit of one hour (3600 seconds).
Column 2 gives then the density (Dens.) of the solu-
tion obtained by B1.6 and column 3 the correspond-
ing computation time to obtain this solution. Values
indicated with a “*” correspond to optimal solutions,
i.e., the method succeeded to place all the n spheres
inside the container. The results of PDSH are indi-
cated in the three last columns of table 2. Note that
PDSH succeeded to reach all the optimal solutions as
B1.6 did, but it also succeeded to outperform the re-
sults of B1.6 on four other instances (KBG3, KBG6,
KBG8 and KBG9). B1.6 is better in only one case
(KBG11). The second observation concens the com-
putation time, those obtained by the new heuristic
(PDSH) are often lower than those of B1.6. The opti-
mal solution is for example reached in less than 0.01
seconds for instances KBG2, KBG4 and KBG10. For

Table 2: Results obtained by the proposed heuristic
PDSH on KBG instances

B1.6 algorithm PDSH heuristic

Inst. Dens. t∗(s) Dens. t∗(s) Imp.

KBG1 *55.001 821 *55.001 96 0.00%

KBG2 *30.071 <1 *30.071 � 1 0.00%

KBG3 52.375 3600 52.502 3600 0.24%

KBG4 *37.765 <1 *37.765 � 1 0.00%

KBG5 *48.278 4 *48.278 77 0.00%

KBG6 50.022 58 50.099 101 0.15%

KBG7 *55.000 389 *55.000 3 0.00%

KBG8 46.517 3600 46.590 3600 0.16%

KBG9 53.173 3600 53.210 3600 0.07%

KBG10 *51.866 <1 *51.866 � 1 0.00%

KBG11 54.412 2055 53.651 1374 -1.40%

KBG12 *55.001 1715 *55.001 4 0.00%

KBG12, PDSH computes the optimal solution after
only 4 seconds (1715 seconds for B1.6). Finally, the
last column of the table indicates the improvement ob-
tained by PDSH comparing to B1.6 (in %). Improve-
ment is equal to 100× (densityPDSH−densityB1.6)

densityB1.6
. PDSH

improves the solution or obtained the optimal value in
11 cases out of 12.

 

47

48

49

50

51

52

53

54

55

56

0.00 0.01 0.01 0.14 0.15 0.52 0.52 0.54 0.74 0.75 8.75 8.75 96.05

Density (%)

Time (sec)

Figure 2: Evolution of the solution quality on the
first instance KBG1, optimal density (55.001%) is ob-
tained after 96 seconds.

Figure 2 indicates the evolution of the solution
quality in the first instance KBG1 that contains 30
spheres. The density varies from 47% to 55.001%
(optimal solution) in 96 seconds.

H. Akeb
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 125 Volume 1, 2016



Figure 3 gives the optimal solution obtained by
the proposed heuristic PDSH on the first instance
(KBG1).

Figure 3: Optimal solution obtained on instance
KBG1, n = 30, density=55.001%

Finally, figure 4 gives the new best solution ob-
tained by heuristic PDSH on instance KBG6. The
density obtained is equal to 52.099%, the old best
value is 50.022%.

Figure 4: Better solution obtained on instance KBG6,
n = 50, density=52.099%

5 Conclusion

In this work, the problem of packing spheres into a
three–dimensional bin was considered. The proposed
heuristic, denoted by PDSH, uses the look–forward
principle but introduces a second level in the search
tree leading to the enlargement of the search space by
exploring more eventualities. This can then be assim-
ilated to a dept-first search with two levels.

The computational investigation, conducted on
a set of twelve instances taken from the literature,
shows the effectiveness of the proposed method since
it reaches all the known optimal values on some in-
stances and succeeds to improve the best known re-
sults in four other instances.

As a future work, it will be interesting to apply
the new look-forward strategy for other optimization
problems.

References:

[1] R. Alvarez-Valdes, A. Martinez and
J. M. Tamarit, A branch & bound algorithm for
cutting and packing irregularly shaped pieces,
Int. J. Prod. Econ. 145, 2013, pp. 463–477.

[2] J. A. George, J. M. George and B. W. Lamar,
Packing different-sized circles into a rectangular
container, European J. Oper. Res. 84, 1995, pp.
693–712.

[3] D. He, N. N. Ekere and L. Cai, Computer sim-
ulation of random packing of unequal particles.
Phys. Rev. E. 60, 1999, 7098.

[4] K. Hitti and M. Bernacki, Optimized droping
and rolling (ODR) method for packing of poly-
disperse spheres, Appl. Math. Model. 37, 2013,
pp. 5715–5722.

[5] W. Q. Huang, Y. Li, H. Akeb and C. M. Li,
Greedy algorithms for packing unequal circles
into a rectangular container. J. Oper. Res. Soc.
56, 2005, pp. 539–548.

[6] Y.–K. Joung and S. D. Noh, Intelligent 3D pack-
ing using a grouping algorithm for automative
container engineering, J. Comput. Des. Eng. 1,
2014, pp. 140–151.

[7] T. Kubach, A. Bortfeldt, T. Tilli and H. Gehring,
Greedy algorithms for packing unequal sphere
into a cuboidal strip or a cuboid, Asia Pac. J.
Oper. Res. 28, 2011, pp. 739–753.

[8] Y. Li and W. Ji, Stability and convergence analy-
sis of a dynamics–based collective method for
random sphere packing, J. Comput. Phy. 250,
2013, pp. 373–387.

H. Akeb
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 126 Volume 1, 2016



[9] C. O. Lópes and J. E. Beasley, A formulation
space search heuristic for packing unequal cir-
cles in a fixed size circular container, European
J. Oper. Res. 251, 2016, pp. 64–73.

[10] S. Martello and M. Monaci, Models and algo-
rithm for packing rectangles into the smallest
square, Comput. Oper. Res. 63, 2015, pp. 161–
171.

[11] A. Martinez-Sykora, R. Alvarez-Valdes, J. Ben-
nell and J. M. Tamarit, Constructive procedures
to solve 2-dimensional bin packing problems
with irregular pieces and guillotine cuts, Omega
52, 2015, pp. 15–32.

[12] R. M’Hallah, A. Alkandari and N. Mladenović,
Packing unit spheres into the smallest sphere us-
ing VNS and NLP. Comput. Oper. Res. 40, 2013,
pp. 603–615.

[13] K. Soontrapa and Y. Chen, Mono-sized sphere
packing algorithm development using optimized
Monte Carlo technique. Ad. Powder Technol. 24,
2013, pp. 955–961.

[14] W. Visscher and M. Bolsterli, Random packing
of equal and unequal spheres in two and three
dimensions, Nature. 239, 1972, pp. 504–507.

[15] T. Zauner, Application of a force field algorithm
for creating stringly correlated multiscale sphere
packings. J. Comput. Phys. In Press, 2016.

[16] J. Wang, Packing of unequal spheres and au-
tomated radiosurgical treatment planning. J.
Comb. Optim. 3, 1999, pp. 453–463.

[17] Y. Wu, W. Li, M. Goh and R. Souza, Three-
dimensional bin packing problem with variable
bin height, European J. Oper. Res. 202, 2010,
pp. 347–355.

H. Akeb
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 127 Volume 1, 2016




