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Abstract: We study the global existence in time and asymptotic profile of solutions of a mathematical model of
tumour invasion proposed by Chaplain and Lolas. We consider related nonlinear evolution equations with strong
dissipation, proliferation and an initial Neumann-boundary value problem. We show global existence in time of
solutions to the initial boundary value problem in arbitrary space dimension by using the method of energy. Ap-
plying the result of existence and asymptotic behaviour of solutions to our problem we discuss the property of the
solution to the tumour invasion model. Further we discuss a more general form of the nonlinear evolution equation,
which could give the same type of existence theorem for a more general form of the tumour invasion model.

Key–Words: Nonlinear evolution equation, mathematical analysis, tumour invasion, cell proliferation, re-
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1 Introduction
In this paper we consider the mathematical model

by Chaplain and Lolas [3] described tumour invasion
with tumour cell proliferation and re-establishment of
ECM inΩ× (0, T ) : (C-L)

∂n

∂t
= dn

∂2n

∂x2
− γ

∂

∂x

(
n
∂f

∂x

)
+ µ1n(1− n− f)

(1)

∂f

∂t
= −ηmf + µ2f(1− n− f) (2)

∂m

∂t
= dm

∂2m

∂x2
+ αn− βm (3)

whereΩ is a bounded domain inRn, n := n(x, t) is
the density of tumour cells,m := m(x, t) is degrada-
tion enzymes concentration (MDE concentration) and
f := f(x, t) is the extra cellular matrix density (ECM
concentration) anddn, γ, µ1, η, µ2, dm, α andβ are
positive constants.

In this model , we neglect the chemotaxis term
because compared with the hapotaxis term, the sec-
ond term of (1), the effect of it is known to be quite
small. Actually even if the chemotaxis term is consid-
ered into, we can deal with the problem involving the
chemotaxis term with sufficiently small coefficient in
the same way as follows in this paper.

In the previous paper [5] we consider only the case of
µ2 = 0 for our convenience. In this paper we consider
the case ofµ2 > 0 as well asµ1 > 0. Then (C-
L) describes tumour invasion phenomena with tumour
cells cell proliferation and re-establishment of ECM.
We deal with a initial boundary value problem for (C-
L) satisfying:

∂n

∂ν
=

∂f

∂ν
=

∂m

∂ν
= 0 on ∂Ω× (0,∞)

n(x, 0) = n0(x), f(x, 0) = f0(x),m(x, 0) = m0(x)
where∂Ω is a smooth boundary ofΩ andν is the outer
unit normal vector.

Chaplain and Anderson [2], which is corresponding
to the case ofµ1 = µ2 = 0 in (C-L), base on the
mathematical model on generic solid tumour growth,
which for simplicity they assume is at the avascular
stage. While most tumours are asymptomatic at this
stage, it is still possible for cells to escape and migrate
to the lymph nodes and for the more aggressive tu-
mours to invade. In the model the following key vari-
ables are considered: tumour cell density:n, MDE
concentration:m, ECM density concentration:f .

MDEs are important at many stages of tumour
growth, invasion, and metastasis, and the manner
in which they interact with endogeneous inhibitors,
growth factor, and tumour cells is very complex. In
the model they assume that the tumour cells produce
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MDEs which degrade the ECM locally and that the
ECM responds by producing endogeneous inhibitors
(e.g., TIMPs). The ECM degradation, as well as mak-
ing space into which tumour cells may move by sim-
ple diffusion, results in the production of molecules
which are actively attractive to tumour cells (e.g., fi-
bronectin) and which then aid in tumour cell motil-
ity. They refer to the movement of tumour cells at
a gradient of such molecules as haptotaxis and then
consider tumour cell motion to be driven mainly by
random motility and haptotaxis in response to adhe-
sive or attractive gradients created by degradation of
the matrix.

Recently, there are many mathematical models which
can be found in the literature describing tumour angio-
genesis(cf. [1], [13]- [15]). In [13] Levine and Slee-
man apply the diffusion equation provided by Othmer
and Stevens [15] to obtain the understanding of tu-
mour angiogenesis, which arises in the theory of rein-
forced random walk. Anderson and Chaplain [1] pro-
posed a model for angiogenesis considered into en-
dothelial tip-cell migration, i.e., the model considered
the motion of the cells located at the tips of the grow-
ing sprouts. The model has cell migration governed by
three factors: diffusion, chemotaxis and haptotaxis.

On the other hand, mathematical approaches for
models of tumour growth have done( see [5]-[15]).
Levine and Sleeman [12] and Yang, Chen and Liu [15]
studied the existence of the time global solution and
blow up solutions to a simplified case of Othmer and
Stevens type of the model. Kubo et al. [5]-[11] show
the time global solvability and asymptotic behavior of
the solution to the model proposed by [1][2][12]-[14].

2 Reduced problem

2.1 Simplification of the system
Following to Levine and Sleeman [13] we reduce our

problem to a simpler system(see [5]-[12]).
It is easily seen in(2) thatf(x, t) is written by

∂

∂t
(log f) = −ηm+ µ2(1− n− f) (4)

Integrating (4) over(0, t) for f(x, 0) = f0(x)

f(x, t) = f0(x)·e
−a−η

∫ t

0
mds+ µ2

∫ t

0
(1− n− f)ds

Putn = l(t) + ñ andm = b+ m̃, then for a constant
b > 0,

f(x, t) = f0(x) · e−a−bt−η
∫ t

0
m̃ds−µ2

∫ t

0
(l(t)−1+ñ+f)ds

denoting
∫ t

0
ñds = u and

∫ t

0
m̃ds = v

= f0(x) · ea−bt−ηv−µ2((
∫ t

0
(l(s)−1)ds+u+

∫ t

0
fds)

Substitutingf(x, t) by the right hand side of (4), from
(1) and (3) it follows that

∂2

∂t2
u = dn△ut

−γ∇ · ut(∇f0 · e−a−bt−ηv−µ2(
∫ t

0
(l(s)−1)ds+u+

∫ t

0
fds))

+µ1ut(1−2l(t)−ut−f0·e−a−bt−ηv−µ2(
∫ t

0
(l(s)−1)ds+u+

∫ t

0
fds))

−µ1l(t)e
−a−bt−ηv−µ2(

∫ t

0
(l(s)−1)ds+u+

∫ t

0
fds)

(5)

and

vtt = dm∂2
xvt + αut − βvt. (6)

In the next subsection we propose a class of nonlinear
evolution equations covering (5) and show global ex-
istence in time and asymptotic behaviour of solutions
of the initial boundary value problem for such equa-
tions.

2.2 Related nonlinear evolution equations

In this subsection we consider the initial Neumann-
boundary value problem of nonlinear evolution
equations related to (C-L): (NE)



utt = D∇2ut +∇ · (χ(ut, e−u)e−u∇u)

+µ(1− ut)ut in Ω× (0, T ) (7)

∂

∂ν
u|∂Ω = 0 on∂Ω× (0, T ) (8)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω (9)

∂

∂t
= ∂t,

∂

∂xi
= ∂xi, i = 1, ···, n,∇u = (∂x1u, ···∂xnu)

∇2u = ∇ · ∇u = △u = ∂2
x1
u+ · · ·+ ∂2

xn
u

whereD is a positive constant,Ω is a bounded domain
in Rn and∂Ω is a smooth boundary ofΩ andν is the
outer unit normal vector.

Let us introduce function spaces used in this pa-
per. First,H l(Ω) denotes the usual Sobolev space
W l,2(Ω) of order l on Ω. For functionsh(x, t) and
k(x, t) defined inΩ× [0,∞), we denote
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(h, k)(t) =

∫
Ω
h(x, t)k(x, t)dx,

||h||2l (t) =
∑
|β|≤l

|∂β
xh(·, t)|2L2(Ω)(t)

whereβ is a multi-index forβ = (β1, · · ·, β n).
The eigenvalues of−∆ with the homogeneous Neu-
mann boundary conditions are denoted by

{λi|i = 0, 1, 2, · · ·}, 0 = λ0 < λ1 ≤ · · · → +∞,

and φi = φi(x) indicates theL2 normalized
eigenfunction corresponding toλi. For a non-
negative integerl, we setW l(Ω) as a closure of
{φ1, φ2, · · ·φn, · · ·} in the function spaceH l(Ω). It is
noticed that we have

∫
Ω h(x) = 0 for h(x) ∈ W l(Ω),

which enables us to use Poincare’s Inequality.

Puttingu(x, t) = La(t) + v(x, t) we have in(7)

vtt = D∇2vt

+∇ · (χ(l(t) + vt, e
−La(t)−v)e−La(t)−v · ∇v)

+µvt(t)(1− 2l(t)− vt)

where

La(t) =

∫ t

0
l(τ)dτ + a,

a is a positive parameter andl(t) satisfies the intial
problem for the logistic equation:

lt(t) = µl(t)(1− l(t)), l(0) = l0 > 0

then (NE) is rewritten by the following problem:
(RP)



Q[v] = vtt −D∇2vt

−∇ · (χ(l(t) + vt, e
−La(t)−v)e−La(t)−v · ∇v)

−µvt(t)(1− 2l(t)− vt) = 0,

∂

∂ν
v|∂Ω = 0,

v(x, 0) = v0(x), vt(x, 0) = v1(x).

3 Existence theorem of (NE)
By deriving the energy estimate of (RP)(see [6]-[8])

and considering the iteration scheme we obtain exis-
tence of solutions to (RP) by the standard argument
to show the convergence of solutions of the iteration
scheme.

In the same way as used in [6]-[8] we have the fol-
lowing estimate of (RP) (cf. Dionne[4]).

Lemma 1 Assume thatχ(s1, s2) for (s1, s2) ∈ R2
+

satisfies appropriate smooth regularity condition. We
have the energy estimate of (RP) forM ≥ [n/2] + 3

M+1∑
j=1

(||∇j−1vt||2(t) +
∫ t

0
D||∇jvt||2(τ)dτ)

≤ CEM [v](0)

where we denote for any non-negative integerk ≤
M ≤ m,

Ek[v](t) = E[∇kv], E[v] = ||vt||2 + ||∇v||2.

We consider the iteration scheme of (RP):

(i+ 1)



Qi[vi+1] = vi+1tt −D∇2vi+1t

+∇ · (χa,1(vi)e
−La(t)−vi∇vi+1)

−µ1vi+1t(−1 + 2l(t) + vit) = 0

∂

∂ν
vi+1|∂Ω = 0,

vi+1(x, 0) = v0(x), vi+1t(x, 0) = v1(x),

wherevi =
∞∑
j=1

fij(t)φj(x), v0(x) =
∞∑
j=1

hjφj(x),

v1(x) =
∞∑
j=1

h′jφj(x).

The energy estimate Lemma 1 guarantees the uniform
estimate of each(i + 1) for i = 1, 2, · · · . We deter-
minefij(t) by the solution of the following system of
ordinary equations with initial data. Forj = 1, 2, · · ·


(Qi[vi+1], φj) = 0,

fi+1j(0) = hi+1, fi+1jt(0) = h′i+1.

It is not difficult to assure the local existence in time
of fij(t) by the theory of ordinary differential equa-
tions. Therefore, deriving the energy estimates, the
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global existence in time of the solution{ui} satisfy-
ing the regularity assuming in sections 2 and justifi-
cation of the limiting process are assured by the stan-
dard method. The energy estimate enables us to get
the solution by consideringQi[vi+1] − Qi−1[vi] and
standard argument of convergence forvi+1−vi = wi.

Then we obtain the following result of (NE) via (RP).

Theorem 2 Assume thatχ(s1, s2) for (s1, s2) ∈
R2

+ satisfies appropriate smooth regularity condition
and initial data(v0(x), v1(x)) are sufficiently smooth
for v0(x) = u0(x) − a, v1(x) = u1(x) − l0. For
sufficiently largea andr, there is a solution form ≥
[n/2] + 3

u(x, t) = La(t)+v(x, t) ∈
1∩

i=0

Ci([0,∞);Hm−i(Ω))

to (NE) such that it satisfies the following asymptotic
behaviour

lim
t→∞

||ut(x, t)− l(t)||m−1 = 0.

4 Main result

The equations (5) and (6) are essentially regarded as
the same type of equation as(7). The energy estimates
of u andv follow and combining these estimates we
obtain the desired estimate.

Lemma 3 (Energy estimate )We obtain the energy
inequality of the reduced problem (RP) form > M ≥
[n/2] + 1 and sufficiently largea

∥ut∥2M+dn

∫ t

0
∥us∥2M+1ds+∥vt∥2M+dm

∫ t

0
∥vs∥2M+1ds

+∥f∥2M +

∫ t

0
∥f∥2M+1ds ≤ C(Ea,M [u](0) +

Ea,M [v](0) + Ea,M [f ](0)) + Ca (4.10)

whereCa → 0 asa → ∞.

Then applying the same argument as used for Theo-
rem 2 to the above mathematical model, we have ex-
istence and asymptotic behaviour of the solutions to
our mathematical model.
Our main result is as follows.

Theorem 4 For smooth initial data
{ n0(x), f0(x),m0(x) } there are classical solutions
of (C-L)): { n(x, t), f(x, t),m(x, t) } such that they
satisfy the following asymptotic behaviour.

lim
t→∞

||n(x, t)− l(t)||m−1 = 0, lim
t→∞

f(x, t) = 0.

5 Conclusion

In order to obtain the global existence in time
and asymptotic profile of solutions of a mathemati-
cal model of tumour invasion by Chaplain and Lolas,
we investigate related nonlinear evolution equations
with strong dissipation and proliferation to our mathe-
matical models as an initial Neumann-boundary value
problem. We could show the global existence in time
of solutions to the initial boundary value problem in
arbitrary space dimension by the method of energy.
Applying the result to our model we show the prop-
erty of the solution to the model.

Also in the same way as above we can show as a
further study the existence of solutions to (NE) for the
following equation instead of (7):
utt = D∆ut +∇ · (χ(ut, e−u)χ1(u,∇u)e−u∇u)
+µp(ut)

whereχ1(s3, s4) ∈ ßm(R2) for (s3, s4) ∈ R2,
p(b+ vt) = vtp̃(b+ vt) for ut = b+ vt, b > 0, p̃ < 0

andp(s1) ∈ ßm(Ir). Note that the above equation is

of a generalised form of (7). Finally it is possible that
based on our mathematical result we can show the re-
sult of computer simulations of (C-L).
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