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Abstract: In this paper risk models with small initial capital, insurance percent and ruin probability are constructed.
These models may be used in different modern applications among which an insurance of a franchisee is one the
most important. The models are based on a principle of a mutual insurance that is a considered system is an
aggregation of a large number of identical insurance systems. We assume that these identical systems may be as
independent so weak dependent. In such risk models phase transition phenomena are detected also. Main method
to obtain these results is an estimate of rate convergence in limit theorems from probability theory.
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Introduction

Known mathematical models of an insurance are char-
acterized by the following parameters: the initial cap-
ital x, the ruin probability p(x) and the insurance per-
cent b and the distribution of the risk (the loss). Usu-
ally a behavior of the function p(x) is investigated in
a case of a fixed but not small b and large x.

There is a lot of articles and monographs devoted
to an analysis of ruin probability behavior for large
initial capitals: x → ∞. An asymptotic of the func-
tion p(x) depends significantly on an asymptotic of
tails of insurance loss distribution. These considera-
tions are made when the distribution of insurance loss
have light [1], [2], [3], [4] or heavy tails [5], [6], [7],
[8]. Another topic of this investigation is asymptotic
analysis of risk models under constant [9], [10] [11]
or stochastic [12], [13], [14] interest forces. There are
papers devoted not to asymptotic analysis but to a con-
struction of upper and low bounds of ruin probabilities
[15], [16].

But modern applied insurance systems of natu-
ral catastrophes: floods, draughts, forest fires, earth-
quakes, tsunami, etc. demand to introduce changes
to such a formulation of a problem. A necessity of
a construction and an investigation of insurance sys-
tems with a small insurance percent b, a small initial
capital x and a small ruin probability p(x) appears in
a case of large risks. Existing risk models do not pos-
sess these properties. Now new applications of such
risk models appear in the insurance of a franchisee
[17]. These applications are widely used in manifold
spheres of modern business.

In this paper a risk model, satisfying these prop-
erties is constructed. It is based on a principle of a
mutual insurance that a considered system is an aggre-
gation of n independent and identical insurance sys-
tems. It is possible not only to recognize the cooper-
ative effects in the aggregated system but to extract in
the parameter set the regions, where for n→∞ these
effects are significant, and the regions, where the ef-
fects are small. A specifics of a suggested model of a
mutual insurance with independent and weak depen-
dent risks is an existence of clear boundary between
these regions. Such boundaries may be interpreted as
phase transition phenomena.

1 Model of mutual insurance
with independent risks

Consider n independent and identical insurance com-
panies. Suppose that the annual risk of the j-th com-
pany in the k-th year is x(k, j) and the random vari-
ables (r.v.‘s) x(k, j), j = 1, . . . , n, k = 1, 2, . . . , are
independent and identically distributed,

M x(k, j) = 1, p(x(k, j) < t) = G(t).

Suppose that the annual prizes of the single company
equal to 1+b, where b = n−γ , γ > 0. As the com-
mon prize of n companies aggregation is (1+ b)n and

the common risk is
n∑
j=1

x(k, j) so the ruin probability

pn = pn(x) = P

sup
m>0

m∑
k=1

n∑
j=1

(x(k, j)−1−b)>x

 .
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Suppose that x is a fixed and sufficiently small quan-
tity, for example x = 0.

Consider a case of large risks. The risk is large if
[18] its distribution function (d.f.) (G(t) = 0, t ≤ 0)
for some α, C, 1 < α < 2, C > 0, satisfies the
condition

1−G(t) ∼ C(2− α)

α
t−α, t→ +∞. (1)

Theorem 1. Suppose that for some α, 1 < α < 2,
there existsC > 0 so that d.f. G satisfies the condition
(1). If the inequality

γ < 1− 1/α (2)

is true then for any τ, 1/(1−γ) < τ < α, there exists
a positive number C1 = C1(τ) so that

pn ≤ C1n
1−τ(1−γ), n = 1, 2, . . . (3)

If the inequality (2) is not true then

lim
n→∞

inf(pn, n ≥ 1) > 0. (4)

Corollary 1. If the inequality (2) is true then

lim
n→∞

pn = 0. (5)

Theorem 2. Suppose that d.f. G satisfies the theorem
1 conditions. If the inequality

γ > 1− 1/α (6)

is true then
lim
n→∞

pn = 1. (7)

For a comparison consider a case when the risks
are not large (d.f. G has a finite variation and does not
satisfies the condition (1)):

D x(k, j) = σ2, 0 < σ2 <∞. (8)

Theorem 3. Suppose that d.f. G satisfies the condi-
tion (8). If the inequality

γ < 1/2 (9)

is true then there exists a positive number C2 so that

pn ≤ C2n
2γ−1, n = 1, 2, . . . (10)

If the condition (9) is not true then the formula (4)
takes place.

Corollary 2. If the inequality (9) is true then the for-
mula (5) takes place.

Theorem 4. Suppose that d.f. G satisfies the condi-
tions of the theorem 3. If the inequality

γ > 1/2 (11)

is true then (7) takes place.

In more strong conditions on d.f. G the theorem 3 has
the following modification.

Theorem 5. Suppose that the condition (9) is true
then the following statements take place.
1. If d.f. G has a density and there exists ν > 0 so
that

M exp(νx(k, j)) <∞ (12)

then

ln pn ∼ −
n1−2γ

2σ2
, n→∞. (13)

2. If there exists µ > 2 so that

M xµ(k, j) <∞ (14)

then there is a positive number qµ so that

pn ≤
qµ

nµ−1−µγ
, n = 1, 2, . . . (15)

2 Mutual insurance models with
weak dependent risks

In the previous subsection the ruin probability

Φ = lim
n→∞

pn

of the aggregated insurance system, consisting of
n subsystems with independent and identically dis-
tributed annual risks, was considered. In different
conditions the parameter γ∗ > 0 satisfying

Φ =

{
0, γ < γ∗,
1, γ > γ∗.

(16)

was found.
P. Embrechts suggested to consider the phase

transition (16) in the case when the risks of different
united subsystems are weak dependent. In this sub-
section there is an exhaustive solution of this question,
based on a special stochastic model of a weak depen-
dence between annual risks x(k, j) of aggregated sub-
systems. This dependence supposed that the fluctua-
tion of the risks x(k, j) is divided into a common part
with the small order n−δ, δ > 0, and an individual
part with the finite order 1 as follows

x(k, j)− 1 = n−δ∆x(k) + ∆x(k, j). (17)
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Here ∆x(k), ∆x(k, j) are independent and iden-
tically distributed r.v.‘s with common d.f. U(t),
E∆x(k) = E∆x(k, j) = 0, k ≥ 1, 1 ≤ j ≤ n.
As in the case of the independent risks the phase tran-
sition phenomenon is recognized. This phenomenon
is showed by the following formula:

Φ =

{
0, 0 < γ < γ∗ and δ > γ,
1, γ > γ∗ or 0 < δ < γ.

(18)

Theorem 6. Suppose that d.f. U(t), U(−1/2) = 0,
has bounded density, D∆x(k) = D∆x(k, j) = σ2,
0 < σ2 <∞, k ≥ 1, 1 ≤ j ≤ n. If 0 < γ < 1/2 and
δ > γ then

lim
n→∞

pn = 0. (19)

If γ > 1/2 or 0 < δ < γ then

lim
n→∞

pn = 1. (20)

Theorem 7. Suppose that d.f. U(t), U(−1/2) = 0,
has bounded density and for some 1 < α < 2, C > 0

1− U(t) ∼ C(2− α)

α
t−α, t→∞. (21)

If 0 < γ < 1− 1/α and δ > γ then (19) is true.
If γ > 1− 1/α or 0 < δ < γ then (20) is true.

3 Proofs of main results
Theorems 1, 3 proofs. Suppose that Xk, k =
1, 2, ..., is the sequence of independent and identi-
cally distributed r.v.‘s (the sequence of i.i.d.r.v.‘s),
MXk = 0, p(Xk < x) = F (x), and for some
1 < α < 2 there is C > 0 and p, q ≥ 0, p + q = 1,
so that for x→ +∞ the following formulas are true:

1− F (x) + F (−x) ∼ C(2− α)

α
x−α, (22)

1−F (x)

1−F (x)+F (−x)
→p, F (−x)

1−F (x)+F (−x)
→q. (23)

Then according to [22, chapter 8, §9, theorem 15, re-
mark 13], [23, chapter XVII, §5, theorem 3] for any u,
−∞ < u <∞ :

lim
n→∞

p


n∑
i=1

Xi

n1/α
≥ u

 = 1− P (u;α,C, p, q). (24)

D.f. P (u;α,C, p, q) is stable and has the characteris-
tic function ϕ(t) = eψ(t) where

ψ(t) =
|t|αC Γ(3−α)

α(α−1)

[
cos

πα

2
± (25)

±i(p− q) sin
πα

2

]
and for p > 0 there exists C ′(α,C, p, q) > 0 so that
for u→ +∞

1− P (u;α,C, p, q) ∼ C ′(α,C, p, q)u−α. (26)

In the formula (25) for t > 0 the upper sign is ”+”
and for t < 0 the low sign is ”−”. More detailed
information about the function P (u;α,C, p, q) is in
[24, chapter. 2, §7, the figure 4]. If the conditions
(22), (23) are true then the formulas (24), (25), (26)
lead to

lim
n→∞

P

(
n∑
i=1

Xi≥0

)
=1−P (0;α,C, p, q) > 0. (27)

Lemma 1. Suppose thatF (x)=G(x+1) and for some
1 < α < 2 d.f. G satisfies the theorem 1 conditions
then

lim
n→∞

P

(
n∑
i=1

Xi≥0

)
=1−P (0;α,C, p, 0) > 0. (28)

Proof. The equality F (x) = G(x + 1) and the con-
dition (1) lead to the formulas (22), (23) for p = 1,
q = 0. Then the formula (26) is true and so the for-
mulas (27), (28) are true. The lemma is proved.

Denote

Sk = X1 + ...+Xk, Mk = max(S1, ..., Sk),

B = {S2n > b}, A = {Mn > b},

Ak = {Si ≤ b, 1 ≤ i ≤ k − 1, Sk > b},

a(α) = 1− P (0;α,C, 1, 0) > 0.

Using the formula (28) choose N(α) > 0 so that for
n ≥ N(α)

P (X1 + . . .+Xn ≥ 0) ≥ a(α)

2
. (29)

Lemma 2. If the lemma 1 conditions are true for then

P (Mn > b) ≤ 2

a(α)
P (S2n > b), n ≥ N(α). (30)

Proof. Using the construction of the monograph [25]
(see the proofs of the lemmas 1, §4, chapter 4) obtain
for k = 1, . . . , n

P (B ∩Ak) ≥ P ((S2n ≥ Sk) ∩Ak) =

= P (Ak)P (Xk+1 + ...+X2n ≥ 0) =

= P (Ak)P (S2n−k ≥ 0). (31)
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As the condition (29) is true then for k = 1, . . . , n

P (S2n−k ≥ 0) ≥ a(α)

2
. (32)

The events Ak, k = 1, . . . , n, are mutually noninter-
secting and so from (31), (32)

P (B) ≥
n∑
k=1

P (B ∩Ak) ≥

≥ a(α)

2

n∑
k=1

P (Ak) =
a(α)

2
P (A). (33)

Put the eventsA,B into the formula (33) which is true
for n ≥ N(α) and obtain (30). The lemma is proved.

Estimate now the probability

A(n) = p

(
sup
m≥1

(Smn −mnb) > 0

)
,

denoting

Ck =

{
max

(
Sj
j
, n2k−1 ≤ j < n2k

)
> b

}
.

Lemma 3. If the lemma 1 conditions and the formulas
(29) for n ≥ N(α) are true then

A(n) ≤
∞∑
k=1

2

a(α)
P (Sn2k+1 > nb2k−1). (34)

Proof. It is clear that

A(n) = P

(
sup
m≥1

(
Smn
m
− nb

)
> 0

)
=

= P

(
sup
m≥1

Smn
m

> nb

)
. (35)

Using the formula (35) and the construction of the
monograph [26, chapter 8, §4, theorem 5] obtain

A(n) ≤ P
(

sup
m≥1

Smn
m

> nb

)
≤
∞∑
k=1

P (Ck) ≤

≤
∞∑
k=1

P (Mn2k > nb2k−1). (36)

Using the inequality (30) from the formula (36) obtain
the formula (34). The lemma is proved.

Denote

F (t) = 1− F (t), Fn(t) = p(Sn ≥ t),

µ1(y) =

y∫
−y

sdF (s), γt(y) =

y∫
−y

|s|tdF (s),

Ct =

∞∫
−∞

|s|tdF (s).

Lemma 4. If the conditions of the lemma 1 are true
for any y, y > 0, t, 1 < t < α, then

Ct <∞, |µ1(y)| ≤ Ct
yt−1

, F (y) ≤ Ct
yt
. (37)

Proof. As the lemma 1 conditions are true then
Ct<∞ for 1 < t < α. It is clear that

µ1(y) = −
∫
|s|≥y

sdF (s), y > 0,

and consequently for y > 0

|µ1(y)| ≤
∫
|s|≥y

|s|dF (s) =

∫
|s|≥y

|s|t

|s|t−1
dF (s) ≤

≤
∫
|s|≥y

|s|t

yt−1
dF (s) ≤

∞∫
−∞
|s|tdF (s)

yt−1
=

Ct
yt−1

. (38)

Analogously the inequality F (y) ≤ Ct/y
t is proved.

The lemma is proved.

Lemma 5. If the conditions of the lemma 1 are true
then for any τ, c, 1 < τ < α < 2, c > 0, there ex-
ist N(τ, c), Q(τ, c) so that for all n > N(τ, c) the
inequality

Fn(x) ≤ nQ(τ, c)

xτ
, x ≥ cn1/τ ln2 n (39)

is true.

Proof. Fix c, c > 0, and τ, 1 < τ < α. Choose t,
satisfying the inequality 1 < τ < t < α, and use the
theorem 2 from [27]. Then in conditions of the lemma
5 obtain

Fn(x) ≤ nF (y)+exp(Z), x > 0, y > 0, n = 1, 2, ...,

Z =
x

y
−
(
x−nµ1(y)

y
+
nγt(y)

yt

)
ln

(
xyt−1

nγt(y)
+1

)
. (40)

Denote Rn(x) = nCt lnt x/xt. The function
Rn(x) and the function Rn(x)/ lnx monotonically
decrease for x > e. Analogously to [28] define
y = x/ lnx. Then according to the inequality (37)
the formula (40) leads to

Fn(x) ≤ Rn(x)+elnx−(lnx−Rn(x)) ln(1+lnx/Rn(x)) ≤

≤ Rn(x) + e
lnx
(
1−
(
1−Rn(x)

ln x

)
ln
(
1+ ln x

Rn(x)

))
. (41)
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Choose N0 > N(α) from the condition:
cN

1/t
0 ln2N0 > e, where e is the base of the natural

logarithm. As the function Rn(x), x > e, monotoni-
cally decreases by x for n ≥ N0 then

sup
(
Rn(x), x ≥ cn1/t ln2 n

)
= Rn(cn1/t ln2 n) =

=
Ct(ln c+ lnn1/t + 2 ln lnn)t

ct ln2t n
. (42)

It is possible to choose Q1, Q1 > 0, and N1, N1 >
N0, so that for n ≥ N1

Rn(x) ≤ Q1

lnt n
, x ≥ cn1/t ln2 n. (43)

According to (43)

inf

(
lnx

Rn(x)
, x ≥ cn1/t ln2 n

)
=

ln(cn1/t ln2 n)

Rn(cn1/t ln2 n)
≥

≥ lnt n ln(cn1/t ln2 n)

Q1
.

So it is possible to choose N2 > N1, Q2 > 0 so that
for n ≥ N2

lnx

Rn(x)
≥ Q2 lnt+1 n = en, x ≥ cn1/t ln2 n. (44)

Combine the formulas (41), (44) and find for
n ≥ N2

Fn(x) ≤ Rn(x)+exp{[1−(1−e−1n ) ln(1+en)] lnx} =

=
nCt lnt x

xt
+ exp{[1− (1− e−1n ) ln(1 + en)] lnx},

x ≥ cn1/t ln2 n.

The inequality may be rewritten in the form

Fn(x) ≤ nCt lnt x

xt
+ x−bn (45)

where

bn = −1+(1−e−1n ) ln(1+en)→∞, n→∞. (46)

Using the formula (46) choose N3 > N2 so that for
n ≥ N3

bn > 2t. (47)

Then for n ≥ N3, x ≥ cn1/t ln2 n it is possible to
rewrite the inequality (45) with the help of the formula
(47) as follows

Fn(x) ≤ nCt lnt x

xt
+

1

x2t
≤ (48)

≤ nCt lnt x

xt

(
1 +

1

Ctxt

)
≤ nCt lnt x

xt

(
1 +

1

Ctctn

)
.

Denote Q3 = Ct
(
1 + 1/Ctc

t
)

and obtain from the
formula (48) for n ≥ N3 that

Fn(x) ≤ nQ3 lnt x

xt
, x ≥ cn1/t ln2 n. (49)

Choose Q4 from the condition

lntx

xt
<
Q4

xτ
, x ≥ e.

Put N(τ, c) = N3, Q(τ, c) = Q3 Q4. With the
help of the inequality (49) it is possible to prove that
for n > N(τ, c)

Fn(x) ≤ nQ(τ, c)

xτ
, x ≥ cn1/t ln2 n.

So for n > N(τ, c)

Fn(x) ≤ nQ(τ, c)

xτ
, x ≥ cn1/τ ln2 n.

Lemma 6. If 0 < γ < 1 − 1/α then for each τ ,
1/(1− γ) < τ < α, it is possible to choose N ′τ , cτ so
that for n ≥ N ′τ , k = 1, 2, ...

n1−γ 2k−1 ≥ cτ (n2k+1)1/τ ln2(n2k+1). (50)

Proof. Choose N ′τ , cτ from the conditions

n1−γ−1/τ

ln2 n
≥ 1, n ≥ N ′τ > e, (51)

cτ= min

{
2k(1−1/τ)2−2−1/τ

1+(k+1)2 ln2 2
, k = 1, 2, ...

}
. (52)

If the formula (51) and the lemma 6 conditions are
true then there exists the finite number N ′τ . The for-
mula (52) leads to the inequality cτ > 0. Estimate the
right side of the formula (50) denoting it by J. For
n ≥ N ′τ , k = 1, 2, . . . :

J = cτ (n2k+1)1/τ ln2(n2k+1) =

= cτ (n2k+1)1/τ
(
lnn+ ln 2k+1

)2
≤

≤ cτn1/τ2(k+1)/τ2
(
ln2 n+ (k + 1)2 ln2 2

)
=

= cτn
1/τ ln2 n 21+(k+1)/τ

(
1 +

(k + 1)2 ln2 2

ln2 n

)
.

As n ≥ N ′τ > e then

J ≤ cτn1/τ ln2 n 21+(k+1)/τ
(
1 + (k + 1)2 ln2 2

)
.
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According to (51) obtain

J ≤ cτn1−γ2k−121+(k+1)/τ21−k
(
1+(k+1)2 ln2 2

)
=

= n1−γ2k−1cτ
{

2k(1/τ−1)22+1/τ
(
1+(k+1)2 ln2 2

)}
≤

≤ n1−γ2k−1.

The last inequality is the corollary of the formula (52).
The lemma is proved.

Lemma 7. Suppose that the conditions of the lemma
1 are true. If 0 < γ < 1 − 1/α then for each
τ , 1/(1 − γ) < τ < α, for n ≥ Nτ and Nτ =
max(N ′τ , N(τ, cτ )), Qτ = Q(τ, cτ ) obtain

A(n) ≤ 8Qτ
a(α)(1− 21−τ )n(1−γ)τ−1

. (53)

Proof. Fix τ satisfying the inequality 1/(1−γ) < τ <
< α. As for all n ≥ Nτ ≥ N ′τ , k = 1, 2, ..., the
lemma 6 leads to the formula (50). So the lemma 5
with c = cτ and n replaced by n2k+1 may be applied
to the inequality P

(
Sn2k+1 > nb2k−1

)
:

P
(
Sn2k+1≥nb2k−1

)
=Fn2k+1(n1−γ2k−1) ≤ (54)

≤ n2k+1Qτ
(n1−γ2k−1)τ

, n ≥ Nτ .

Put the inequality (54) into (34) and obtain for
n≥Nτ :

A(n) ≤
∞∑
k=1

2

a(α)
P (Sn2k+1 > nb2k−1) ≤

≤
∞∑
k=1

2

a(α)

Qτ2k(1−τ)21+τ

n(1−γ)τ−1
<

<
8Qτ

a(α)(1− 21−τ )n(1−γ)τ−1
. (55)

The formula (53) is proved.
Now begin to prove the theorems 1, 3. For this

aim choose

Xn(k−1)+j = x(k, j)− 1, k ≥ 1, j = 1, . . . , n.

Then according to the theorems 1, 3 conditions obtain

pn = A(n), n = 1, 2, . . . (56)

Theorem 1 proof. Suppose that γ < 1−1/α. Choose
arbitrary τ : 1/(1− γ) < τ < α. Using the lemma 7

define Qτ , Nτ so that for n ≥ Nτ the inequality (53)
is true. Put

C1(τ) =
8Qτ

a(α)(1− 21−τ )
.

Then from the formulas (53), (56) obtain the inequal-
ity (3).

Suppose now that γ ≥ 1 − 1/α then from the
equality (56) obtain

pn≥P (Sn>n
1−γ)=P

(
Sn
n1/α

>n1−γ−1/α
)
≥ (57)

≥P
(
Sn
n1/α

≥1

)
, n = 1, 2, ...

From the formulas (24), (27) find that

lim
n→∞

P

(
Sn
n1/α

≥1

)
= 1−P (1, α, C, 1, 0)>0. (58)

The formulas (57), (58) lead to

lim inf
n→∞

pn ≥ 1− P (1, α, C, 1, 0) > 0

so the inequality (4) is true. The theorem 1 is proved.
Theorem 3 proof. According to the formula (35) ob-
tain

A(n)=P

(
sup
m≥1

Smn
m

> nb

)
≤

≤P
(

sup
m≥1

∣∣∣∣Smnm
∣∣∣∣ > nb

)
. (59)

Denote

Ck =

{
max

(∣∣∣∣Sjj
∣∣∣∣ , n2k−1 ≤ j < n2k

)
> b

}
,

Mn = max(|S1|, . . . , |Sn|) (60)

and from the inequality (59) analogously to the for-
mula (36) obtain

A(n) ≤
∞∑
k=1

P (Mn2k > nb2k−1). (61)

Using the Kolmogorov‘s inequality obtain from (61):

A(n) ≤
∞∑
k=1

n2kσ2

(nb2k−1)2
. (62)

If the condition γ < 1/2 is true then from the formula
(62) obtain

A(n) ≤ 4σ2

n1−2γ
→ 0, n→∞. (63)
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Put C2 = 4σ2 and obtain from the formulas (56), (63)
that

pn ≤
C2

n1−2γ
, n = 1, 2, . . . (64)

The formula (64) leads to the inequality (10).
Suppose that γ ≥ 1/2 and analogously to the for-

mula (57) obtain

pn ≥ P (Sn > n1−γ) =

= P

(
Sn
n1/2

> n1−γ−1/2
)
≥ P

(
Sn
n1/2

≥ 1

)
. (65)

According to the theorem 3 conditions and to the Lin-
deberg theorem corollary [29, chapter 8, §40] obtain
the equality

lim
n→∞

P

(
Sn
n1/2

≥ 1

)
= Φ0,σ2(1) > 0 (66)

where Φ0,σ2(t) is the tail of the Gaussian distribution
Φ0,σ2(t) with the mean 0 and the variance σ2.

Then from (65) and (66) obtain the formula

lim
n→∞

inf pn ≥ Φ0,σ2(1) > 0

and so the inequality (4). The theorem 3 is proved.

Theorems 2, 4 proofs

Denote
y(k, j) = x(k, j)− 1,

zn(k) =
1

n1/α

n∑
j=1

y(k, j), k ≥ 1, n ≥ 1.

Lemma 8. Suppose that for some α, 1 < α < 2,
d.f. G satisfies the theorem 1 conditions. Then for
n → ∞ the weak convergence of d.f. P (zn(k)<t)
to d.f. P (t;α,C, 1, 0) (in all continuous points of
P (t;α,C, 1, 0)) is true, where P (t;α,C, 1, 0) is the
stable distribution with the characteristic function
(c.f.) ϕ(t) = eψ(t) and ψ(t) is defined in (25).

Proof. This statement is the formulas (22) - (25)
corollary for F (x) = G(x+ 1), p = 1, q = 0.

Remark 1. According to the formula (25) d.f.
P (t;α,C, 1, 0) has a density. The density of d.f.
P (t;α,C, 1, 0) [24, theorem 2.7.5 ] is bounded
P (t;α,C, 1, 0).

Lemma 9. Suppose that d.f. G satisfies the theorem 3
conditions. Then for n→∞ the weak convergence of
d.f. P (zn(k) < t) to d.f. Φ0,σ2(t) is true.

Proof. The lemma 9 statement is the direct Lindeberg
theorem [29, chapter 8, §40] corollary.

Lemma 10. The following equality is true

pn=P

(
sup

(
m∑
k=1

(
zn(k)− n

nγ+
1
α

)
,m ∈ N

)
>0

)
.

Proof.

pn=P

sup

 m∑
k=1

n∑
j=1

(x(k, j)−1−b) ,m ∈ N

>0

=

= P

sup

 m∑
k=1

n∑
j=1

(
y(k, j)−n−γ

)
,m ∈ N

>0

 =

= P

(
sup

(
m∑
k=1

(
zn(k)− n1−γ−1/α

)
,m ∈ N

)
>0

)
.

The lemma is proved.
Suppose that z(1), z(2), . . . are i.i.d.r.v.‘s with the

following d.f.: if α, 1 < α < 2, then d.f.

P (z1 < t) = Gα(t) = P (t;α,C, 1, 0)

if α = 2 then d.f. P (z1 < t) = G2(t) = Φ0,σ2(t).
Put

Z(M)= sup

(
m∑
k=1

z(k), 1≤m≤M
)
, Z(∞)=Z,

Zn(M)= sup

(
m∑
k=1

zn(k), 1≤m≤M
)
, Zn(∞)=Zn.

Lemma 11. For any α, 1 < α ≤ 2, the equality

P (Z > 1) = 1 (67)

is true.

Proof. Fix α, 1<α≤2. By the definition Mz(k) = 0
then for any bounded interval ∆ on the straight line

lim sup
m→∞

P

(
m∑
k=1

z(k) ∈ ∆

)
=

= lim sup
m→∞

P

(
1

m1/α

m∑
k=1

z(k) ∈ 1

m1/α
∆

)
. (68)

If ∆ is fixed then there exists M so that for m ≥M

1

m1/α
∆ ⊂ (−1, 1) . (69)

Then according to the formulas (68), (69)

lim sup
m→∞

P

(
m∑
k=1

z(k) ∈ ∆

)
≤
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≤ lim sup
m→∞

P

(
1

m1/α

m∑
k=1

z(k) ∈ (−1, 1)

)
. (70)

As r.v.‘s z(k) for some α, 1 < α ≤ 2, have d.f. Gα
then

P

(
1

m1/α

m∑
k=1

z(k) ∈ (−1, 1)

)
≡ P (z(1) ∈ (−1, 1)) .

So

lim sup
m→∞

P

(
1

m1/α

m∑
k=1

z(k) ∈ (−1, 1)

)
=

= P (z(1) ∈ (−1, 1)) = 1− ε1, ε1 > 0. (71)

The formulas (70), (71) allow to define ε1 > 0, satis-
fying for any bounded interval ∆ the inequality

lim sup
m→∞

P

(
m∑
k=1

z(k) ∈ ∆

)
≤ 1− ε1.

The conditions of [19, chapter 1, §3, theorem 7] are
true and so the equality (67) takes place. The lemma
is proved.

Lemma 12. For any α, 1 < α ≤ 2, ε, ε > 0, there
exists M ′(α, ε) so that for all M ≥M ′(α, ε)

P (Z(M) > 1) > 1− ε.

Proof. Using the lemma 11 statement (see the formula
(67)) find

1 = P (Z = Z(∞) > 1) = lim
M→∞

P (Z(M) > 1) .

The lemma is proved.
Introduce the Markov chains wn(m), w(m),

m ≥ 1, by the formulas wn(0) = 0, w(0) = 0,

wn(m+ 1) = max(wn(m) + zn(m+ 1), 0), (72)

w(m+ 1) = max(w(m) + z(m+ 1), 0). (73)

From [19, chapter 1, §3, theorem 2] obtain the coinci-
dence of r.v.‘s Zn(m), wn(m), m = 1, 2, ..., by the
distribution. Analogously r.v.‘s Z(m), w(m), m =
1, 2, ..., coincide by the distribution too.

Lemma 13. For any α, 1 < α ≤ 2, and for any
m > 0 if n → ∞ then there is the weak convergence
of r.v.‘s wn(m) distributions to r.v. w(m) distribution
(and so for r.v.‘s Zn(m) distributions to r.v. Z(m)
distribution).

Proof. From the lemmas 8, 9 obtain that if n→∞ so
r.v.‘s zn(k) distributions converge weakly to r.v. z(k)
distribution for α, 1 < α ≤ 2. As the result r.v.‘s
wn(1) distributions converge weakly to r.v. w(1) dis-
tribution for n→∞.

Suppose that r.v.‘s wn(m) distributions converge
weakly to r.v. w(m) distribution for n → ∞. Then
from [30, theorem of §7] obtain that c.f.‘s of r.v.‘s
wn(m) converge uniformly to c.f. of r.v. w(m) on
each finite interval for n→∞.

As for n → ∞ r.v.‘s zn(k) distributions con-
verge weakly to r.v. z(k) distribution so c.f. of r.v.‘s
zn(m+1) converge to c.f. of r.v. z(m+1) for n→∞
uniformly on at any finite interval. Consequently for
n → ∞ c.f.‘s of r.v.‘s wn(m) + zn(m + 1) converge
to c.f. of r.v. w(m) + z(m + 1) uniformly on any
finite interval. So if n → ∞ then there is weak con-
vergence of r.v.‘s wn(m) + zn(m+ 1) distributions to
r.v. w(m) + z(m+ 1) distribution. As the result there
is the weak convergence of r.v.‘s wn(m+ 1) distribu-
tions to r.v. w(m + 1) distribution for n → ∞. The
induction statement is proved.

Lemma 14. For any α, 1 < α ≤ 2, and any m > 0
there exist the nonnegative numbers p(m), q(m) :
p(m)+q(m) = 1 and d.f. Fm(t) with bounded density
fm(t), −∞ < t < ∞, fm(t) = 0, t ≤ 0, so that for
−∞ < t <∞

P (w(m) < t) = p(m)θ(t) + q(m)Fm(t). (74)

Here θ(t) = 0, t ≤ 0, θ(t) = 1, t > 0.

Proof. Denote

gα(t) =
d

dt
P (z(1) < t) =

d

dt
Gα(t).

As the lemmas 8 and 9 are true so for 1 < α ≤ 2
the function gα(t) is unimodal (that is this function
possesses single local and so global extremum – max-
imum). Consequently gα(t) has a finite upper bound
on (−∞, ∞). Choose

p(1) =

∫ 0

−∞
gα(τ)dτ, q(1) = 1− p(1),

f1(t) = 0, t ≤ 0, f1(t) =
gα(t)

q(1)
, t > 0, (75)

and denote by F1(t) d.f. with the density f1(t). Then

P (w(1) < t) = P (max(0, z(1)) < t) =

= θ(t)Gα(t) = p(1)θ(t) + q(1)F1(t) (76)

and the density f1(t) is bounded.
Suppose that the representation (74) is true for

m = k and for d.f. Fk(t) with bounded density fk(t).
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Prove this representation for m = k + 1. Denote by
”∗” the operation of d.f. conjuncture. From the equal-
ity (74), which is true for m = k, obtain

P (w(k) + z(k + 1) < t) =

= (p(k)θ(t) + q(k)Fk(t)) ∗Gα(t) =

= p(k)Gα(t) + q(k)Fk(t) ∗Gα(t) =

= p(k)Gα(t) + q(k)Rk(t), (77)

Rk(t) = Fk(t) ∗Gα(t),

where d.f. Rk(t) has bounded density

rk(t) =

∫ ∞
−∞

fk(t− τ)gα(τ)dτ.

It is clear that the density ψk(t) of the distribution

P (w(k) + z(k + 1) < t) = Ψk(t)

is the bounded function and

ψk(t) = p(k)gα(t) + q(k)rk(t).

Analogously to (75) choose

p(k + 1)=

∫ 0

−∞
ψk(τ)dτ, q(k + 1) = 1− p(k + 1),

fk+1(t)=0, t≤0, fk+1(t)=
ψk(t)

q(k + 1)
, t>0, (78)

and denote by Fk+1(t) d.f. with the bounded density
fk+1(t). Then

P (w(k + 1) < t) = θ(t)Ψk(t) =

= pk+1θ(t) + qk+1Fk+1(t). (79)

Consequently for m = k + 1 the representation (74)
is true too. The theorem is proved.

Lemma 15. For any α, 1 < α ≤ 2, and for any
m > 0

lim
n→∞

P (Zn(m) > 1) = P (Z(m) > 1) .

Proof. The equalities (74) and the lemma 13 it fol-
lows that in each continuity point t = T of d.f.
P (w(m) < t)

lim
n→∞

P (Zn(m) > T ) = P (Z(m) > T ) .

As the lemma 14 is true so the point T = 1 is conti-
nuity point of d.f. P (w(m) < t) .

Lemma 16. For any α, 1 < α ≤ 2, and for any
γ > 1− 1/α

lim
n→∞

pn = 1.

Proof. Suppose that 1 < α ≤ 2, ε > 0. Define by the
lemma 12 M ′ = M ′(α, ε) so that

P
(
Z(M ′) > 1

)
> 1− ε. (80)

Using the lemma 15 for fixed M ′ = M ′(α, ε), α, ε,
find N1 = N1(α, ε) so that for any n ≥ N1

| P
(
Zn(M ′) > 1

)
− P

(
Z(M ′) > 1

)
|< ε. (81)

From the inequalities (80), (81) find that for n ≥ N1

P
(
Zn(M ′) > 1

)
> 1− 2ε. (82)

The lemma 10 leads to

1 ≥ pn ≥ P
(
sup

(
K(m), 1 ≤ m ≤M ′

)
> 0

)
≥

≥ P
(
Zn(M ′) > M ′n1−γ−1/α

)
,

K(m) =
m∑
k=1

(
zn(k)− n

nγ+1/α

)

Choose N2 = N2(α, ε) so that M ′N1−γ−1/α
2 < 1.

Then for n ≥ max(N1(α, ε), N2(α, ε)) from the for-
mula (82)obtain

1 ≥ pn ≥ P
(
Zn(M ′) > 1

)
> 1− 2ε.

The lemma is proved.
The lemma 16 leads to the theorems 2, 4 state-

ments.

Theorem 5 proof

From the definition of pn obtain

P

 n∑
j=1

(x(1, j)− 1) > nb

 ≤ pn ≤

≤
∞∑
m=1

P

 m∑
k=1

n∑
j=1

(x(k, j)− 1) > mnb

 . (83)

Denote yj = x(1, j)−1, j≥1 and put Sn =
n∑
j=1

yj ,

n = 1, 2, ... Rewrite the inequality (83) as follows

P (Sn > nb) ≤ pn ≤
∞∑
m=1

P (Smn > mnb). (84)

Prove the theorem 5 using the inequality (84) in two
steps.
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The step 1. To estimate the probability p(Sk>kb)
in the conditions (12) use the Cramer theorem [31]
with the remained member in the Petrov form [32].
Theorem *. If x ≥ 0, x = o(

√
k) and the condition

(12) is true then

p(Sk>σx
√
k)=

= Φ0,1(x)e
x3√
k
λ

(
x√
k

) [
1+O

(
x+ 1√
k

)]
, (85)

where

λ(t) =
∞∑
j=0

ajt
j .

Here the row λ(t) with the coefficients calculated via

γk =
1

ik

(
dk

dtk
lnE exp(ity1)

)
t=0

,

where i is the imaginary unit and the symbol ln de-
notes main meaning of the logarithm so that

lnEeity1 |t=0 = 0.

The function Φ0,1(x) may be represented in the Feller
form [33]:

Φ0,1(x) =
e−x

2/2

x
√

2π

(
1− v(x)

x2

)
, x > 1, (86)

where v(x) is some function satisfying the inequality
0 ≤ v(x) ≤ 1, x > 1.

Suppose that the inequality γ < 1/2 is true. In-
troduce auxiliary designations

Vn = 1− v(n−γ
√
nσ−1)

n1−2γσ−2
,

Wn,m = 1 +O

(
n−γ
√
nmσ−1 + 1√
nm

)
,

Un,m = exp

(
−n1−2γm

2σ2
+
n1−3γm

σ3
λ

(
n−γ

σ

))
=

= exp

(
−n1−2γm

2σ2

(
1− 2n−γ

σ
λ

(
n−γ

σ

)))
.

Then the inequality (84) may be rewritten with the
help of the formulas (85), (86) as follows

σ

n−γ
√

2πn
VnWn,1Un,1 ≤ pn ≤ (87)

≤
∞∑
m=1

σ

n−γ
√

2πnm
Wn,mUn,m.

Choose c > 0 so that

Wn,m ≤ (1 + cn−γ), m = 1, 2, . . . ,
Wn,1 ≥ (1− cn−γ), n = 1, 2, . . .

(88)

From the inequalities (87), (88) obtain

σ

n−γ
√

2πn
Vn(1− cn−γ)Un,1 ≤ pn ≤ (89)

≤ σ(1 + cn−γ)Un,1

(1− Un,1)n−γ
√

2πn
, n ≥ 1.

Then

ln pn ∼ −
n1−2γ

2σ2
, n→∞,

that is
lim
n→∞

pn = 0. (90)

Suppose that γ ≥ 1/2 then from the inequality
(84) obtain

pn ≥ P (Sn ≥ n1−γ) ≥ P (Sn ≥
√
n). (91)

Using the central limit theorem [29, the Lindeberg
theorem corollary] obtain from (91)

lim inf
n→∞

pn ≥ Φ0,1(1) > 0.

So we have proved that the equality (90) is true if and
only if the inequality γ < 1/2 takes place.

Step 2. To estimate the probability p(Sk > kb) in
the conditions (14) use the Nagaev inequality [34] in
the following theorem ** form.
Theorem **. If the conditions (14) are true then there
exist the positive and finite numbers nµ, gµ so that for
x ≥ nµ

√
k

p(Sk > x) ≤ kgµ
xµ

, k = 1, 2, . . . (92)

It follows from the theorem ** that for

n ≥ Nµ = nβµ, β =
2

1− 2γ

the following inequalities for m = 1, 2, ... are true

p(Smn > mnb) ≤ mngµ
(mnb)µ

=
gµ

bµ(mn)µ−1
. (93)

Using the inequalities (84), (93) obtain for n ≥ Nµ

pn ≤
qµ

bµnµ−1
=

qµ
nµ−1−µγ

, n ≥ 1,

qµ = gµ

∞∑
m=1

m1−µ <∞.

So in this case the equality (90) is true if and only if
γ < 1/2. The theorem 5 is proved.
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Remark 2. The analyzed risk model may be improved
by a consideration of finite horizon ruin probabilities.
On the one hand it allows to investigate both a possi-
bility and a necessity of current time coalitions caused
by some short time factors. From an another side this
suggestion allows to simplify the model analysis.

Theorem 6 proof

The following formula is true

pn=P

sup
m>0

 m∑
k=1

n∑
j=1

(x(k, j)−1−n−γ)

>0

=

=P

sup
m>0

m∑
k=1

∆x(k)

nδ−1
+

m∑
k=1

n∑
j=1

∆x(k, j)

m
>n1−γ

≤

≤P
(

sup
m>0

n1−δ

m

m∑
k=1

∆x(k)+

+ sup
m>0

1

m

m∑
k=1

n∑
j=1

∆x(k, j) > n1−γ

 . (94)

Then from (94) obtain the inequality

pn ≤ P1(n) + P2(n), (95)

in which

P1(n) = P

(
sup
m>0

n1−δ

m

m∑
k=1

∆x(k) >
n1−γ

2

)
,

P2(n) = P

sup
m>0

1

m

m∑
k=1

n∑
j=1

∆x(k, j) >
n1−γ

2

 .
Denote

Mt = max(|∆x(1)|, |∆x(1) + ∆x(2)|, . . . ,

|∆x(1) + ∆x(2) + . . .+ ∆x(t)|). (96)

Suppose now that 0 < γ < 1/2 and δ > γ. Then,
using the algorithm of the theorem 1 proof obtain

P1(n) = P

(
sup
m>0

1

m

m∑
k=1

∆x(k) >
nδ−γ

2

)
≤

≤
∞∑
k=1

P

(
max

j: 2k−1≤j<2k

|
∑j
i=1 ∆x(i)|
j

>
nδ−γ

2

)
≤

≤
∞∑
k=1

P
(
M2k > nδ−γ2k−2

)
≤

≤
∞∑
k=1

2kD∆x(k)

(nδ−γ2k−2)2
=

16σ2

n2δ−2γ
, (97)

P2(n) = P

sup
m>0

m∑
k=1

n∑
j=1

∆x(k, j)

mn
>
n−γ

2

 ≤

≤ 16σ2

n1−2γ
. (98)

The formulas (95), (97), (98) lead to the equality (19).
Prove now the equality (20). For this aim divide

the set G = {(γ, δ) : 0 < δ < γ or γ > 1/2} into the
nonintersecting subsets

G1 = {(γ, δ) : δ ≥ 1/2, γ > 1/2},

G2 = {(γ, δ) : 0 < δ < γ, δ < 1/2}, G1∪G2 = G.

Consider the case when (γ, δ) ∈ G1. From (94) obtain
that ∀M, M ∈ N = {1, 2, ...},

pn=P

sup
m>0

m∑
k=1

∆x(k)

nδ−1
+

m∑
k=1

n∑
j=1

∆x(k, j)

√
nm

>n
1
2
−γ

≥

≥P

 max
0<m≤M

m∑
k=1

∆x(k)

nδ−
1
2

+
n∑
j=1

∆x(k, j)√
n

> M

nγ−
1
2

 .
As

∀ε > 0 ∃N1 : ∀n ≥ N1 n
1/2−γM < 1

so ∀n ≥ N1 pn ≥

≥P

 max
0<m≤M

m∑
k=1

∆x(k)

nδ−
1
2

+
n∑
j=1

∆x(k, j)√
n

>1

 (99)

Suppose that λ(s), s ≥ 1, is s.i.i.d.r.v.‘s with the
common gaussian d.f. Φ0,σ2(t), which has the mean 0

and the variance σ2(t). Denote

λn,b(s) =
n∑
j=1

∆x(s, j)

n1/b
, un,b(s) = n1−1/b−δ∆x(s),

zn,b(s) = un,b(s) + λn,b(s), zb(s) = un,b(s) + λ(s),

Zn,b(s) = max

(
0, max

0<m≤s

m∑
k=1

zn,b(k)

)
,

Zb(s) = max

(
0, max

0<m≤s

m∑
k=1

zb(k)

)
,
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wn,b(s) = max (0, wn,b(s− 1) + zn,b(s)) ,

wb(s) = max (0, wb(s− 1) + zb(s)) , s ≥ 1,

wn,b(0) = wb(0) = 0. (100)

In our case b = 2 so from the lemma 9 obtain

Fλn,2(s)(t)=P (λn,2(s)<t)⇒Φ0,σ2(t), n→∞, (101)

where ” ⇒ ” means the weak convergence of d.f. As
the formulas

P (un,2(s) < t) = U(t) if δ = 1/2,

P (un,2(s) < t)⇒ I(t) n→∞, if δ > 1/2

with

I(t) =

{
1, t > 0,
0, t ≤ 0,

are true so from the continuity theorem [26, chapter 7,
§ 3] obtain for n→∞

P (zn,2(s) < t)⇒
{

(U ∗ Φ0,σ2)(t), δ = 1
2 ,

Fλn,2(s)(t), δ > 1/2.
(102)

Then according to [23, tom 2, chapter 6, § 9] the
following equalities

P (wn,2(s) < t) = P (Zn,2(s) < t),

P (w2(s) < t) = P (Z2(s) < t), s ≥ 1, (103)

are true and from the formulas (101), (102)

P (zn,2 < t)⇒ Φ0,σ2 .

So the lemma 13 leads to

P (Zn,2(s) < t)⇒ P (Z2(s) < t), n→∞. (104)

The condition, that d.f. U(t) density is bounded
and so d.f. (U ∗Φ0,σ2)(t) is bounded too, is necessary
to obtain from the lemma 14 the following corollary.
D.f. Fw2(s)(t) = P (w2(s) < t) is continuous at the
point t = 1. So from the formula (104) and from the
lemma 15 obtain that for ∀ε > 0 ∃N2 ∈ N : ∀n ≥
N2 the inequality

P (Zn,2(s) > 1) > P (Z2(s) > 1)− ε

is true. Then for ∀n ≥ max(N1, N2) obtain

pn ≥ P
(

max
0<m≤M

m∑
k=1

zn,2(k) > 1

)
=

= P (Zn,2(M) > 1) > P (Z2(M) > 1)− ε. (105)

The lemma 12 leads to

P (Z2(s) > 1)→ 1, M →∞.

Consequently ∃M∗ ∈ N : ∀M ≥M∗ so that

pn > 1− 2ε,

and then the equality (20) is true too.
Consider now the case (γ, δ) ∈ G2. In this case

analogously to the formula (99) obtain that for ∀ε>0
∃N : ∀n ≥ N

pn ≥ P
(

max
0<m≤M

m∑
k=1

(∆x(k) + nδ−1/2λn,2(k)) > 1

)
.

It is clear that

P (nδ−1/2λn,2(s) < t)⇒ I(t), n→∞,

and consequently

P (∆x(k) + nδ−1/2λn,2(s) < t)⇒ U(t), n→∞.

Then introducing Markov chains

w′n,2(s) = max

(
0, w′n,2(s− 1) + ∆x(s) +

λn,2(s)

n1/2−δ

)
,

w′2(s) = max
(
0, w′2(s− 1) + ∆x(s)

)
, s ≥ 1,

w′n,2(0) = w′2(0) = 0

and repeating the word by the word the proof in pre-
vious case obtain the equality (20).

Theorem 7 proof

Consider the case γ < 1 − 1/α, δ > γ. From the
theorem 1 obtain that for ∀τ, 1/(1− γ) < τ < α,

∃ C1(τ) > 0 : P2(n) ≤ C1(τ)n1−τ(1−γ)2τ .

The multiplier 2τ occurs because here we consider the
probability of the inequality

sup
m>0

1

mn

m∑
k=1

n∑
j=1

∆x(k, j) > n−γ/2,

but not the probability of the inequality

sup
m>0

1

mn

m∑
k=1

n∑
j=1

∆x(k, j) > n−γ ,

as it was made in the proof of the theorem 1.
Consequently the equality

lim
n→∞

P2(n) = 0
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is true. As the equality (95) takes place so we are to
show only that

lim
n→∞

P1(n) = 0. (106)

In the proof of previous theorem it was shown that
in the case 0 < γ < 1/2 and δ > γ

P1(n) ≤
∞∑
k=1

P (M2k > nδ−γ2k−2) = A. (107)

Choose

K∗ > 0 : K∗ ≥ max(log2N(τ, 1)− 1, log2N(α))

where N(α), N(α) > 0, is so that ∀t ≥ N(α) (see
the formula (29))

P (∆x(1) + ∆x(2) + . . .+ ∆x(t) > 0) ≥ a(α)/2

where a(α)=1−P (0;α,C, 1, 0), C > 0, 1 < α < 2,
and the constant N(τ, 1) is defined by the lemma 5.
Then from the formula (107) obtain

A =
K∗∑
k=1

P (M2k > nδ−γ2k−2)+

+
∞∑

k=K∗+1

P (M2k > nδ−γ2k−2). (108)

As
K∗∑
k=1

P (M2k > nδ−γ2k−2) ≤

K∗∑
k=1

P (M2k>
2k−2

n−δ+γ
)≤K∗P (M2K∗>

nδ−γ

2
), (109)

so the formulas (108), (109) and the lemma 2 lead to

A ≤ 2K∗

a(α)
P

2K
∗+1∑

k=1

∆x(k) > nδ−γ/2

+

+
2

a(α)

∞∑
k=K∗+1

P

2k+1∑
j=1

∆x(j) > nδ−γ2k−2

 =

= A1 +A2. (110)

From the lemma 5 obtain that for ∀τ, 1<τ<α<2,
∃N(τ, 1) ∈ N = {1, 2, ...}, Q(τ, 1) so that for
∀k, k ≥ log2N(τ, 1)− 1,

P

2k+1∑
j=1

∆x(j) > s

 ≤ 2k+1Q(τ, 1)

sτ
(111)

for s ≥ 2(k+1)/τ ((k + 1)ln2)2.
In the case A1 s = nδ−γ/2. As δ > γ so ∃N1 :

∀n ≥ N1

nδ−γ/2 ≥ 2(K
∗+1)/τ ((K∗ + 1)ln2)2.

In the case A2 s = nδ−γ2k−2. So for δ > γ obtain
that ∃N2 : ∀n ≥ N2 and for ∀k ≥ K∗

nδ−γ2k−2 ≥ 2(k+1)/τ ((k + 1)ln2)2.

Then for ∀n ≥ max(N1, N2) from (110), (111) obtain
that

A1 +A2 ≤
2

a(α)

(
4K∗2K

∗+1Q(τ, 1)

(nδ−γ)τ
+

+
∞∑

k=K∗+1

2k+1Q(τ, 1)

(nδ−γ2k−2)τ

 =

=

2Q(τ, 1)

4K∗2K
∗+1 +

∞∑
k=K∗+1

2(1−τ)k+2τ+1


a(α)(nδ−γ)τ

(112)

Denoting

L(α, τ, 1,K∗) =
2Q(τ, 1)

a(α)

(
4K∗2K

∗+1+

+22τ+1
∞∑

k=K∗+1

2(1−τ)k

 ,
from the formulas (107), (110), (112) obtain that

P1(n) ≤ L(α, τ, 1,K∗)

(nδ−γ)τ
.

So the equality (106) is true.
Suppose now that γ > 1− 1/α or δ < γ. Divide

the set G = {(γ, δ) : 0 < δ < γ or γ > 1 − 1/α}
into the nonintersecting subsets

G1,α = {(γ, δ) : δ ≥ 1− 1/α, γ > 1− 1/α},

G2,α = {(γ, δ) : 0 < δ < γ, δ < 1− 1/α},

G1,α ∪G2,α = G.

Consider the case when (γ, δ) ∈ G1,α. From the
formula (94) obtain that for ∀M, M ∈ N, pn =

=P

sup
m>0

m∑
k=1

 ∆x(k)

n
1
α
−1+δ

+
n∑
j=1

∆x(k, j)

n1/α
− n

n
1
α
+γ

>0

≥
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≥P

 max
0<m≤M

m∑
k=1

 ∆x(k)

n
1
α
−1+δ

+
n∑
j=1

∆x(k, j)

n1/α

> nM

n
1
α
+γ


Analogously to the proof of the previous theorem in
the case (γ, δ) ∈ G1 (with the single correction that
b=α, 1<α<2, and λ(k), k ≥ 1, are i.i.d.r.v.‘s with
the common stable d.f. P (u;α,C, 1, 0)) obtain that
for ∀ε> 0 ∃N∗: ∀n ≥ N∗

pn ≥ 1− 2ε. (113)

Suppose that (γ, δ) ∈ G2,α. In this case for
∀M, M ∈ N, the following inequality pn =

=P

sup
m>0

m∑
k=1

∆x(k)+
n∑
j=1

∆x(k, j)

n1−δ+
2
α

− n

n
1
α
+γ

>0

≥

≥P

 max
0<m≤M

m∑
k=1

∆x(k)+
n∑
j=1

∆x(k, j)

n1−δ+
2
α

> nM

n
1
α
+γ

 .
is true. Analogously to the proof of the previous the-
orem in the case (γ, δ) ∈ G2 (with the corrections for
b and λ(k), k ≥ 1) obtain the inequality (113).
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