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Abstract: - This paper introduces a distributed machine learning model for response control at the IoT edge 
computing network. The resource-limited IoT edge devices are pooled together for a distributed processing in 
void of remote cloud servers. The edge computing offers prompt and comprehensive response in mission 
critical applications. This paper addresses the current and future challenges and opportunities in real-time IoT 
services and applications. Further, this paper also gives number of platforms and user requirements in selecting 
platforms. 
 
Key-Words: - IoT, Data analytic, distributes network, edge computing 
 
1 Introduction 
The massively interconnected cyber-physical 
devices with limited computing capacity are 
aggregated to form the Internet of Things (IoT) and 
they are expected to provide smart applications in 
various industries such as hospital care and public 
infrastructure protection [1]. 

The IoT devices, despite their initial purpose of 
smart home automation with no control of Quality 
of Service (QoS), they are now deployed in mission 
critical applications requiring real-time QoS 
requirements. 

This new expectation is creating a dilemma in 
the current IoT architecture in which Cyber-Physical 
Devices (CPD) heavily rely on cloud-based 
Decision Support Systems (DSS) for data storage 
and analytic processing. The heterogeneous, 
dynamic, and massive IoT network is generating 
enormous amount of data for analytic processing; 
increasing its reliance on the remote cloud server 
even more. 

The CPDs and DSS are usually not co-located, 
and they can be, at times, located in different 
continents. The DSS can send back the response 
messages with high priority, but the response delay 
is a major hindrance to the deployment of IoT 
services in the mission-critical real-time 
applications [2]. 

For proactive and faster responses to the critical 
incidents in hospital care, nursing-home care, 
outback bush fire, and policing acts, we need to be 
able to embed data analytic and decision support 
capacity in the CPDs themselves so that they can 
bypass the use of remote DSS; allowing faster edge 

computations for real time processing and response 
as shown in Figure 1. 

 

 
 

Figure 1: IoT Architecture 
 

The challenge remains on how to embed data 
analytic capacity in small CPDs where the 
computing resource is severely limited. The 
expectation is the clustered small IoT-CPDs are 
interconnected in a way to accommodate the data 
analytic processing in a distributed mode [3]. 

In this paper, we review the current practices of 
distributed machine learning approach for faster 
real-time response. In particular, this paper proposes 
an innovative data analytic model that is adjusted 
for distributed processing over the IoT edge 
networks. This paper compares the distributed data 
analytic models under the stringent requirements of 
IoT edge networks. The paper further reviews 
appropriate technologies for real-time IoT network 
applications. 
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2 Literature Review 
This section explains literature review of IoT and 
processing power.    
 
2.1 Review of IoT Edge Computing 
There has been some significant research work on 
embedding data analytic modeling in the edge IoT 
devices for proactive critical responses [4]. The 
edge computing is described in Figure 2. 

The IoT edge computing is mainly used for 
computational offloading of data storage and 
analytic processing. The offloading must take into 
consideration of dynamic nature of network access 
requirements, number of edge devices, and 
computational resources of the edge devices. We 
must take into consideration of the granularity and 
hierarchy of edge network topology and how to 
dynamically partition the application for offloading 
[5]. 

MAUI [6] offers code offloading for adaptive 
decision making on network availability but it 
requires manual annotation of the offloading parts. 
In dynamic IoT edge network, manual annotation 
may be a limiting factor. 

COMET [7] offers virtual machine 
synchronization and shared memory to adapt the 
edge devices to be part of the computational 
network. 

Think Air [8] offers parallel virtualization over 
the small edge computing devices to achieve 
sufficient computing power for intelligent data 
analytic processing. 

Kang et al [9] offers random allocation of 
resources followed by iterative redistribution of 
resources according to the dynamic network and 
user behaviour. The analysis of network and user 
behaviour in IoT edge network may be 
computationally intensive. 

Fan et al [10] offers an inter data centre based 
load redistribution for efficient energy usage and 
reduced latency. Although their idea is meant for 
multi data centres, some of their systematic 
approach can be useful for edge computer sharing. 

Nishio et al [11] introduces mobile cloud in 
which small portions of processing tasks are 
distributed amongst small mobile devices under the 
direction of supervisory control module in 
awareness of latency and resource optimization. 

The underlying idea is to divide the processing 
task into small modules for distributed processing 
’in awareness of latency and resource optimization’ 
amongst the myriad of small mobile devices as 
shown in Figure 2. 

The challenge remains on how to segment the 
data analytic processing tasks into the small 
modules for distributed processing. 

In the next section, we review the appropriate 
data analytic models for distributed computing. We 
also propose an innovative ensemble of linear 
regression models as part of the solution to the 
distributed IoT edge computing. The proposed 
model is compared to the other state-of-the-art 
models in a simple experiment of location-aware 
IoT service application. 

 

 
Figure 2: IoT Edge Computing 

 
2.2 Review of Distributed Machine 
Learning Models  
Data analytic computing is inherently intensive, and 
it may require distributed processing [12]. 

A well-known heuristic model such as Multi-
Layer Perceptron (MLP) is known for deep learning 
through multiple layers of interconnected intricate 
memory modules. MLP is not suitable for 
distributed processing as the hierarchical 
segmentation of the network itself is a challenge. 
The reassembly of the outputs from the segmented 
components may not reflect the true learning of the 
global MLP [13]. 

Another popular model such as Self Organizing 
Map (SOM) is useful in uncovering data patterns. 
An advanced variant of SOM has been applied to 
IoT resource scheduling and sharing with stringent 
restriction on energy consumption. This work is 
appropriate for cloud-server based processing but 
not suitable for the edge-based processing because 
the sample data points increase exponentially in 
predictive modeling of IoT network usage 
requirements, capacities, and availabilities [14]. 
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The other popular models such as Support 
Vector Machine (SVM) and its advanced variant 
such as knn-SVM-PSO [15] are the exciting 
advancement; however, again, they are developed 
for remote cloud server processing, not for the 
resource limited IoT edge devices [16]. 

Given the challenge of the resource-limited IoT 
edge devices, an intuitive solution is to use an 
ensemble of simple (data analytic) models. In such 
case, each data analytic component is already well 
segmented from the inception; and there are more 
options to intelligently combine the outcomes from 
the disjoint learning modules for optimal global 
optimization. In particular, we take a great interest 
in Adaboost ensemble of linear regression models 
for IoT edge computing. This model is shown to 
outperform other complex nonlinear regression 
models in dynamic modeling applications [17]. In 
the following section, we examine the 
aforementioned model and adjust its architecture to 
make it suitable for IoT edge computing. The 
adjusted model is discussed in detail and compared 
against the other related state-of-the-art models in a 
simple experiment. 
 
3 Proposed Model 
The proposed model is based an Adaboosted Linear 
Regression (ALR) which can achieve a good trade-
off between bias and variance given limited 
computational resources [18]. The ALR is well-
known in machine learning community but has not 
been exclusively applied in the IoT edge distributed 
computing. The learning model architecture is 
described in Figure 3. 
 

 
Figure 3: Adaboot Learning 

 
The first weak base learner is designed based on 

training sample. The data points in the error 
region(s) are given more weight in the next iteration 
to create a new weak base learner. The final model 
is an intelligent weighted combination of weak 
linear regression models as shown in Figure 4. 

 

 
Figure 4: Ensemble Model 

 
Each base (linear regression) model can be 

processed on a simple IoT edge device and its 
outputs can be readily assembled back by a simple 
weight function. In our proposed model, the simple 
weight function is adjusted to include kernel based 
smoothing function to cater for global optimization. 
The simple change is that the outputs from the base 
models are better combined with easier control with 
a single smoothing parameter. 

The final model is an adjusted Adaboost 
ensemble of linear regression models which can 
mimic far more complex nonlinear regression 
models. Such a model is suitable for distributed 
computing as shown in the next section. 
 
4 Experimental Analysis 
IoT latency requirement becomes more obvious in 
the real-time location-based applications. For this 
aim, we use the bench mark data from the location 
sensing application with signals received from the 
array of iBeacons [19]. 

The dataset was created using the RSSI readings 
of an array of 13 iBeacons in the first floor of 
Waldo Library, Western Michigan University. Data 
was collected using iPhone 6S. The instances) and 
an unlabeled dataset (5191 instances). 

The experiment includes a mobile phone user 
roaming through the floor of library and the data 
analytic models must be able to determine the 
location of the user in real time. The computational 
resources are restricted to the available devices in 
the proximity pooled in for edge computing. 

Given such a restricted resource condition, 
several data analytic models are deployed to detect 
the location of the mobile user. The performance of 
each analytic model (under the restricted computing 
environment) is recorded and compared. The 
Preliminary experimental outcomes show the 
proposed linear model achieves improved data 
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analytic performance given much reduced 
computational resources, as expected. When 
computational resources increase, the nonlinear 
regression models (such as neural network or SVM) 
would outperform our linear model; however, given 
the limited computational resources at the IoT edge 
devices, the proposed model shows better modeling 
performance than the other data analytic models. 

Give the limitations of IoT edge network 
devices, the proposed model can be useful to 
provide real-time data analytic processing for real-
time responses and QoS controls. 
 
5 Platforms to optimize edge-based 
data analytics 

This section provides platforms to optimize 
edge-based data analytics and users’ 
requirements of IoT edge platforms [20, 21, 
22].  

5.1 Platforms to optimize edge-based data 
analytics  

Five important platforms that can be used to 
optimize edge-based data analytics [20] shown 
in Table 1. 

Table 1: Platforms to optimize edge-based data 
analytics 

Platform Features 
Azure stream - Microsoft IoT platform 

- Real-time analytical solution 
- Can handle complex event 

processing 
- Real-time dashboard display 

IBM Watson - Built on Apache Edgent 
- IBM provides processing, 

analytical power and machine 
learning at the edge of the 
network 

Cisco connected 
streaming 
analytics 

- Supports high velocity data 
streaming from multiple sources  

- Suited to continuous monitoring 
of live data streams 

Oracle edge 
analytics 

- Processes data on embedded 
devices  

- Support downstream 
applications, providing real-time 
analytics 

- High processing speed and real 
time data capture capabilities  

Intel analytics 
toolkit 
 

- Collects  data from smart sensors 
- Requires little storage and 

processing capacity 
- Real-time, cost-effective and 

powerful way 

5.2 User requirements of IoT edge platforms  

Features and capabilities that most of the users 
require to use IoT edge platforms based on 
users’ experiences [21] are 

1. Extensive protocol support for various data 
input 

2. Robust capabilities even for offline 
functionality  

3. Cloud based support 
4. Support of scalable architecture 
5. Comprehensive analytics and visualization 

tool 
 
6 Conclusion 
The paper reviews the state-of-the-art distributed 
computing architecture for data analytic processing 
given very limited pool of computational resources. 
The results show that Adaboot ensemble of linear 
regression model with adjustable smoothing 
parameter has shown comparable modeling 
accuracy under limited computational complexity. 
The experimental outcome is also positive requiring 
extensive testing on a large-scale dataset. This paper 
gives overview of edge-based IoT platforms and 
user requirements. Future work will be on 
comparative study of platforms with real world case 
studies. 
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