
A Formal Hybrid Analysis Technique

for Composite Web Services Verification

MAY HAIDAR
1,2

, HICHAM H. HALLAL
 1

1
Computer Science Department / Department of Electrical Engineering

Fahad Bin Sultan University

P.O Box 15700 Tabuk, 71454

SAUDI ARABIA
2
 Département d’informatique et de la recherche operationnelle

Université de Montréal

Pavillon André-Aisenstadt, CP 6128 succ Centre-Ville, Montréal QC, H3C 3J7

CANADA

{mhaidar,hhallal}@fbsu.edu.sa

Abstract: - In this work, we propose to develop an integrated formal framework where both static and dynamic

analysis techniques complement each other in enhancing the verification process of an existing web services

based application. The proposed framework consists of three components. A Library of Property Patterns,

which we intend to build on existing work and compile a library and a classification of web services properties

(patterns and antipatterns). These would include BPEL4WS and WISCI requirements in the form of property

patterns which can be instantiated in different contexts and for different purposes like verifying correctness,

security, and performance related issues. The property library will be based on an easy to use template that

depicts mainly the type, formal model, and example of a property. The second component is the development

of Static Analysis Techniques that include direct code inspection, abstraction based techniques, and model

based techniques. The third component is the development of dynamic analysis techniques that include

extracting behavioral models of applications from observed executions and verifying them (mainly using model

checking) against behavioral properties. These properties specify defects that cannot be detected using static

analysis techniques. We elaborate in this paper the formal approach used to extract an automata based model

of a web service composition from execution traces that are observed and collected using a monitoring tool. We

also outline the components of a prototype to realize the proposed approaches for static analysis, modeling, and

dynamic verification of the applications under test. In this paper we present the initial implementation of the

dynamic approach.

Key-Words: - Static Analysis, Dynamic Analysis, Property Patterns, Web Services, Model Checking, Automata

Models

1 Introduction

Businesses are increasingly adopting service

orientation to shape the architecture of their

enterprise solutions and to increase the efficiency of

their software applications. At the foundation of this

ever more popular paradigm, web services are

heavily used to enhance decentralization and cross

platform and language portability. The power of

services resides mainly in the high degree of

dynamism and flexibility they exhibit throughout

their lifecycle: publication, discovery, and binding

are all dynamic activities that make a service an

evolving entity capable of adapting to continuously

changing and new requirements. In addition,

compositions of services, which can also be

dynamic, have added to the power of services in

building larger enterprise solutions for

heterogeneous businesses. However, the fast paced

growth of service implementation and deployment

in various contexts has resulted in a growing gap

between the development and verification of service

based applications. On one hand, static analysis

techniques [1, 13] remain insufficient to detect

behavioral flaws and defects that are exhibited only

when services, especially composite ones, are

executed. In particular, such techniques face two

major problems: difficulty of generating executable

May Haidar, Hicham H. Hallal
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 26 Volume 2, 2017

models that can be used in the analysis, and limited

coverage of defects that are exhibited only during

runtime, e.g., concurrency incurred problems. On

the other hand, dynamic and runtime techniques,

which depend mainly on monitoring, can only claim

to detect errors and flaws in the observable behavior

of a service, or a dynamic composition of services.

Currently, formal methods have gained momentum

as a reliable solution to automate the analysis of

various systems. In particular, software

development communities are increasingly adopting

formal techniques to perform different development

activities such as requirement definition and

elucidation, modeling and model transformation,

testing, and property verification [14,17].

For example, model checking has been used to

verify various properties on models of systems.

Model checking can be fully automatic and produce

counterexamples that point to the violations when a

model does not satisfy a given property. Yet, as is

the case for most formal analysis methods, adoption

of model checking tools remains relatively limited

due mainly to problems like the lack of formal

models, the inherent state space explosion problem,

and the lack of proper justification for its use

especially for classes of properties whose

verification does not explore concurrent behavior of

the models Error! Reference source not found.Error!

Reference source not found.. Yet, for many

distributed applications and properties, especially

those specified in terms of events issued by

concurrent processes, the need for model checking

becomes clear and outweighs the doubts cast over

its use. Formal verification techniques are currently

used in several domains including communication

systems, software and program analysis [13], and

web based applications [2, 14].

In the case of composite Web Services, the

reasoning about the use of model checking is

similar. While analyzing simple web services does

not necessarily require the use of model checking

techniques, the use of model checking in the

analysis of web services featuring underlying

dynamically composite services is clearly needed

and justified. The latter is specifically true for

services whose composition is specified through

WS-BPEL [20] (Web Services Business Process

Execution Language) and WSCI [21] (Web Services

Choreography Interface).

As to the lack of models, especially in the case of

inaccessible code, analysis in general has been

applied to the traces an application/system produces

when it is used. For this, predefined properties are

used to analyze the application under test using

model checking, when needed, or less complex

techniques like search based methods or even

manual inspection.

In this paper, we propose to develop an

integrated formal framework where both static

and dynamic analysis techniques complement

each other in enhancing the property testing

process of an existing web services based

application.

2 Formal Framework

We develop an integrated formal framework as

illustrated in Figure 1, where both static and

dynamic analysis techniques complement each other

in enhancing the verification process of an existing

web services based application. The proposed

framework consists of the following main

components.

Figure 1. Formal Framework for Web Service

Composition Analysis

2.1 Library of Property Patterns
Patterns have long been used in the development of

software applications, and service oriented

architectures as well, since they introduce clever and

insightful ways to solve common problems. Along

with patterns, which are intended to facilitate the

design and development processes, the term

antipattern is defined. An antipattern is simply a

solution to a problem that does not work as intended

(in terms of correctness and/or efficiency).

Communicating Automata
Based Model

Library of
Patterns /

Antipatterns

Quality
Requirements

Execution
Traces

Web
Services

Code

Automated Formal
Models Extraction

Model Checking

Tool

Fo
rm

al

Sp
e

ci
fi

ca
ti

o
n

s

Property
Results:
1. Satisfied
2. Counter
Example

Library of Formal
Specifications

Formal Verification

Static an
d

 D
yn

am
ic

M
o

d
e

lin
g

May Haidar, Hicham H. Hallal
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 27 Volume 2, 2017

Following the definition, efforts exist to document

antipatterns in catalogs (similar to design patterns)

so that they can be avoided. In the proposed

framework, we intend to build on existing work

[7,8,13,16,17] and compile a library and a

classification of web services properties (patterns

and antipatterns).

The classification of properties will be hierarchical:

static/dynamic, correctness/functional,

style/performance, etc. Such classification should

help developers identify the antipatterns to better

avoid them, and testers detect them in the

application using the appropriate techniques. On the

other hand, documented properties, which would

include BPEL4WS and WISCI requirements in the

form of property patterns, can be instantiated in

different contexts and for different purposes like

verifying correctness, security, and performance

related issues. The property library will be based on

an easy to use template that depicts mainly the type,

formal model, and example of a property.

For example, in our previous work [16,17], we have

defined a pattern template and identified 119

patterns and property specification for the

verification of Web applications (WAs). Figure 2

shows an example of such patterns. Each pattern is

specified in Linear Temporal Logic (LTL), which

makes it directly usable in many model checkers.

Figure 2. Example of Web Applications

Specification Patterns

2.2 Static Analysis Approach

In general, static analysis techniques for software,

mainly targeting (compiled) code and/or existing

specifications or textual descriptions, are

independent of specific input data sets or individual

execution paths. They are usually classified into:

1. Direct code inspection, where suspicious code

segments are directly identified in the code

(through linear scanning for example).

2. Abstraction based techniques, where code

representations (class diagrams, call graphs,

etc.) are used to match the exhibition of certain

predefined patterns (or antipatterns).

In the case of web services based applications; static

analysis techniques would be applied to the

available documents containing the descriptions of

individual and composite services. In doing this, we

follow in the steps of the work in [13]; the main

deviation being the customization of the antipattern

library developed to handle mutlithreaded Java

applications to the context of web services and web

services compositions. In addition, the library will

be extended to cover patterns/antipatterns like the

one shown in Figure 2. However, some complex

faults cannot be detected with static analysis

approaches or only at a high cost (like deadlocks).

Moreover, static analysis techniques are prone to

producing significant numbers of false warnings

(mainly false positives) while not being able to

detect some behavioral errors like in the case of

exception handling. This justifies the need for the

third component, a set of dynamic analysis

techniques.

2.3 Dynamic Analysis Approach

Dynamic Analysis techniques have emerged as

complementary to static analysis techniques,

especially when concurrency and large architectural

structures of applications make the latter inefficient

and rather incomplete. Dynamic analysis techniques

do not necessarily rely on existing specifications or

textual descriptions of the applications under test.

Instead, they are applied to executable behavioral

models that are derived from the application’s

observed executions (traces or logfiles). Such

approach to analysis is particularly efficient in the

case of web services based applications; often

characterized by their readiness to compose web

services, especially dynamically.

 The communication between web services normally

uses Internet protocols, such as HTTP, SMTP, and

ID FGS6

Pattern

description

Banking information is entered no

more than once before
submitting form

Category Functional – General – Security and

Authentication

Page

Attributes

Banking_info: Boolean identifying

the presence of fields for banking
information
Submit: identification of page where

form submit action exists

LTL

Mapping

PrecedenceGlobally ((
(banking_info) W (banking_info W

(G  (banking_info)))), submit)

Comments

Source Newly introduced

May Haidar, Hicham H. Hallal
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 28 Volume 2, 2017

FTP. However, all messages can be structured

according to SOAP (Simple Object Access

Protocol) which is a protocol specification for

exchanging structured information in the

implementation of web services. Although many

standards have been introduced to address the

problem of web service composition, including

BPEL4WS (Business Process Execution Language

for Web Services) and WSCI (Web Service

Choreography Interface), they address mainly the

description and execution of workflow

specifications for web service compositions. Yet,

they are not sufficient to support automated

verification techniques based on static analysis. The

proposed techniques include extracting behavioral

models of applications from observed executions

and verifying them (mainly using model checking)

against behavioral properties specifying defects that

cannot be detected using static analysis techniques.

The known techniques in the field include:

1. Offline (postmortem) techniques, where

recorded executions of an application are stored

and later used in modeling and verifying the

application under test.

2. Online (runtime) techniques, where an

application under test is analyzed as the

executions are generated.

In our previous work [14,16], we designed a

framework for formal modeling and verification of

web applications WAs using the model checker

Spin. We intercepted HTTP requests/responses that

depict the behavior of web applications and

extracted communicating automata models

translated into Promela (the modeling language of

Spin). The properties verified included properties of

concurrent behavior of WAs featuring multiple

displays (windows/frames).

We use a similar approach for model extractions

from behavioral executions of composite Web

services. The major difference is the availability of

multiple traces recording the behavior of different

services in the composition. The collected traces

from all services are analyzed and abstracted as

communicating automata models depicting the

behavior of the respective services. Each automaton

(inferred from a single trace) depicts the behavior of

one service where requests are modeled as events

and responses as states. Events will be distinguished

as local and common. Common events represent

communications among the services in a

composition.

It is important to note that while the dynamic

approach in this paper relies on model checking,

models are derived from the observed behavior of

the application. Thus, the approach could be seen

as passive testing. Since results of verification could

be compromised when a WSUT does not meet the

assumptions described previously, this

approach does not eliminate the need for traditional

testing and should be considered as a

complimentary activity rather than an alternative.

For instance, the approach could be enhanced by

additional testing of the application with model

checking counterexamples, in order to verify

whether properties are indeed violated. Also,

behavioral models derived by this approach enable

model based test generation Error! Reference source

not found.Error! Reference source not found..

In this paper, we propose a model checking based

approach to the verification of web services

composition whose source code is inaccessible

against user defined properties. The model of the

application under test is obtained from traces of the

web services execution while properties of interest

relate to both the business logic and ergonomics of

the web services. More specifically, the proposed

approach breaks down into the following main

steps:

1. Modeling the Web services composition in a

language acceptable by a chosen model checker.

We use Spin Error! Reference source not found.,

the open source model checker that is used in

many research and industrial projects. As

described earlier, we use the execution traces of

the web services composition recorded using a

relevant monitoring tool, e.g., a proxy server

that is capable of intercepting HTTP and SOAP

communications. The traces are then converted

into a communicating automata model

representing the behavior of all the components

of the web services based application.

2. Specifying properties of interest. These

properties can represent both desired and

undesired behaviors of the web services.

Properties will be mainly user defined and

expressed in the property specification language

of Spin, LTL.

3. Checking the obtained model against the given

properties. To do so, Spin computes the

composition of all the component automata in

the derived model and builds a graph containing

the global states of the application. The graph is

then inspected against the language of a

property for containment.

May Haidar, Hicham H. Hallal
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 29 Volume 2, 2017

3 Automated Model Extraction of

Web Services

The purpose of building a formal model for a web

service under test (WSUT) is to verify whether the

service composition exhibits certain predefined

properties using model checking techniques. It is

assumed in this paper that the properties specified in

a temporal logic of a chosen model checker are

composed of atomic propositions and for each

SOAP/HTTP service request, the value of each

proposition is uniquely determined by the content of

the service response. These propositions refer to

attributes that are user defined and have to be

checked (and of course reflected in a model).

Attributes can be of various types, for instance: a

numerical type to count the occurrences of a certain

element, a string type to denote the domain name of

a response. To build a formal model of a web

service composition whose source code is

accessible, one may use abstraction techniques

developed in software reverse engineering following

a the static, white box approach Error! Reference

source not found.Error! Reference source not found.
as described in the previous section. However, the

source code is not always available, or access to the

code could breach copyrights or trade secrets

(especially when verification is performed by a third

party). Moreover, a web service composition can be

written using different languages and even different

paradigms which makes static analysis difficult to

perform.

When the code is not available for modeling, one

can build a formal model following a dynamic,

black-box based approach, by executing the

application and using only the observations of an

external behavior of the service composition Error!

Reference source not found. over a certain period of

time. Verification of such models (resulting from

finite trace of an application) is called run-time

verification Error! Reference source not found.Error!

Reference source not found.. In case of web services

that rely on the SOAP or HTTP protocol considered

in this work, an observable behavior consists of

requests and responses, assuming that the flow of

requests and responses between a client side and a

server in the WSUT is observable. One possible

way of achieving this is to use a proxy server Error!

Reference source not found.. A proxy server

monitors the traffic between the client and the server

and records it in proxy logs. The proxy logs, i.e.,

traces, contain the requests for composing services

and the responses to these requests.

In the next section, we present our approach to

derive automata based models from traces of web

services.

3.1 Modeling Approach
Figure 3 shows the workflow of the proposed

approach. The main components are:

 A Monitoring module. It intercepts

SOAP/HTTP requests and responses during the

navigation of the WSUT performed by the

user/crawler.

 An analysis module. It takes the intercepted

traces as input and generates an automata model

in XML/Promela. This module is realized as a

prototype tool which is described in Section 4.

 A model checking module, in this case Spin. It

verifies user defined properties against the

generated model and produces a

counterexample for each violated property.

Figure 3. Workflow of the approach

With this approach, a behavior of a WSUT, called

an execution session, aka Request/Response

Sequence (RRS), is interpreted as a possible

sequence of web services responses intermittent

with the corresponding requests. Usually, many of

these requests are triggered by the user’s actions

(clicking links, submitting forms), while others can

be triggered by the service itself.

3.2 Execution Session as Communicating

Automata
Here, the method for modeling an observed

execution session by a system of communicating

automata is described in general. Further

development of the detailed model will be attempted

in the future. Given the execution session, first local

2

u1

u0

u2

f1

b

v1

v0

f2

s0

s1

a

f1 f2

s2

c

c

c

c

c

c

u1

u0

u2

f1

b

v1

v0

f2

s0

s1

a

f1 f2

s2

c

c

c

c

c

c

Communicating Automata Model

Formal
Specifications

System in
XML/PROMELA

SPIN
Model Checker

Property Results:
1. Satisfied
2. Violated

Properties
to Check

Monitor /

Interceptor

SOAP/HTTP Reader

Graphical
User Interface

Service Analyzer
& Modeler

XML/Promela
Generator

SOAP/HTTP
Requests /Responses

May Haidar, Hicham H. Hallal
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 30 Volume 2, 2017

execution sessions that correspond to the behaviors

of the composition web services of the WSUT are

determined, each of which is modeled by an

automaton.

Automata communicate synchronously by

rendezvous, executing common (rendezvous)

actions. Such communication is formalized by the

parallel composition operator on automata.

Formally, two communicating automata A1 = < S1,

s01, 1, T1 > and A2 = < S2, s02, 2, T2 > are composed

using the || operator. The resulting automaton,

denoted A1 || A2, is a tuple < S, s0, , T >, where s0 =

(s01, s02) and s0  S;  = 1  2; and S  S1  S2

and T are the smallest sets which satisfy the

following rules:

 If (s1, e, s'1)  T1, e  2, and (s1, s2)  S, then

(s'1, s2)  S, and ((s1, s2), e, (s'1, s2))  T.

 If (s2, e, s'2)  T2, e  1, and (s1, s2)  S, then

(s1, s'2)  S, and ((s1, s2), e, (s1, s'2))  T.

 If (s1, e, s'1)  T1, (s2, e, s'2)  T2, and (s1, s2) 

S, then (s'1, s'2)  S, and ((s1, s2), e, (s'1, s'2)) 

T.

The composition is associative and can be applied to

finitely many automata.

Local Execution Sessions. An execution session

represents the behavior of communicating services

denoted o1, o2, …, ok, where o1 corresponds to the

main composing service and k is the number of

communicating services. Given an execution

session, the number of communicating entities k and

their relationship are determined and a procedure is

used to partition the browsing session into local

execution session, denoted (RRS1, …, RRSk).

4 Implementation of the Approach

The implementation of the proposed framework

includes the following main tasks:

1. Surveying the literature and common practices

of various developers of web services based

applications to compile a set of most frequently

encountered properties (patterns and

antipatterns).

2. Formulation of properties in specification

languages that can be used in both static and

dynamic analysis techniques.

3. Identifying proper static analysis techniques for

each class of properties and evaluating their

efficiency and robustness. In particular, this task

includes identifying the proper abstractions,

along with methods to extract them, to be used

in detecting corresponding antipatterns in the

code.

4. Record execution traces from the applications

under test. This task includes studying the

instrumentation based and interception based

techniques.

5. Extracting models from monitored executions.

This includes extracting models from completed

traces and incremental models in the case of

runtime analysis that can be used in known

model checking tools.

6. Integrating the compiled library and developed

tools in a user friendly toolset which masks the

details of the underlying analysis techniques

form the users and makes the dissemination of

the produced framework easier.

The proposed framework is implemented using

Spin model checker [18]. The automata models

are represented using Promela language and the

patterns/antipatterns are represented in LTL. We

use the Java Eclipse environment for the toolset

implementation. The complete toolset will include

integrated components as follows:

a. A library of compiled patterns/antipatterns

translated in LTL.

b. Execution interception and monitoring: the tool

intercepts requests and responses of a web

services composition using an open source

proxy
1
. The monitoring module can operate in

two modes: online and offline mode. In online

mode, the monitor intercepts the executions and

feeds them to the analysis module. In the offline

mode, the monitor registers an execution trace

in a log file.

c. Property based attribute selection: through the

graphical user interface of the tool, a number of

predefined attributes that characterize web

services are provided. The user selected

attributes are evaluated in each web service and

are reflected in the automata model.

d. Analyzing execution traces and model

generation: the tool parses and analyzes the

execution traces and evaluates the user defined

attributes in each visited page. An internal data

structure of the automata model of the web

services composition is built. The model can be

generated either in Promela language or XML-

Promela.

1

SOLEX, Web Application Testing with Eclipse.

http://solex.sourceforge.net/

May Haidar, Hicham H. Hallal
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 31 Volume 2, 2017

e. Automata model visualization and statistical

data: the tool has a model visualization feature.

The built model of a web services composition

can be visualized in two different graphical

modes as well as one textual model. In the

graphical mode, which is based on existing Java

graph libraries, both single automaton, and

communicating automata models are visualized,

which can be manipulated by the user. For

instance, the user can zoom in/out, pick

displayed states and drag them, visualize the

content of each state, and optionally show/hide

transition labels. Also, the tool provides

numerical data about the model, namely the

number of processes (automata), total number of

states, total number of transitions.

Figure 4 illustrates our initial toolset prototype for

the dynamic modeling of Web services.

Figure 4. Prototype Tool for Web Services

Monitoring and Modelling

5 Related Work

Run time verification of software applications has

grown as a major field covering major activities

related to the development of software. At the same

time, webbed, and web service-based, applications

have gained a lot of attention in many research

activities both in academia and in the industry given

the role such applications have in the shaping of

today’s economy based on e-commerce and e-

services.

Our related work that is closely connected to this

new proposed work is published in [8,14,16,18]. We

have implemented an integrated formal framework

for run-time verification of web applications.

Results were interesting and we were able to verify

properties that could not be verified using other

approaches.

Recently, a large body of research has been

produced with a focus on formal modeling of web

services based applications in order to induce

automation in the analysis of the developed

applications against some predefined properties

specified from the description and requirements

texts. Derived models are often generated from

textual descriptions of applications (BPEL,

BPEL4WS, and WSCI), and can be used mainly to

check static properties that relate to the structure and

content of the application, usually described as a

composition of services. Examples of such research

include the work of Foster et al. [1,2], which models

BPEL descriptions as Finite State Process models,

which can be verified against properties that are

mainly derived from design specifications written in

UML notations like the Message Sequence Chart

(MSC) or activity diagrams. Properties sought for

verification include mostly semantic failures and

difficulties in providing necessary compensation

handling sequences that are tough to detect directly

in common workflow languages like BPEL. Other

attempts have been described in the literature as

well including the work of Breugel and Koshkina

[3, 4] who introduce the BPE-calculus to capture

control flow in BPEL descriptions and programs.

The service descriptions in the proposed language

allow for checking against properties like dead path

elimination and control cycles. The verification,

mainly formal model checking, is performed in the

toolset Concurrency Workbench (CWB). However,

as discussed in Section 1, proposed verification

approaches based mainly on the static analysis of an

existing source code, where different types of

models like EFA, Promela, and communicating

FSMs [11, 12] are used, have their limitations and

impracticalities. Consequently, more efforts are

being spent on performing run-time verification of

web service applications based on monitoring and

model extraction. Also, [5] address the run-time

monitoring of functional characteristics of

composed Web services, as well as for individual

services [6].

6 Conclusion
In this paper, we proposed an integrated formal

framework for the analysis and verification of Web

services composition. We propose a hybrid of both

static and dynamic analysis techniques, which

complement each other. We also intend to develop a

library of patterns and antipatterns of interesting

May Haidar, Hicham H. Hallal
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 32 Volume 2, 2017

specifications of web services. These specifications

will be automatically translatable to a formal

specification language namely LTL. We presented

the formal framework for run-time verification of

Web services composition as well as the extracted

automata model.

Based on our previous experience and the initial

results obtained in the use of our formal approach

for run-time verification, we believe that results of

this proposed work are promising.

References

[1] Foster, H. (2008). Tool Support for Safety

Analysis of Service Composition and

Deployment Models. Proceedings of the 2008

IEEE International Conference on Web

Services, pp. 716-723. IEEE Computer Society.

[2] Foster, H., Uchitel, S., Magee, J., & Kramer, J.

(2003). Model-based Verification of Web

Service Compositions. Proc. of 18th IEEE

International Conference on Automated

Software Engineering, pp. 152-161. Montreal,

Canada.

[3] Koshkina, M., & van Breugel, F. (2004).

Modeling and verifying web service

orchestration by means of the concurrency

workbench. SIGSOFT Software Engineering

Notes, 29(5):1-10. ACM.

[4] Van Breugel, F., & Koshkina, M. (2005). Dead-

Path-Elimination in BPEL4WS. Proceedings of

the 5th International Conference on Application

of Concurrency to System Design, pp. 192-201.

IEEE Computer Society.

[5] Kallel, S., Char_, A., Dinkelaker, T., Mezini,

M., Jmaiel, M.: Specifying and Monitoring

Temporal Properties in Web services

Compositions. Proceedings of the 7th IEEE

European Conference on Web Services

(ECOWS). (2009).

[6] Simmonds, J., Gan, Y., Chechik, M., Nejati, S.,

O'Farrell, B., Litani, E., Waterhouse, J.:

Runtime Monitoring of Web Service

Conversations. IEEE Transactions on Services

Computing. 99, 223-244 (2009).

[7] May Haydar, Sergiy Boroday, Alexandre

Petrenko, and Houari Sahraoui . "Properties and

Scopes in Web Model Checking". In Proc. of

20th IEEE/ACM International Conference on

Automated Software Engineering (ASE 05).

Long Beach, California, USA, November 2005.

[8] May Haydar, Sergiy Boroday, Alexandre

Petrenko, and Houari Sahraoui. "Propositional

Scopes in Lenear Temporal Logic". In Proc. of

5th International Conference on New

Technologies of Distributed Systems (NOTERE

05). Gatineau, Quebec, Canada, August 2005.

[9] Dwyer M, Avrunin GS, Corbett JC. Patterns in

Property Specifications for Finite-state

Verification. 21st Int. Conference on Software

Engineering, May, 1999.

[10] X. Fu et al, Analysis of interacting BPEL

web services. 13th Int. World Wide Web

Conference, 2004.

[11] Nakajima, S. (2006, May). Model-Checking

Behavioral Specification of BPEL Applications.

Proceedings of the International Workshop on

Web Languages and Formal Methods,

2(151):89-105.ENTCS.

[12] Fu, X., Bultan, T., & Su, J. (2004). Analysis

of interacting BPEL Web Services. Proceedings

of the 13th International World Wide Web

Conference, pp. 621-630. ACM Press.

[13] H. H. Hallal, E. Alikacem, W. P. Tunney, S.

Boroday, A. Petrenko,(2004) "Antipattern-

Based Detection of Deficiencies in Java

Multithreaded Software," qsic, pp.258-267,

Quality Software, Fourth International

Conference on (QSIC'04).

[14] Haydar, M., Petrenko, A. and Sahraoui, H.

(2004) "Formal Verification of Web

Applications Modeled by Communicating

Automata" In Proceedings of 24th IFIP WG 6.1

IFIP International Conference on Formal

Techniques for Networked and Distributed

Systems (FORTE 2004), pp. 115-132. Madrid,

Spain. [LNCS, vol. 3235]

[15] Boroday, S., Petrenko, A., Sing, J. and

Hallal, H. (2005) "Dynamic Analysis of Java

Applications for MultiThreaded Antipatterns"

In Proceedings of the Third International

Workshops on Dynamics Analysis (WODA

2005). St-Louis, MI, USA.

[16] May Haydar. A Formal Framework for

Run-Time Verification of Web Applications: An

Approach Supported by Scope Extended Linear

Temporal Logic. VDM Verlag, Germany,

September 2009. ISBN: 978-3-639-18943-8.

[17] May Haydar, Houari Sahraoui, and

Alexandre Petrenko. "Specification Patterns for

Formal Web Verification". In Proc. of 8th

International Conference on Web Engineering

(ICWE 08). Yorktown Heights, New York,

USA, July 2008.

[18] Gerarld Holzmann. The SPIN Model

Checker: Primer and Reference Manual. ISBN-

10: 0321228626. Addison-Wesley, Sptember

2003.

May Haidar, Hicham H. Hallal
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 33 Volume 2, 2017

[19] A. Andrews, J. Offutt J, R. Alexander,

Testing Web Applications by Modeling with

FSMs, Software Systems and Modeling,

4(3):326-345, July 2005.

[20] OASIS. (2007). OASIS Web Services

Business Process Execution Language.

http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev

=wsbpel.

[21] Arkin, A., Askary, S., Fordin, S., & al.

(2002). Web Service Choreography Interface

(WSCI) 1.0. Retrieved on April 10, 2005 from

www.w3.org/TR/wsci.

May Haidar, Hicham H. Hallal
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 34 Volume 2, 2017

