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Abstract: - Optimization of graft geometric configuration with regard to blood dynamics is the major target of 
this research. A developed multi-objective genetic algorithm is considered in order to reach optimal graft 
geometries for idealized arterial bypass systems of fully occluded host arteries. An artificial neural network 
simulating hemodynamic specific conditions is introduced in order to reduce the genetic search computational 
time. Input data values are constrained within pre-defined boundaries for graft geometric parameters and the 
correspondent target values are solutions for blood velocity and shear stress functions calculated with a finite 
element simulator. Optimal solutions are presented as Pareto fronts covering a range of best possible solutions. 
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1 Introduction 
Vascular diseases, such as severe atherosclerosis, 
are often life threatening diseases. In order to 
overcome severe vessel stenosis surgical 
interventions using bypass grafts are usually 
considered. Researchers have developed artificial 
graft tissue by combining man-made materials with 
human cells to make it elastic and durable and so it 
can be attached to the host artery and efficiently 
replace the obstructed conduct. Nevertheless, 
several studies have proven that restenosis 
phenomena develop in bypass-artery junctions 
leading to poor performance and failure of the 
surgery [1], [2]. Initiation and progress of these 
diseases are not fully understood but though to be a 
consequence of physiological response to abnormal 
conditions of local hemodynamics [3]. 

Many research projects clearly show that 
diseases primarily occur at regions of complex and 
instable blood flow. In the cardiovascular system, 
development of atherosclerosis disease is mainly 
observed in regions of transient flow reversal, 
typically near bifurcations and along curved vessels 
[3]-[5]. So, the geometric configuration of vascular 
bypass grafts might have a profound influence on 
flow patterns. Improving blood flow dynamics in 
the artery/graft system is an important element for 
long-term success of bypass surgeries. 

Computational approaches have been used 
simulating blood flow through idealized bypass 

models. They exhibit particular patterns 
characterized by the presence of recirculation zones 
and secondary flows in critical regions [6]-[8]. The 
optimization of graft and anastomotic configurations 
with regard to fluid dynamics is the major target of 
this study. The problem is related with both optimal 
shape design and flow control that are involved in 
the simulation of the bypass system with cost 
functions associated to flow rate and shear stress 
which are thought to be correlated with occlusion 
pathogenesis [9]. 

In this project a developed multi-objective 
genetic algorithm is considered in order to reach 
optimal graft geometries for idealized arterial 
bypass systems of fully occluded host arteries [6], 
[10]-[11]. Genetic algorithms are based on Darwin’s 
theory of population evolution [12]-[13]. Once an 
initial population is created, new populations are 
generated following the previous one according to 
principles of reproduction, mutation and survival of 
the fittest.  The best design points in the population 
are considered to be the most fitted ones. The 
considered genetic algorithm (GA) supported by an 
elitist strategy seeks to increase fitness as it operates 
[6], [10]. Ultimately, the method identifies optimal 
solutions as a family of design points that are non-
dominated till the end of a predefined number of 
generations.  

Genetic algorithms require a large number of 
computer simulations. So, an artificial neural 

C. F. Castro et al.
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 58 Volume 1, 2016



network (ANN) is developed to efficiently simulate 
blood flow for specific graft geometries. Input, 
hidden and output layers model the topology of the 
ANN. The weights of the synapses and the biases 
for hidden and output nodes are used as design 
variables in the ANN learning process. Input and 
target data have been acquired using a finite element 
arterial blood simulator previously developed and 
tested considering fully unsteady incompressible 
Navier-Stokes equations and a three-dimensional 
geometry [6], [11], [14]. 

Numerical results show the important flow 
features, which are suspicious to relate the intimal 
hyperplasia in arteries with development of stenosis, 
flow recirculation and shear stress distributions in 
the graft system being influenced significantly by 
the bypass geometry. The benefits of numerical 
shape optimization in achieving design 
improvements before a bypass surgery, minimizing 
blood recirculation zones as well as low wall shear 
stress areas at the toe and heel of the distal 
anastomosis, might lead to minimization of bypass 
surgery failure. 
 

 

2 Graft Geometry 
The background provided by mathematical 
modeling and numerical simulation allows the use 
of new techniques with the aim of optimizing the 
(full) configuration and the (local) shape of a 
simplified bypass model. The present paper intends 
to carry out a numerical analysis on flow fields of a 
fully stenosed artery with a complete bypass graft 
implanted on it. The simplified arterial graft 
prosthesis is a tubular vessel disposed around a 
longitudinal axis as described in the bypass model 
given in Fig. 1. Four design variables will be 
considered: the distance from the near wall of the 
graft to the near wall of the artery H, the junction 
angle β, the width of the prosthesis at its 
longitudinal symmetric line Wp and the suture line 
dimension D. The host artery is assumed to be a 
fully stenosed conduit, simulated using two 
cylindrical tubes of 9 mm diameter, the proximal 
host artery before the obstruction and the distal host 
artery after obstruction. The graft is symmetric and 
meets the host artery with a side-to-end proximal 
anastomosis and an end-to-side distal anastomosis. 
As usually adopted by most previous investigations, 
vessels are assumed to be impermeable rigid tubes. 

To our knowledge, most authors consider 
circular or polynomial symmetric geometries for the 
prosthesis with variable junction angles [8], [15]. 
Small junction angles have more obvious 
advantages for the hemodynamics of bypass grafts 

[8], [16]. Using a circular prosthesis, the optimal 
limit for junction angle would be close to zero 
producing an extremely large graft/artery junction. 
Instead, this investigation will address sinusoidal 
geometries with graft walls being drawn by sine 
curves. 
 

 
Fig.1 Anastomotic configuration and nomenclature 

of the graft/artery geometry 
 

 

3 Bypass Hemodynamics  
Improvement in the understanding of the genesis of 
diseases is very important as it allows the reduction 
of surgical and post-surgical failures. Mathematical 
modeling and numerical simulation of physiological 
flows allow a better understanding of phenomena 
involved in artery diseases. It may also suggest new 
means in bypass surgical procedures as well as with 
less invasive methods to devise new shapes in 
bypass configuration [17], [18]. 

The background provided by mathematical 
modeling and numerical simulation of blood flow 
has led to the application of numerical techniques 
for the optimization of the (full) configuration and 
the (local) shape of a simplified bypass model [5], 
[11], [19], [20]. In support to this aim at macro-
geometrical level, efficient schemes are being used 
to provide useful and quick indications (outputs) in 
a repetitive design environment as shape design 
requires [6], [15], [16], [18]. 

A study of important geometrical quantities 
using the defined bypass geometry is described here. 
It considers a finite element methodology (FEM) 
and a previously developed and tested simulator 
[11], [14]. The governing equations for this problem 
are the Navier–Stokes set equations that consist of 
the continuity and the momentum equations. The 
hemodynamics problem is considered laminar since 
the anastomotic flow typically reaches a maximum 
Reynolds number less than 1000. The non-
Newtonian rheology is accounted for through the 
Casson non-Newtonian model [19]. The dynamic 
viscosity  is a function of the fluid shear strain rate 
 [s-1] and expressed as 
 � = Ͳ.ͳ ሺ�ሺܿሻ + �ଵሺܿሻ√ߛ ሻଶ ⁄ߛ     [Pa s] (1) 
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with � = Ͳ.ͳͻͶ  Paଵ ଶ⁄  and �ଵ = Ͳ.Ͳͷͷ  ሺPa sሻଵ ଶ⁄  
for a 45% hematocrit (c). An upper limit of shear 
rate was set, to limit the values of viscosity. It 
avoids singularities that lead to high non-physical 
values. Viscosity ranged from 0.004 to 0.06 [Pa.s].  

Blood flow is pulsatile by nature. The arterial 
wall is assumed to be rigid, a pulsatile waveform is 
prescribed at the inlet and a no-slip condition (zero 
velocity) is prescribed at the walls. At the artery 
inlet, the velocity profile is assumed parabolic. 
Details on the mathematical formulation and finite 
element approximation are given in Sousa et al.  
[11], [14]. 

The purpose of this research is to contribute 
towards the improvement of longevity of arterial 
bypass surgeries. Poor performance and failure of 
arterial grafts is due to the development of 
anastomotic intimal hyperplasia at the host artery 
floor opposite to the distal anastomosis what is 
thought to be purely caused by fluid mechanical 
factors [21]. In order to understand the dependence 
of the blood hemodynamics on this particular graft 
geometry, FEM simulations were performed 
considering only symmetric geometries since 
removing the symmetry constrain does not have a 
significant effect [15]. Fig. 2 presents the 
deformable mesh considered for the FEM 
simulation. The model includes both the proximal 
and distal bypass sections in order to analyze the 
flow development in the entire bypass. 

 

 
Fig. 2 Mesh for FEM simulation of simplified 

sinusoidal graft model 
 
In this study, the bifurcating flow rate into 

bypass graft is not a concern since the fully 
occluded host artery is assumed and 100% flow 
issuing from the host artery entrance bifurcates into 
the bypass graft. Details on three different graft 
geometries are reported in Table 1 and Fig. 3 to 5. 

 The difference between grafts A and B is the 
inflow blood velocity simulating two different 
instants of the cardiac cycle. Vpeak defines the 
maximum inflow velocity imposed at the artery inlet 
and Vmax the maximum velocity reached all along 
system during the FEM simulation. The difference 
between graft B and C is the prosthesis geometry: 

graft C is narrower than graft B for the same artery 
diameter and artery inflow. 

 
Table 1. Geometric and velocity details of the 

simulated grafts 
Graft A B C 

H [mm] 25.0 25.0 13.0 
 [rad] 0.785 0.785 0.785 

Wp [mm] 17.7 17.7 5.6 
D [mm] 14.1 14.1 8.0 

Vpeak [mm/s] 85. 210. 210. 
Vmax/Vpeak 1.1 1.2 1.5 

 
Fig. 3 presents the simulated longitudinal 

velocity distribution for grafts A, B and C 
respectively. The blood flow through the idealized 
bypass models has a particular pattern, which is 
characterized by the presence of recirculation zones 
and secondary flows in certain regions.  

 

 
Fig. 3 Longitudinal velocity contours for the graft 

models A, B and C 
 

Bypasses A and B present maximal velocities 
inside the host artery before the proximal and just 
after the distal junctions exhibiting an almost 
symmetric behavior. As for bypass C the fully 
developed velocity profile is redirected from the 
native artery into the graft and velocity reaches its 
highest value inside the prosthesis just after the 
proximal anastomosis. The non-symmetric behavior 
is obvious. Along the distal artery, the flow is 
gradually stabilized, which is evident from the 
developing parabolic velocity profile at the outlet. 
Velocity disturbances are mostly evident in the 
vicinity of the proximal and distal artery-graft 
junctions. In these regions, simulations show 
recirculation and low-velocity zones. Fig. 4 and 5 
report particular values for velocities and wall shear 
stresses (WSS) at positions pointed out in Fig. 2, 
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such as the geometric location of the end-to-side 
distal junction and the distal artery floor. 

 

 
Fig. 4 Longitudinal velocity distributions along 

distal junction for different models 
 
The velocity behavior along the distal junction of 

large and narrow grafts is described in Fig. 4. For 
larger grafts and relatively low velocities, such as 
simulations A and B, an almost parabolic 
distribution is reached, no observable velocity 
reversal, suggesting a low recirculation area 
formation. On the contrary and for graft C, the 
development of negative velocities near the floor of 
the artery indicates separation and flow-reversal 
zones. The worse graft scenario is for graft C with 
maximum to peak velocities varying up to 50%. 
Downstream graft C, the flow demonstrates a strong 
downwash towards the floor of the native artery, 
which results in a recirculation zone.  

The influence of local hemodynamics on the 
occurrence of intimal hyperplasia at the distal 
anastomosis should be investigated considering 
different associated factors. Beside the occurrence 
of recirculation and low-velocity zones, it is usually 
analyzed the distribution of wall shear stress (WSS). 
Fig. 5 describes the WSS calculated values at the 
distal artery floor for the three simulated grafts. 

 

 
Fig. 5 WSS [Pa] values at the distal artery floor for 

three different graft models 
 
At the artery floor, the shear stress decreases 

relatively fast to a zero value, defining a feature that 
divides the vessel in two regions. Upstream this 
feature, the presence of a recirculation zone causes a 
mild WSS value increase. Downstream, the larger 

WSS values are due to the strong flow impact on the 
artery floor. The variability among the WSS plots of 
grafts B and C demonstrates the flow development 
in response to the bypass geometry. Graft C presents 
very large WSS variations associated with high 
blood impingement at the artery floor on the way 
out of the graft. As reported by other investigators 
this area is predominantly susceptible to the 
occurrence of artery plaque formation diseases [7]. 
In the distal artery, the presence of stagnant fluid 
close to the occlusion is the cause for extremely low 
WSS values in all three considered bypass 
geometries. Recent patient-specific simulation 
research of the blood behavior in the systemic 
arterial tree refers to WSS values varying up to ten 
Pa, including regions of bends and bifurcations [20].  
So, higher values of WSS should be minimized as 
well as extensive regions of very low values should 
be avoided towards the optimization of artificial 
arterial graft geometry. 
 

 

4 ANN Training 
An artificial neural network (ANN) is a 
mathematical model consisting of a number of 
highly interconnected processing elements 
organized into layers with geometry and 
functionality similar to that of the human brain. The 
ANN may be regarded as possessing learning 
capabilities and making it available for later use 
[22]–[25]. By virtue of its parallel distribution, an 
ANN is generally robust, tolerant of faults and 
noise, able to generalize well and capable of solving 
nonlinear problems. During supervised learning, the 
ANN is trained on input and target vectors with 
which it is required to associate an acquired 
knowledge; thus, with sufficient training, the ANN 
should be able to perform correctly with previously 
unseen input vectors.  

This project performs an ANN analysis using 
MATLAB with the Neural Network Application 
Toolbox (The MathWorks Inc., Natick, MA, USA). 
The multilayer feed-forward neural network of the 
software is well suited for function fitting problems. 
Before beginning the network design process, a 
sample data set needs to be collected and prepared. 
Since, it is generally difficult to incorporate prior 
knowledge into a neural network it can only be as 
accurate as the used data to train the network. It is 
important that the data cover the range of inputs for 
which the network will be used. Multilayer 
networks can be trained to generalize well within 
the range of inputs for which they have been trained 
and it is important that the training data span the full 
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range of the input space. In the project reported 
here, a set of 500 input and target vectors has been 
collected using an FEM simulator within the design 
space of the four parameters given as follows  

 

 

ͳͲ ≤ H ≤ ͶͲ mmͲ.ͳͷ ≤ ߚ ≤ Ͳ.ͺͷ radͺ ≤ Wp ≤ ͳͶ mmͳͲ ≤ D ≤ ʹͲ mm    (2) 

 
This was achieved by randomly generating input 

vectors from the design space established in (2) and 
running the FEM simulator [11], [14] obtaining the 
associated target vectors. For the study presented 
here the simulation was performed using always an 
artery of 9 mm diameter and prescribing the same 
boundary conditions at the inlet, a steady parabolic 
velocity profile of maximum velocity 210 mm/s. 
Each input vector b has four geometric components � = ሺH, ,ߚ Wp, Dሻ as described in Fig. 1.  Among 
the simulated results given by the FEM simulator, 
three functional values qualifying and quantifying 
the graft local hemodynamics were considered. 
Each output target vector � = ሺ�ଵ, �ଶ, �ଷሻ has been 
defined with the following components: 

 �ଵሺ�ሻ = ∑ ‖ܹ��‖ଶ�Γଵ   (3) 

where Γܰ is the number of finite element mesh 
nodes at the floor of the distal artery-graft junction 
and WSS is the smoothed wall shear stress values 
given by simulation at the corresponding nodes. The 
other two components of the output vector are 
associated with domains of reversed flows. 
Whenever negative longitudinal velocities are 
detected in a significant area individual critical 
domains are assigned contributing to 

 �ଶሺ�ሻ = ∑ ��Ω�∗ ሺ�ሻ    (4) 

being �� the elementary longitudinal velocity 
obtained by using the FEM simulator and Ω�∗ ሺ�ሻ is 
the reunion of every critical domain of the entire 
graft artery system. The third component is 
associated with the particular cross-section Ω�−�∗ ሺ�ሻ 
of the distal graft-artery junction: 

 �ଷሺ�ሻ = ∑ ���Ω�−�∗ ሺ�ሻ   (5) 

For the same inlet velocity profile, values of this 
function �ଷሺ�ሻ will be larger for disturbed 
longitudinal velocity distributions along the distal 
junction Ω�−�∗ ሺ�ሻ and smaller for smooth and 
parabolic distributions as easily seen by comparing 
results for grafts B and C shown in Fig. 4.  

After the data have been collected, there are two 
steps that need to be performed before the data are 

used to train the network, the data need to be pre-
processed, and they need to be divided into subsets. 
A normalization step has been applied to both the 
input vectors and target vectors of the data set. 
When training multilayer networks, the general 
practice is to divide the data into three subsets for 
training, testing and validation. The considered 
ratios for training, testing and validation were 0.7, 
0.15 and 0.15, respectively. All subsets have been 
randomly selected within the 500 FEM simulations. 
The first subset is the training set, which is used for 
computing the gradient and updating the network 
weights and biases. The second subset is the 
validation set. The error on the validation set is 
monitored during the training process. The 
validation error normally decreases during the initial 
phase of training, as does the training set error. 
However, when the network begins to over-fit the 
data, the error on the validation set typically begins 
to rise. The network weights and biases are saved at 
the minimum of the validation set error.  

The feed-forward-net MATLAB call creates a 
two-layer network with one hidden layer and 10 
neurons in the hidden layer. During the 
configuration step, the number of neurons in the 
output layer is set to one, which is the number of 
elements in each vector of targets. The transfer 
function for hidden layers was the tan-sigmoid 
transfer function and for the output layer the linear 
transfer function, often used for function fitting 
problems. The weights and biases of the network 
have been initialized with random values and all the 
training inputs are applied to the network before the 
weights are updated. Considering a set of input and 
target data, the mean relative error between target 
and output results is used to monitor the learning 
process obtaining the completeness of the 
modelling. The performance function associated to 
the process is the mean square error that is the 
average squared error between the net outputs a and 
the target outputs t. It is defined as follows 

 

݁ݏ݉  = ଵ� ∑ ሺݐ − ܽሻଶ�=ଵ   (6) 

 
Either the magnitude of the gradient or the 

number of validation checks are used to terminate 
the training. The gradient will become very small as 
the training reaches a minimum of the performance 
function. The training stops if the magnitude of the 
gradient is less than 10-5. The number of validation 
checks represents the number of successive 
iterations that the validation performance fails to 
decrease. If this number reaches 6, the training will 
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stop. Since the initial weights and biases are 
randomly set more than one trial was done. The 
regression analysis was considered using the R 
value as an indication of the relationship between 
the outputs and targets. If R = 1, this indicates that 
there is an exact linear relationship between outputs 
and targets. If R is close to zero, then there is no 
linear relationship between outputs and targets. For 
this example, the training data indicates a good fit. 
The validation and test results showed R values 
greater than 0.99. Once the ANN has demonstrated 
acceptable pattern recognition skills, its creation is 
complete and it is ready for use.  
 

 

5 Multi-objective GA 
Multiple, often conflicting objectives arise naturally 
in most real-world optimization scenarios. As 
evolutionary algorithms possess several 
characteristics that are desirable for this type of 
problem, this class of search strategies has been 
used for multi-objective optimization for more than 
a decade.  

Genetic Algorithms (GAs), a family of biology-
inspired methods, are considered here. With a GA a 
highly effective search of the solution space is 
performed, allowing a population of strings 
representing possible solutions to evolve through 
basic genetic operators. The goal of the genetic 
operators of the algorithm is to progressively reduce 
the space design driving the process into more 
promising regions. GA has many advantages, such 
as the capability of exploring a large design space, 
the merit that no gradients information is needed 
and also it can compute multiple independent 
objective functions simultaneously in one 
optimization run. Following the well-known concept 
of Pareto dominance, optimal solutions, i.e., 
solutions not dominated by any other solution, may 
be mapped to different objective vectors. In other 
words: there may exist several optimal objective 
vectors representing different trade-offs between the 
objectives. Therefore, in the following it is assumed 
that the goal of the optimization is to find or 
approximate the Pareto set. Accordingly, the 
outcome of the multi-objective GA is considered to 
be a set of mutually non-dominated solutions, or 
Pareto set approximation. 

A general multi-objective optimization seeks to 
optimize the components of a vector-valued 
objective function mathematically formulated as 

ሺ�ሻ�   ݁��݉�݊�ܯ  = ሺ ଵ݂ሺ�ሻ, ⋯ , ݂ሺ�ሻሻ  (7) 

subject to 

 
ܾ௪�� ≤ ܾ ≤ ܾ௨��,     � = ͳ, ⋯ , ݊݃ሺ�ሻ ≤ Ͳ                    ,    � = ͳ, ⋯ , �   (8) 

where fi(b) is the jth objective function, � =ሺܾଵ, ⋯ , ܾሻ  is the design variable vector, ܾ௪�� 
and  ܾ௨�� represent the lower and upper 
boundaries of the ith design variable bi and gk(b) the 
kth constraint. 

Unlike single objective optimization 
approaches, the solution to this problem is not a 
single point, but a family of points known as the 
Pareto-optimal set. The idea of a solution for (7) 
with constraints given by (8) can be unclear, 
because a single point that minimizes all objectives 
simultaneously usually does not exist. 
Consequently, the idea of Pareto optimality is used 
to describe solutions for multi-objective 
optimization problems. Typically, there are many 
Pareto optimal solutions for a multi-objective 
problem. Thus, it is often necessary to incorporate 
user preferences for various objectives in order to 
determine a single suitable solution. The weighted 
sum method for multi-objective optimization 
problems [26] continues to be used extensively not 
only to provide multiple solution points by varying 
the weights consistently, but also to provide a single 
solution point that reflects preferences presumably 
incorporated in the selection of a single set of 
weights [27]. In this work, using the weighted sum 
method to solve the multi-objective optimization 
problem entails selecting random scalar weights wj 

and minimizing the following composite objective 
function: 

 �ሺ�ሻ = ∑ � ݂ሺ�ሻ=ଵ  (9) 

If all of the weights are positive, as assumed in this 
study, then minimizing (9) provides a sufficient 
condition for Pareto optimality, which means that its 
minimum is always Pareto optimal. 

For a shape optimization application, the GA 
process begins by randomly setting an initial 
population of possible individuals, where 
individuals represent different graft geometries. The 
successive populations maintain the same number of 
individuals as it evolves throughout successive 
generations. Each individual is referred as a 
chromosome containing design variable values 
referred as genes of the chromosome over which 
genetic operators are applied. Operators such as 
selection/crossover, mutation and elimination 
supported by an elitist strategy are considered to 
ensure that fitness of the forthcoming generations is 
always improved [6], [10]. The optimization scheme 
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includes the following steps:  
Initialization, individuals of an initial 

population are produced randomly each representing 
a random geometry within the design variable 
space;  

Selection of the progenitors is followed by 
crossover. The implemented crossover operator 
builds new individuals using a multipoint 
combination technique applied over the genes of 
both selected progenitors;  

The implemented mutation is characterized is 
characterized by two different scenarios: first 
creating new individuals by swapping a value of a 
randomly selected variable and secondly by 
introducing new individuals randomly generated; 
Evaluation, fitness of each individual is evaluated 
using a defined optimization goal and individuals 
are ranked according to their multi-objective fitness 
value; 

Elimination, deletion of the worst solutions 
with low fitness simulates the natural death of low 
fitted individuals. The original size population is 
recovered and a new population obtained;  

Termination checks the termination condition. 
If it is satisfied, the GA is terminated. Otherwise, 
the process returns to step Selection/crossover. 

Regarding the choice of suitable objective 
functions for the graft optimization problem, several 
different approaches have been pursued in the 
literature. The most frequently considered quantities 
in the context of blood flow are based on either 
shear stress or the flow rate. So the previously 
assigned functions for the ANN output vector will 
be the vector-valued objective function to minimize. 
Using positive scalar weights randomly generated, 
the following composite function 
 �ሺ�ሻ = � + �ଵ�ଵሺ�ሻ − �ଶ�ଶሺ�ሻ + �ଷ�ଷሺ�ሻ − ��ଵ + �ଶ + �ଷ = ͳ       

 (10) 

is considered for the optimization problem 
investigated in this work, being A is a positive 
integer to ensure positiveness and P a value to 
penalize design vectors that do not conform with the 
boundary constrains for the geometric design 
parameters. 

Generating the Pareto set can be computationally 
expensive and is often infeasible, because the 
complexity of the underlying application prevents 
exact methods from being applicable. Using the 
ANN and running the optimization algorithm one 
hundred times, the obtained Pareto front for this 
idealized problem is presented in Fig. 6.  

For each run of the GA, one set of randomly 
generated was considered and evolution termination 
has been defined by fixing the total number of 
generations as 200. As a compromise between 
computer time and population diversity, the 
population and elite group size were taken as 12 and 
5, respectively. 

 

Fig. 6 Pareto front for the multi-objective shape 
optimization. 

 
 

6 Optimization Results  
Despite deficiencies with respect to depicting the 
Pareto optimal set, the weighted sum method for 
multi-objective optimization continues to be used 
extensively not only to provide multiple solution 
points by varying the weights consistently, but also 
to provide single solution points that reflect 
preferences presumably incorporated in the 
selection of a single set of weights. For this reason, 
there is usually no guarantee to identify optimal 
trade-offs but instead finds good approximations, 
i.e., a set of solutions whose objective vectors are 
not too far away from the optimal objective vectors. 
Details for three bypass grafts extracted from the 
Pareto front are presented in Table 2 and Fig. 7 to 9. 
 
Table 2. Optimized graft solutions 

 ( ܸ�� �௧ �௧ = ʹͳͲ ݉݉/ݏ). 
Optimal solutions Opt1 Opt2 Opt3 �ͳ�ʹ�͵ 

Ͳ.ʹͶͻ−Ͳ.ͳʹͲ.ʹͶ  
Ͳ.ͳʹ−Ͳ.ͳͻͳͲ.͵ͻͳ  

Ͳ.ͳͳ−Ͳ.ͳͳͲ.͵Ͳͳ  �௧ [݉݉]ߚ௧ ௧�ܹ[݀ܽݎ]   [݉݉]�௧ [݉݉]  

͵ͻ.ͺͻͻ Ͳ.ͺʹ ͳ͵.ͺͻͳ ͳ.ͻʹ  
͵ͻ.ͺʹ    Ͳ.ʹ͵ ͺ.ͲͷͲ ͳ.ʹͲͶ  

ʹͺ.͵    Ͳ.ͺʹ  ͺ.ͳͳͶ ͳ.ͶͲ  
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Solution Opt1 corresponds to the graft 
presenting higher values for the functional  �ͳ 
associated to the WSS values floor of the distal 
artery-graft junction and lower values for the 
functional �͵ associated with the disturbed 
longitudinal velocity distributions along the distal 
graft-artery junction. Solution Opt2 corresponds to 
the opposite conditions and solution Opt3 can be 
regarded as an intermediate solution establishing a 
balance between the three considered optimization 
functions.  
 

 
 

Fig. 7 Velocity contours for three bypass grafts 
extracted from the Pareto front 

 
Fig. 7 presents the velocity results given in 

terms of its longitudinal distribution. The velocity 
contours demonstrate the good quality of the 
simulations being capable of capturing the flow 
acceleration as it emerges from the graft to the 
artery and the flow recirculation at the floor of the 
host artery, consistently with the expectations. It is 
interesting to notice that although the abrupt 
connection between artery and graft induces large 
velocity variations, the observable reverse flow in 
grafts Opt1 and Opt3 is quite small. Long residence 
times usually observable at the distal anastomosis 
are easily detected in graft Opt2.  

Longitudinal velocity distributions along the 
distal graft-artery junction for the selected optimized 
grafts are shown in Fig. 8. For larger graft 

situations, namely Opt1, an almost parabolic 
distribution is observed along the whole domain, no 
observable velocity reversal, suggesting a low 
recirculation area formation. On the contrary, case 
graft Opt2, the development of negative velocities 
near the floor of the artery indicates separation and 
flow-reversal zones, where extreme values for 
maximum and minimum velocities are detected. 

 

 
Fig. 8 Longitudinal velocity distributions along the 

distal junction for selected optimized grafts. 
 
The computed WSS distribution at the floor of 

the host artery near the distal anastomosis for the 
selected optimized grafts is reported in Fig. 9.  

 

 
Fig. 9 WSS [Pa] at the artery floor for the selected 

optimized grafts 
 
As expected, the WSS presents its 

characteristic variability in the vicinity of the distal 
junction. Around this region, very large WSS 
gradients are expected corresponding to the high 
blood impingement at the artery floor on the way 
out of the graft. The calculated values of WSS for 
Grafts Opt1 and Opt3 exhibit smaller gradient as 
compared to graft Opt2. Those two grafts manage to 
smooth the blood flow impingement at the artery 
floor in the way out of the graft. Graft Opt2 presents 
a larger variation in a smaller region and abnormal 
shear stresses at the anastomosis might lead to 
disruption of the arterial anastomosis and false 
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aneurysm formation. The optimization process 
manages to achieve geometries presenting WSS 
values with the expected variability for the blood 
behavior in the systemic arterial tree [20]. 
 
 

7 Conclusion 
The present shape optimization is based on a GA 
and the objective goal is to reduce the WSS on the 
floor of the host artery and the oscillatory flows 
expected at the artery graft junction area. The 
optimal value for the distance from the near wall of 
the graft to the near wall of the artery is important 
but also that the caliber plays an important role in 
affecting the WSS values at the host artery floor. 
The choice of optimal parameters comes as a trade-
off between WSS values and spatial location of 
recirculation and long residence times. It can be 
concluded that geometric parameters might be 
responsible for the early bypass graft failure. 

From this study recommendations to vascular 
surgeons on how to consider their arterial 
anastomoses cannot be expected; however future 
recommendations will be potentially made once, 
among others, the blood transient nature is 
accounted for in the optimization process. The study 
reported herein establishes the methodology as a 
viable means of achieving optimal artificial graft 
shapes. 
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