
Abstract: Accurate fault diagnosis and prognosis can significantly reduce maintenance costs, increase the safety
and availability of engineering systems that have become increasingly complex. It has been observed that very
limited researches have been reported on fault diagnosis where multi-component degradation are presented. This
is essentially a challenging Complex Systems problem where features multiple components interacting simul-
taneously and non-linearly with each other and its environment on multiple levels. Even the degradation of a
single component can lead to a misidentification of the fault severity level. This paper introduces a new test rig to
simulate the multi-component degradation of the aircraft fuel system. A machine learning-based data analytical
approach based on the classification of clustering features from both time and frequency domains is proposed.
The scope of this framework is the identification of the location and severity of not only the system fault but also
the multi-component degradation. The results illustrate that the fault can be detected with accuracy, the severity
of fault can be identified with an accuracy of almost 100%
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1 Introduction

One of the vital problems of the modern aviation in-
dustry is planning maintenance in a way that will en-
sure machine reliability and passengers safety. Ma-
jor airlines spent over 40 billion dollars each year
on these operations including among others servic-
ing, troubleshooting, equipment and spare parts ware-
housing, labour and technicians training [1]. The
MRO (Maintenance, Repair and Overhaul) in the avi-
ation market cost 64.3 billion dollars in 2015 and
is expected to reach almost 100 billion with a 4.1%
growth rate after a decade [2, 3]. This raises the ur-
gent need for efficient, robust fault detection and iden-
tification tools which will be able to detect anomalies
at early stages to prevent fatal failure Raising aware-
ness of this matter led to the development of new
approaches for maintenance operations such as Inte-
grated Vehicle Health Management (IVHM) or Con-
dition BasedMaintenance (CBM) [4, 5, 6]. Instead of
scheduled parts replacement based on operating time
or performed cycles, systems are monitored to per-
form diagnosis tasks to check their current condition
and take action when the need arises or assess the re-
maining useful lifetime of components [7, 8].

It has been found that data-driven solutions are
useful, especially in the cases where it is over-
sophisticated to develop numerical models of real-life

multi-component machinery [9]. For a case study of
the monitoring condition of military aircraft [10], the
developed Prognosis and Health Management frame-
workwas divided into three levels. Initially, themem-
ber level stands for the condition of acquiring and
processing the significant information monitored us-
ing multiple types of sensors [11], which can be rep-
resented as oil tanks or gear modules. Then based
on the knowledge and feature extracted from these
data, the health status of subsystems was diagnosed
at the following regional level, which can be repre-
sented by avionics or electromechanical system. Fi-
nally, on the last platform level, which is similar to
a whole advanced military aircraft, the comprehen-
sive health status is assessed and reported to the oper-
ator, and decisions about maintenance are made and
a historical database was created and stored [12]. By
this strategy, the information and uncertainty within
multiscale are included and the knowledge of how the
fault of a single component can propagate and affect
the whole system can be developed. It set an effec-
tive analysis architecture and guidance for diagnosis
in complex systems [13].

Starting from the above foundation, different ap-
proaches assessing the remaining useful lifetime of
engine systems was presented in [14], where data
from sensors was collected and processed to anal-
yse the trends and symptoms of different, prede-
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fined types of faults. The condition monitoring of
safety–critical complex systems in [15] applied the
combination of smart sensing and fast diagnostic soft-
ware, supported by a model-based reasoning system,
working together for mitigating anomalies as they
occur. To efficiently monitor the condition of sys-
tem components and predict the remaining useful life-
time, it is wise to combine high-quality knowledge
from different sources which will foster good deci-
sion making [16]. These high quality sources come
from the pre-conducted maintenance, numerical sim-
ulations, multi-type sensing and maintenance history.
For example, Klingelschmidt et al. [17] presented an
approach using different types of sensing data cap-
tured on various parts of machinery for condition
monitoring. This type of sensing combination and ac-
companying complex diagnosis and prognosis system
can be solved using Input–Output Hidden Markov
Model architecture [18, 19]. Therefore, the above
mentioned strategy can be addressed to provide bet-
ter input information for multicomponent fault and
degradation diagnosis.

The aircraft fuel system is one of the most com-
plex subsystems, consisting of multiple cross-linked
mechanical and electro-hydraulic elements [20, 21]].
Current fault diagnostic methods employ the informa-
tion from adjacent or nearby sensors as reinforcement.
However, they onlyworkwell when assuming that the
rest untargeted components are healthy, but fails in
the realistic scenario with multiple degraded compo-
nents. Lin et al. [22] proposed a probabilistic frame-
work to incorporate multi-component degradation in-
formation for the aim of fault diagnosing in aircraft
fuel systems, but the identification of degradation has
not been addressed. According to the above-stated di-
agnosis architecture, how to reveal the mist from the
whole faulty status and then break through to find the
specific degraded component is quite challenging and
related studies are limited. The identification strategy
of the multi-component degradation and degradation
severity for this type of complex system is critical and
demanded [23].

Addressing the above challenges, this paper aims
to develop an efficient data-driven framework to de-
tect and identify faults and degradation within multi-
components in the aircraft fuel system. The appli-
cation is experimentally simulated on a test rig that
allows replicating failure modes of different real-life
components. Then, the decision-making of fault iden-
tification is implemented by a clustering method in
cooperation with time and frequency feature analy-
sis. It can not only detect the severity level of fault
but also accurately estimate the severity of degrada-
tion for multiple components.

2 Materials and methods

2.1 Experiment setup
The aircraft fuel system has a great impact on flight
safety since most of the accidents associated with
the fuel system lead to hazardous and even catas-
trophic events[24]. The deployment of fault diagnosis
into the fuel system can improve not only the aircraft
safety and reliability but also the turn-around time to
increase the aircraft’s availability. This section pro-
vides a comprehensive description of the experimen-
tal fuel rig which includes the hydraulic system, the
control and measuring system, and the fault injection
mechanism.

2.1.1 Hydraulic system
Figure 1 illustrates the layout of the fuel rig, which
consists of three fuel tanks, three gear pumps, five
shut-off valves and six direct proportional valves
(DPVs). All the components are connected using the
pipe and mounted on an aluminium optical bread-
board (1.8 m 9 1.1 m 9 5 cm) which is above a drip
tray to catch any unintended leak in the system. Two
main tanks act as the left-wing tank and right-wing
tank, respectively, and a sump tank represents the en-
gine that receives the fuel from the aircraft fuel sys-
tem. Each gear pump is driven by an external motor
drive and has a pressure-relief valve inside to prevent
overstressing the gears. A list of the hydraulic system
specifications is shown in Table 1. More specifically,
the fuel test rig can be divided into three lines:

Figure 1: Layout of the fuel rig system

• As illustrated in Fig. 1, the engine fuel feed
line consists of the Shut-off valve 1, a non-
return sticking valve (emulated by the DPV1),
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two gear pumps (Gear pump 1 and Gear pump
2), a pressure-relief valve (a shut-off valve), a
clogged filter (emulated by the DPV3), a flow
metre (emulated by the DPV4) and a clogged
nozzle (emulated by the DPV5).

• The cross-feed line includes the shut-off valve
2, Gear pump 3 which transfers the fuel from
the right-wing tank to the left-wing tank to keep
maintaining the central gravity of the aircraft
during flight, and a crossfeed valve (a shut-off
valve).

• The spill line includes a spill valve (a shut-off
valve) which is used to return the fuel when the
engine requires less fuel from the aircraft fuel
system, an engine throttle valve (emulated by the
DPV6) which is used to generate the backpres-
sure when the spill valve is opened.

Table 1: List of specifications of the hydraulic system.

Item Description
Gear Pump Bare shaft, 150 PSI max
Motor RPM range: 0–600 rpm, 12 teeth

Shut-off valve 3-Phase,0.37 kW,230/400 V, 50 H
DPV Orifice: 4.5 mm
Pipe Polyurethane, 4 mm diameter

2.1.2 Control and measuring system
The control and measuring system (CMS) includes
ten pressure sensors (marked with P-x in), five flow
metres (marked with F-x), three laser sensors, three
AC inverters (ABB ACS150), nine National Instru-
ments (NI) module cards that installed in two NI
CDAQ-9172 8 slots USB chassis and a LabVIEW-
based software. A snapshot of CMS is illustrated in
Fig. 2. National Instruments (NI) LabView software
2014 was used to customise the control for the entire
system. The NI modules used in the control and mea-
suring system are chosen for their customisable and
accurate features compared with other tools. More
specifically, the nine NI module cards selected for the
control and measuring system are NI 9485, NI 9205,
NI 9264, three NI 9401 and three NI 9472. The spec-
ifications of the sensors are summarised in Table 2.
The NI 9485 module is an 8-channel solid-state re-
lay sourcing or sinking digital output module. It al-
lows direct connection to a variety of industrial de-
vices such as valves and motors. The NI 9485 mod-
ule is chosen to control the open/close status of the
five-solenoid shut-off valves in the hydraulic by pro-
viding access to the solid-state relay for switching the

voltage applied to the shut-off valve. The NI 9205
module is a 250 kS/s, 32-channel voltage input mod-
ule. It is chosen to receive the analogue voltage out-
put from the ten pressure sensors and five flow me-
tres, and convert this information using the calibration
forms into digitised information readable on the de-
veloped software. The sampling rate is 1kHz within
the LabVIEW environment. The NI 9264 is a 25 kS/s,
16-channel module simultaneously updating the ana-
logue output module which is chosen to enable the
implementation of the six DPVs position control. The
DPV position is modified by varying the voltage ap-
plied to the solenoid and is an open circuit. The NI
9401 module is a configurable digital I/O interface. It
is chosen to receive the output from the laser sensor
and convert them into a frequency for calculation of
the pump speed. The NI 9472 module is an 8-channel
24 V logic, sourcing digital output module which is
chosen to provide the signals to the pump inverter to
implement the pump controls (start the pump, stop
the pump, increase speed, maintain speed, decrease
speed). The pump speed input from the control sys-
tem is 0-5 V to the inverter drive, whereby the inverter
drive determines the 3-phase motor control.

Figure 2: A snapshot of the laboratory scale testing
rig

Dedicated software was developed using Lab-
VIEW for controlling the system and collecting the
data. The user has control over shut-off valves posi-
tion, pump speed/volumetric flow rate, and direct pro-
portional valves position (manually or automatically).
For DPVs control, the user has two options: to set the
opening percentage of the DPVs manually through
the knobs or to set a couple of parameters (time, open-
ing percentage) to control the DPVs through a defined
profile. It should be noted that the control system is
ready to accommodate all planned failure modes in
a plug and play manner, in terms of both hardware
and software. The data file, provided by the control
and measuring system, contains the time of the ex-
periment, the atmospheric pressure and temperature
in the lab, the readings from the ten pressure sensors,
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five flow metres and three laser sensors, the status of
the shut-off valves, and the opening percentage of the
DPVs. For each sensor, the sample frequency was
chosen as 1000 Hz considering the sensor specifica-
tion and dynamics of this test rig.

Table 2: Specifications of the sensors.

Sensor Description
Absolute pressure Measurement range:

sensor 0–5 bar
Gauge pressure Measurement range:

sensor 0–4 bar
Flow meter Measurement range:

0–2 L/min
Laser sensor Sensing range: 0–10 m

2.1.3 Fault types

For an aircraft fuel system, the common hardware
faults can be classified into three different types,
namely process faults, actuator faults and sensor
faults, according to the type of faulty hardware. Pro-
cess faults include faults that affect the operational
ability of the system itself such as a leaking pipe or
cracked joint. Actuator faults include faults that affect
the actuated parts of the system such as pump mal-
function or a sticking valve, and sensor faults include
faults that affect the sensor operation. The degrada-
tion of components causes most faults in the aircraft
fuel system due to fouling, erosion, or corrosion. Ta-
ble 3 defines the simulated faults corresponding to the
designed test rig.

To inject various faults, with different degrees of
severity into the fuel test rig, five DPVs were used.
The failure of the shut-off valve (being stuck in amid
range position) is implemented by using DPV1 that
is initially fully open. fully opened DPV1 is equiva-
lent to a healthy valve status while the partially closed
DPV1 is equivalent to a sticking valve with a certain
degree of fault severity. Different degrees of sever-
ity can be emulated by varying the opening percent-
age of the DPV which is controlled through the de-
veloped software and can be varied from 0 to 100%.
DPV2 is used to emulate a leaking pipe fault into the
system and set to be initially fully closed. The fully
closed DPV2 is equivalent to a healthy pipe while the
partially opened DPV2 is equivalent to a leaking pipe
with a certain degree of severity. DPV3 is used to in-
ject a clogged filter fault into the system. The fully
opened DPV3 is equivalent to a healthy filter while
the partially closed DPV3 is equivalent to a clogged
filter with a certain degree of severity. DPV4 is used
to inject a blocked flow metre fault into the system.
The fully openedDPV4 is equivalent to a healthy flow

metre while the partially closed DPV 4 is equivalent
to a blocked flowmetre with a certain degree of sever-
ity. DPV5 is used to inject a clogged nozzle fault into
the system. The fully opened DPV5 is equivalent to
a healthy nozzle while the partially closed DPV5 is
equivalent to a clogged nozzle with a certain degree
of severity.

Table 3: List of specifications of the hydraulic system.

Fault type Fault
Process fault Leaking pipe
Actuator fault Sticking valve

Clogged filter
Clogged nozzle

Sensor fault 3Blocked flow meter

2.2 Severity of fault and degradation
In this study, DPV2 was used to simulate the leaking
pipe, as a system fault. The severity of this fault is
simulated by varying the opening percentage of this
valve with values of 0% (healthy), 30%, 40%, and
50%. It should be noted that in this study, the opening
percentage of DPV2 less than 30% is not considered
as a fault. This study aims to detect and identify the
fault when the severity level is just above the thresh-
old between fault and degradation (30%), which al-
lows for preventing further development and propa-
gation of the damage at the earliest possible stage.
Additionally, faults with a severity level exceeding
50% are significantly easier to be detected and iden-
tified than the lower ones, therefore ignored.

For each fault severity of DPV2, the leaking per-
centage of four valves (Sticking valve, Clogged filter,
Blocked flow meter, Clogged nozzle shown in Fig. 1)
was changed from 0%, 10% to 20%, respectively, to
simulate a multi-component degradation. The leak-
ing percentage was used to simulate the degradation
level. In other words, for each of these four valves,
there are 3 possible states or degradation levels. There
are 34 = 81 possible combinations of multicomponent
degradation for each fault severity level. The corre-
sponding between the combination index and percent-
age value of each of the four valves is shown in Ta-
ble 4. The combination index presents an exclusive
location and severity of this multi-component degra-
dation. Therefore, the identification of this complex
degradation problem is now simplified to the estima-
tion of the combination index with associated faulty
severity.

2.3 Data analysis
Due to the complexity of this system, applying a mod-
elbased approach to monitor the system condition is
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difficult due to the challenge to establish an analyt-
ical or numerical model to effectively represent this
system. Even each component can be modelled suc-
cessfully, at the system level, different components
may interact simultaneously and nonlinearly, which
leads that the modelling of the whole system is al-
most impossible. Additionally, any change of system
design will require the model to be reestimated, so
the universality of such an approach is limited. This
paper proposes to use a model-free clustering analysis
based on two features extracted from the time and fre-
quency domains, respectively, incorporated with ma-
chine learning classifiers for fault detection, classifi-
cation and identification, as well as degradation iden-
tification.

The proposed methodology of data analysis can be
illustrated in Fig. 3. There are four objectives (illus-
trated by four colour blocks) including (a) fault de-
tection: determining if the system is faulty or healthy,
(b) fault classification: dividing the sampled data into
a number of groups using an unsupervised approach,
whichmainly evaluates howwell the selected features
differentiate severity levels of fault, (c) fault identi-
fication: determining the severity level of fault, and
(d) degradation identification: determining the sever-
ity level of each degradation and combination, which
is simplified to the determination of the combination
index. Initially, all pressure sensors are considered,
and the used sensors are then narrowed down gradu-
ally through three steps of channel selection or reduc-
tion (illustrated by red colour) to identify an optimal
channel eventually. The details of each process are
described below.

Figure 3: The pipeline of the proposed methodology
of data analysis

Table 4: The combination of leaking percentage of
each valve to simulate multiple-component degrada-
tion.

Faulty Degradation
severity (%) level

Combination Sticking Clogged
index valve (%) nozzle (%)

0 1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
... ... ...0
81 20 20

30 1 0 0
1 0 0 0

... ... ...
81 20 20

40 1 0 0

2.3.1 Feature extraction
Assuming that the system is stationary under a spe-
cific severity level of fault and degradation com-
bination, the mean amplitude of each channel (
P1, P2, . . . , P8 in Fig. 1) is calculated by

P̄l = 1N
N−1∑
n=0

Pl(n) (1)

where l is the index of the channel and N is the
number of sampling data. The channels P9 and P10

are not considered because they are in a different
branch with the components that have fault and degra-
dation. It has been observed that the amplitude of
pressure measurements changes for different sever-
ity levels of fault, this value is therefore considered
as the first feature from the time domain. The sec-
ond feature is represented by the peak frequency with
the maximum power of frequency response or Power
Spectrum Density (PSD) of each channel. The fre-
quency response for a considered channel Pl is given
by

Xl(k) =
N−1∑
n=0

Pl(n)e
−i2πkn

N (2)

where k = 0, ..., N − 1. The peak frequency fl is
written as

fl =
fs
2N

arg
max

τ ≤ k ≤ N − 1
|Xl(k)| (3)
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where τ the left bound for the searching and fs
denotes the sample rate.

Table 5: Performance quantification of fault detec-
tion.

Channel False ACC(%)
Channel positive number

P1 4 97.86
P2 2 99.38
P3 2 99.38
P4 2 99.38
P5 2 99.38
P6 3 99.07
P7 3 99.07
P8 4 97.86

2.3.2 Fault detection and classification

Cluster analysis or clustering is the task of grouping
a set of objects in such a way that objects in the same
group (called a cluster) are more similar (in some
sense or another) to each other than to those in other
groups (clusters). The most commonly used method
is k-means clustering. It is an unsupervised cate-
gorisation of samples (features) into separate classes
in a way that the similarity inside the class is max-
imised while the similarity outside the class is min-
imised. Given a set of observations (x1, x2; ...;xn,
where each observation is a d-dimensional real vec-
tor, the k-means clustering aims to partition the n ob-
servations into k(≤ n) n sets S = {S1, S2, ...; , S}
to minimise the with in cluster sum of squares. The
objective can be written as

arg smin
∑k

i=1

∑
s∈Sl

‖x− ui‖
= arg smin

∑k
i=1 |Si|V ar(Si)

(4)

where ui is the mean of points in Si. In this study,
the observation is a two-dimensional vector

{
P̄l, fl

}
Pl; fl and sampled number (n) is 4 × 81 = 324
; which include four-fault severity levels (0%, 30%,
40%, and 50%), and each level includes 81 combi-
nations of degradation. For the task of fault detec-
tion, assuming a Gaussian distribution of features, a
95% confidence ellipse in the two-dimensional fea-
ture space is calculated based on the healthy data. An
ellipse can be written as

(x− cx)
2a2 + (y − cy)

2b2 = 1 (5)

where (cx, cy) is the centre, and a and b are two ra-
diuses of horizontal and vertical directions. To extend
the equation to a more general case where the ellipses
could be rotated, the Principle Component Analysis
is applied to calculate the 2 by 2 coefficients PC. If a

feature vector (v1, v2) is located inside the ellipse or
determined as healthy, the following condition must
be satisfied in Eq. (6). Otherwise, this vector is lo-
cated outside the ellipse or determined as faulty.

(
(v1 − cx).PC ′)2a2+ (

(v2 − cy).PC ′)2b2 < 1 (6)

For the task of fault classification, the number
of group k is chosen as 4 and the unsupervised k-
means method is applied. Given the knowledge of
the ground truth of classes, the performance of clas-
sification can be evaluated by the Adjusted Rand In-
dex (ARI) [19], Mutual Information (MI) [25], Sil-
houette Coefficient (SC) [26]. Adjusted Rand Index
is a function that measures the similarity of the two
assignments, ignoring permutations and with chance
normalisation. Given a set S of n elements, and two
groupings or clustering of these elements, namely
{X1, X2, ..., Xr} and {Y1, Y2, ..., Ys}, the overlap be-
tween X and Y can be summarised in a contingency
table nij where each entry nij denotes the number
of objects in common between Xi and Yj nij =
|Xi ∩ Yj |, the Adjusted Rand Index is described by

ARI =

∑
ij(

nij

2
)− [

∑
i(

ai
2

) +
∑

j(
bj
2

)]l(
n
2

)

1
2 [
∑

i(
ai
2

) +
∑

j(
bj
2

)]l(
n
2

)

(7)

where ai =
∑r

q=1 niq, bi =
∑r

q=1 naj and

(
n
2

)
is calculated as n(n− 1)/2.

Mutual information is another function to measure
the agreement of the two clusterings, and it can be
written as

I(X,Y ) = i
∑

j
∑

p (Xi,Yj) log

(
p (Xi,Yj)

p (Xi) p (, Y )

)
(8)

where p (Xi,Yj) is the joint probability function
of X and Y, and p (Xi) and p (Yj) are the marginal
probability distribution functions ofX and Y respec-
tively. The Silhouette Coefficient can be used when
the ground truth labels are not known and it repre-
sents the degree of isolation. A higher Silhouette Co-
efficient score relates to a model with better-defined
clusters. Let a(i) be the average distance between i
and all other data within the same cluster, b(i) be the
lowest average distance of i to all points in any other
cluster, the Silhouette Coefficient is defined as

s(i) =
b(i)− a(i)

max {a(i), b(i)}
(9)
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From the above definition, it is clear that s(i) ∈
[−1, 1)]. An s(i) close to 1 means that the data is
appropriately clustered. For the task of fault identi-
fication, one approach is to establish the 95% con-
fidence ellipse for each level of fault (healthy, 30%,
40% and 50%). Another approach is to use the super-
vised learning approaches, such as K-Nearest Neigh-
bors (KNN), Support Vector Machine (SVM), Com-
plex Tree and Boosted Tree. The confusion matrix
is used to measure the identification results and help
select the optimal channels for monitoring regarding
the experiments conducted in this paper. A confu-
sion matrix is a table that is often used to describe
the performance of a classification model (or ‘‘classi-
fier’’) on a set of test data for which the true values
are known. Each row of the matrix represents the in-
stances in a predicted class while each column repre-
sents the instances in an actual class (or vice versa).
Typical derivations from a confusion matrix include
True Positive (TP), True Negative (TN), False Posi-
tive (FP), and False Negative (FN). To describe the
percentage of the correctly classified samples, the ac-
curacy of classification is given by

ACC = TP + TNTP + TN + FP + FN (10)

Table 6: Performance quantification of fault classifi-
cation.

Channel Amplitude +PSD
ARI MI SC

P1 0.960 1.892 0.765
P3 1.000 2.000 0.955
P7 0.960 1.915 0.870
P8 0.984 1.958 0.893

2.3.3 Degradation identification

Considering the large number of the possible state of
combination index representing the degradation loca-
tion and level, this paper proposes to use a paramet-
ric modelling approach to establish the relationship
between the extracted features and the combination
index. Given a set of observations (x1, x2, ..., x81)
under different combination indexes, denoted by
y (y ∈ [1, 81]) , for each severity level of fault, a
model can be identified and written as

ŷ = f(x) (11)

with the least square errors. If there is only one
feature selected, the linear representation of Eq. (11)
can be written as

ŷ = αx+ β (12)

This model can then be used to predict the com-
bination index based on the observed feature. The
model performance can then be evaluated by calcu-
lating the Root Mean Square Error and R-Squared be-
tween the ground truth y and the predicted ŷ.

Table 7: Identified parameters of 95% confidence el-
lipses for the fault identification.

Level cx cy a b
P1

hline Healty 0.9635 243.06 0.0027 9.33
30% 0.9424 292.99 0.0051 6.74
40% 0.9363 277.62 0.0030 12.37
50% 0.9402 253.91 0.0037 17.78
P2

Healty 0.4677 383.53 0.0345 10.66
30% 0.1893 453.75 0.0257 32.86
40% 0.0896 420.79 0.0114 15.54
50% 0.0442 379.68 0.0125 18.31
P7

Healty 0.1776 243.83 0.0077 6.92
30% 0.2394 310.72 0.1482 0.0029
40% 0.2377 292.28 0.0022 14.01
50% 0.2492 248.16 0.0151 9.83
P8

Healty 391.72 0.0068 10.6 10.65
30% 0.2034 326.04 0.0027 17.08
40% 0.2027 345.51 0.0022 13.61
50% 0.2131 388.47 0.012 9.14

3 Results
To demonstrate the effectiveness of the proposed
framework, the case study where the leaking pipe is
faulty has been tested.

3.1 Fault detection
For each channel, a total of 4 s of data were sampled
with a sample rate of 1000 Hz. An example of raw
healthy data and data with a fault is shown in Fig. 4,
where no degradation is introduced (combination in-
dex = 0). It can be observed that the amplitudes for
most of the channels are different between the healthy
case and the cause with a fault, particularly for P2, P3,
P4 and P5. For P1, P6, P7 and P8, although the am-
plitude difference can be observed if the means are
taken into account, they are not suitable for real-time
fault detection due to the overlap of amplitude. It
can be seen that the discrepancy between the ampli-
tude for P1, P2, P6, P7 and P8 to distinguish healthy
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and fault scenario is no more than 6% (1.7%, 4.2%,
3.0%, 3.6%, 5.1% respectively), but the discrepancy
between the amplitude for P3, P4 and P5 is more than
40% (42.1v,44.8%, 66.7% respectively). So, moving
away from the fault location will decrease the discrep-
ancy of the pressure amplitude.

Using the same data, Fig. 5 shows the results of
PSD for the 8 channels. It can be observed that there
are significant peaks for both healthy and faulty data
for all channels except P4. The peak frequency is dif-
ferent for different channels, as highlited by the blue
circles. It can be observed from all channels, except
P4, that there is a shift of the location of peak fre-
quency for the same channel between the healthy case
and the case with a fault (e.g., P3), which is used as
the second feature for clustering.

The clustering results using the mean amplitude
and peak frequency are shown in Fig. 6, where differ-
ent colours indicate different severity levels of fault,
and each level of fault includes 81 cases. It is sug-
gested from visual inspection that P1, P3, P7 and P8
have good performance to separate these four groups
while the features in the other 4 channels are partially
overlapping. Considering P3 for example, the mean
amplitude can separate them into 4 groups but the
groups of 30%, 40% and 50% are not very well sep-
arated. The peak frequency can separate 30%, 40%
and 50%, but healthy and 50% are overlapped. The
degree of isolation is significantly improved if both
features are considered.

Through the visual inspection, P3 was selected for
fault detection. The 95% confidence ellipse for the
healthy group was calculated and illustrated in Fig.
7. The estimated parameters in Eq. (6) are described
by

cx = 0.4677; cy = 383.53; a = 0.0345; b = 10.66
(13)

PC =

(
−3.18e− 4 1

1 3.81e− 4

)
(14)

If a tested vector locates inside this ellipse, the sys-
tem is determined as healthy, otherwise the system is
faulty. A similar approach can be applied to the other
7 channels and the fault detection results are shown
in Table 5. All 8 channels produce a sound perfor-
mance with the false positive number less than 5 of
324 (1.54%), although P2, P4, P5 and P5 are not ap-
propriate to distinguish the four groups.

3.2 Fault classification
Base on the above results, the channels P1, P3, P7 and
P8 were selected for the fault classification and iden-
tification. The k-mean approach was applied to the

Figure 4: A raw measurement comparison for 8 con-
sidered channels where the black indicates the case
with no fault and no degradation and the red indicates
the case with 30% fault severity and no degradation

Figure 5: A comparison of PSD for 8 considered
channels where the black indicates the case with no
fault and no degradation and the red indicates the case
with 30fault severity and no degradation

data shown in Fig. 6, where k was chosen as 4. The
classification results are shown in Fig. 8. Since it is an
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Table 8: The confusion matrix of the fault severity
level identification using the 95% confidence ellipse.

Item Description
Gear Pump Bare shaft, 150 PSI max
Motor RPM range: 0–600 rpm, 12 teeth

Shut-off valve 3-Phase,0.37 kW,230/400 V, 50 H
DPV Orifice: 4.5 mm
Pipe Polyurethane, 4 mm diameter

Table 9: The accuracy of the fault severity level iden-
tification using 95% CI ellipse.

Item Description
Gear Pump Bare shaft, 150 PSI max
Motor RPM range: 0–600 rpm, 12 teeth

Shut-off valve 3-Phase,0.37 kW,230/400 V, 50 H
DPV Orifice: 4.5 mm
Pipe Polyurethane, 4 mm diameter

Table 10: The accuracy of the fault severity level
identification using selected supervised learning-
based approaches.

Item Description
Gear Pump Bare shaft, 150 PSI max
Motor RPM range: 0–600 rpm, 12 teeth

Shut-off valve 3-Phase,0.37 kW,230/400 V, 50 H
DPV Orifice: 4.5 mm
Pipe Polyurethane, 4 mm diameter

unsupervised approach, the correspondence between
the colour and severity level is still unknown. Com-
parison of Figs. 6 and 8 suggests that P3 produces a
100% classification result while the other three chan-
nels produce slightly lower accuracy. To quantify the
performance, Table 6 shows the results of ARI, MI
and SC between the true tags and the produced tags
from the k-means method for these four channels. It
can be observed that P3 has the best performance for
all three criteria. P8 has the second-best performance,
and P1 and P7 have slightly worse performance. Ta-
ble 6 also compares the performance between a sin-
gle feature and two features. For P3, the amplitude
itself produces the perfect results. While for the other
three channels, the performance is significantly im-
proved when two features are used than a single fea-

ture. This observation suggests that multiple features
can increase the robustness of the proposed method in
terms of channel selection.

Figure 6: Clustering visualisation for all 8 considered
channels, where each case with a fault has 81 combi-
nations of degradation

3.3 Fault identification
To identify the severity level of fault, the 95% confi-
dence ellipse was estimated for each group in P1, P3,
P7 and P8, and the results are shown in Fig. 9. It can
be observed that P3 produces the best result where
there is no overlap between ellipses. For P1, there is
a small region of overlap between 40 and 50%; for
P7 and P8, there is a small region of overlap between
30 and 40%. The estimated parameters of 95% confi-
dence ellipses for the fault identification are shown in
Table 7, which can be used to determine which sever-
ity of fault from the given features. The detailed per-
formance of this approach can be described by the
confusion matrix shown in Table 8. The total accu-
racy of fault identification for each considered chan-
nel is shown in Table 9, which again proves that P3
produces the best performance of fault identification.
Other supervised learning-based approaches, namely
KNN, SVM, Complex Tree and Boosted Tree, have
also been applied to identify the fault level and re-
sults are shown in Table 10. The channels P3 still
has the best performance. It should be noted that al-
though the performance of some of these methods is
better than the 95% confidence ellipse, the models
lack transparency and cannot be written down.

3.4 Degradation identification
Figure 10 shows the relationship between the mean
amplitude and the combination index for the 4 groups
using the best channel P3. For the healthy group, there
is no significant association observed. For the sever-
ity level 30%, 40% and 50%, although the correla-
tion looks promising, it is difficult to use a contin-
uous function to describe their relationship. There-
fore, although the mean amplitude is a good feature
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for fault detection and identification, it is not an ap-
propriate feature for degradation identification. Fig-
ure 11 plots the relationships between the peak fre-
quency and combination index, and the results are
more promising. A strong linear relationship for
each group and each considered channel has been ob-
served. The clusters can be well fitted using a linear
model, as shown in Eq. (9). The linear fitting for each
group is also plotted in Fig. 11. It can be observed
that the channels P3, P7 and P8 have the best perfor-
mance. The identified parameters of the linear fitting
models for the group of healthy, 30%, 40% and 50%,
respectively, for each considered channel are shown
in Table 11, where the corresponding model perfor-
mance based on RMSE and R-squared is also shown.
The model of channel P7 produces the best degrada-
tion identification for the healthy and 40% group with
an Rsquared value of 0.657 and 0.888, respectively.
The model of channel P3 produces the best degrada-
tion identification for the 30% and 50% group with an
R-squared value of 0.938 and 0.878, respectively.

Figure 7: An example of fault detection based on
the channels P3, where the ellipse represents the 95%
confidence level of healthy behaviour

Table 11: Identified linear fitting models to describe
the relationship between the combination index and
the peak frequency with corresponding model perfor-
mance.

Item Description
Gear Pump Bare shaft, 150 PSI max
Motor RPM range: 0–600 rpm, 12 teeth

Shut-off valve 3-Phase,0.37 kW,230/400 V, 50 H
DPV Orifice: 4.5 mm
Pipe Polyurethane, 4 mm diameter

Figure 8: Classification results of fault severity level
using the k-means approach (k = 4)

Figure 9: The result of fault identification using the
95% confidence ellipse

Figure 10: The relationship between the mean ampli-
tude and combination index for different groups using
P3
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Figure 11: CThe relationship between the combina-
tion and peak frequency for different levels of fault

4 Conclusions
To address the challenge of faulty and degradation
diagnosis of a complex engineering system where
the multicomponent degradation is presented, this pa-
per has presented a test rig and a corresponding data
analytical approach for four tasks: fault detection,
fault classification, fault identification and degrada-
tion identification. The results suggest the following
conclusions:

• The discrepancy of the pressure amplitude be-
tween healthy and faulty scenario depends on the fault
location. P3–5 have more than 40% amplitude dis-
crepancy while other sensors have less than 6% am-
plitude discrepancy when the fault is emulated be-
tween P3 and P4. Observing the change of amplitude
of certain channels is sufficient to detect, classify and
identify the fault.

• For the cases where the severity level of fault is
the same while the degradation level increases, there
is no regular pattern of amplitude change, which sug-
gests the amplitude cannot be used for degradation
identification. The shift of the frequency peak, show-
ing a linear trend of decrease following the increment
degradation level, is an effective feature to identify
the degradation level.

• By clustering two features including amplitude
and peak frequency, the fault can be detected with an
accuracy > 97%; the severity of fault can be identi-
fied with an accuracy 99%; the degradation can be
successfully identified with the R-square value >0.9.

A limitation of this approach is that it only works

on stationary systems where the fault or degradation
severity level does not change when shifted in time.
To widen its applications, future study will focus on
its extension on dynamical systems. The time when
the system behaviour changes will then be resolved.
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