
 
 

Modelling the Recovery of Pulse Peak Pileup for Implementation in an 
FPGA for a Nuclear Spectroscopy System 

 
ONYEMAECHI N. OFODILE 

Manpower Training and Capacity Development Directorate 
Nigeria Atomic Energy Commission 

Abuja, NIGERIA 
onofodile@nigatom.org.ng, http://www.nigatom.org.ng 

 
MATTHEW N. AGU 

Nuclear Power Plant Project 
Nigeria Atomic Energy Commission 

Abuja, NIGERIA 
mnagu@nigatom.org.ng, http://www.nigatom.org.ng 

Abstract: A major source of error in radiation measurement is the inaccurate instrument reading such as 
inaccurate radiation count rate that leads to inaccurate determination of activity of a source and hence, 
inaccurate values of exposure rate. Inaccurate count rate can be a direct consequence of pulse pileup. The 
current algorithms for dealing with pulse pileup are to identify pulses that have piled up on top of each 
other, reject that information, and then analyze only 'clean' pulses. This present work is based on the 
implementation of a mathematical model of linear equations from a matrix in both hardware and software 
formats. This implementation is in conjunction with Nelder-Mead direct search algorithm for peak search 
implementation in an FPGA based signal processing system for pulse pileup recovery. In the design, the 
FPGA subsystem can be implemented by either a hardware form using Matlab and Xilinx blocks or in a 
software form using a Mcode block. From the simulations, out of the incident pulses and applying the 
traditional approach, pileups occurred and only the “clean” pulses are recovered. In our approach, the 
peaks were detected and recovered up to 100% irrespective of their arrival times even in severe pileup 
situation as opposed to another work that recovered up to 65% of piled up pulses. 

Keywords: Dead Time, Detection, FPGA, Peak, Pileup, Recovery, State Machine, Spectroscopy, Zynq-
7000 

1 Introduction 
Generally, the processing of nuclear radiations to 
determine the type, energy and intensity of such 
radiations is adversely affected by the responses of 
the electronic components which culminate in 3 
kinds of errors, namely, noise associated with a 
detected radiation and its processing, dead time and 
pile-up losses. Apart from the electronic noise, dead 
time losses arise due to the time interval required to 
process a radiation pulse during which another 
detected radiation pulse cannot be processed. It is 
assumed that each pulse occurring event is followed 
by a fixed dead time interval t. Thus, an important 
source of error comes from this finite time required 
by the counting electronics to detect and process 

radiation pulses. During this dead time, the system 
cannot respond to other photons that hit the detector 
and these events will not be counted and thus are lost. 
Pileup losses arise due to the fact that two or more 
radiation pulses may arrive close to themselves in 
time with the result that their values overlap and are 
summed up such that the new summed value does not 
represent any of the constituent pulses. This 
constitutes serious distortions to the accuracy of 
measured pulse values. 
 
The current algorithms for dealing with pulse pileup 
are to identify pulses that have piled up on top of 
each other, reject that information, and then analyze 
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only 'clean' pulses. In many applications as much as 
80% of information can be lost to the effects of dead 
time and pulse pileup [1]. A recent approach for the 
detection of pulse peaks is the Direct Search 
algorithm in which the interest is in resolving or 
decomposing a set of overlapping peaks into their 
separate components. Nelder-Mead modified simplex 
technique can be used for this purpose [2]. As 
opposed to more traditional optimization methods 
that use information about the gradient or higher 
derivatives to search for an optimal point, a direct 
search algorithm searches a set of points around the 
current point, looking for one where the value of the 
objective function is lower than the value at the 
current point. The Direct Search algorithm is a 
preferred option than the other optimization methods 
because of its simplicity, flexibility, and reliability.  
 
 
2 Pileup Recovery 
A method of recovery of piled up pulses relies on the 
assumption that the complete signal pulse train can 
be expressed as a linear combination of single pulses, 
as shown in Figure. 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The complete pulse train can thus be described by the 
timing of each pulse and the corresponding pulse 
amplitude, as well as a single model pulse shape 
common to all pulses that characterizes the dynamics 
of a single signal. Based on this model, the 
correlation of neighbouring signals can be resolved in 
order to restore the correct energy information from 
the measured amplitudes [3].  
 
Hence, let us define p(t) to be the standard pulse 
shape. Then the i-th pulse with an amplitude ai 
occurring at a time ti can be modeled as:  

 pi(t) = ai p(t − ti)    (1) 

The sample signal s(t) as a function of time t can then 
be described over time as a sequence of pulses:  

𝑠𝑠(𝑡𝑡) =  ∑ 𝑎𝑎𝑖𝑖𝑝𝑝(−𝑡𝑡𝑖𝑖)𝑖𝑖                (2) 

where both t and ti are expressed in terms of the 
sampling period. However, the measured amplitudes 
are usually estimated by a weighted average of the 
original sampling sequence, in the vicinity of the 
peak of the pulse. This pileup recovery summation is 
constructed as a kind of finite response filter (FIR) 
[3], mathematically represented as:  

𝑞𝑞(𝑡𝑡) =  ∑ 𝑓𝑓(𝑘𝑘)𝑠𝑠(𝑡𝑡 − 𝑘𝑘)𝑘𝑘          (3) 

where q(t) is the response of such a filter, described 
by the weights f(k). The presence of such a filter will 
induce a constant time lag l in the timing of the 
measured pulses with respect to their original time of 
occurrence. Ignoring this time lag, the amplitude bi 
can be defined by [3]:  

𝑏𝑏𝑖𝑖  =  ∑ �∑ 𝑓𝑓(𝑘𝑘)𝑝𝑝�𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗 − 𝑘𝑘�𝑘𝑘 �𝑎𝑎𝑗𝑗  𝑗𝑗   (4) 

As seen from Equation 4, the measured amplitudes 
are, in fact, just a linear combination of the real 
amplitudes. An example of pileup is illustrated in 
Figure 1. The amplitude of the pulse bi is affected by 
the pulses bi−1 and bi+1. In general, this can be 
expressed as [4]:  

b = Ma                                    (5) 

where the elements of the pileup recovery matrix M 
are defined as:  

𝑀𝑀𝑖𝑖,𝑗𝑗 = �𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗 �                                 (6)  

𝑚𝑚(𝑡𝑡) =  ∑ 𝑓𝑓(𝑘𝑘)𝑝𝑝(𝑡𝑡 − 𝑘𝑘)𝑘𝑘         (7) 

The solution to Equation 5 is to invert the matrix M 
with the weights Mi,j to arrive at the true amplitudes 
ai ie a = M-1b. A good approximate solution for the 
matrix is to assume small numbers of pulses and to 
solve the system of linear equations arising from 
them [4]. Assuming the simplest case in which the 
current pulse is affected by one pulse before and one 
pulse after, then in order to calculate the real 
amplitude of the current pulse, one needs to invert a 3 
× 3 matrix. The elements of the matrix are assumed 

Figure 1: Pileup situation and response of a 
digital filter 
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to be normalized. The matrix formed by the pulses i 
− 1, i, i + 1 is described by [4]:  

�
1 𝑝𝑝 0
𝑟𝑟 1 𝑞𝑞
0 𝑠𝑠 1

��
𝑎𝑎𝑖𝑖−1
𝑎𝑎𝑖𝑖
𝑎𝑎𝑖𝑖+1

� = �
𝑏𝑏𝑖𝑖−1
𝑏𝑏𝑖𝑖
𝑏𝑏𝑖𝑖+1

�      (8)  

where  

𝑝𝑝 =  𝑚𝑚(𝑡𝑡𝑖𝑖−1 − 𝑡𝑡𝑖𝑖 + 1),  

𝑟𝑟 =  𝑚𝑚(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 + 1),  

𝑞𝑞 =  𝑚𝑚(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖+1 + 1),  

𝑠𝑠 =  𝑚𝑚(𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖 + 1)       (9) 

From Equation 8, it follows that: 

bi -1 = 1 x ai-1 + p x ai + 0 x ai+1 = ai-1 + p x ai 

bi  = r x ai-1 + 1 x ai + q x ai+1  = r x ai-1 + ai + q x ai 

bi +1 = 0 x ai-1 + s x ai + 1 x ai+1 = s x ai + ai+1 
      (10) 

For a digital filter, the pulse rise time (peaking time) 
is the same as the pulse fall time. Thus, due to the 
symmetrical digital filter output signal, the factors p, 
q, r and s of Equation 10 will be equal. Hence, if p = 
q = r = s = 1, then it will be observed that the outputs 
bi-1, bi and bi+1 have amplitudes greater than their 
corresponding inputs of ai-1, ai and ai+1. To avoid any 
overflow of the output amplitudes with undetermined 
and undesirable consequences, the input needs to be 
scaled down by about 50%.  This would ensure that 
the pulse shape and height are reasonably maintained 
within limits of the analogue-to-digital conversion 
(ADC) resolution subject to the time lag due to 
filtering. If we are interested only in the pulse 
heights, then we can equate the factors p = q = r = s = 
0, in which case bi-1, bi and bi+1 will strictly 
correspond to the pulse heights of ai-1, ai and ai+1 
respectively without considering their pulse shapes. 

We present in Figure 2a, Equation 10 implemented in 
hardware form. If we apply the Nelder-Mead 
algorithm for peak search, we can compare the three 
values of bi -1, bi and bi +1 to finally obtain the 
recovered piled up pulses as bi whenever the 
comparison criteria are met. 

 The analytical inverses for ai, ai-1 and ai+1  are 
respectively equal to:  

𝑎𝑎𝑖𝑖 =  
𝑏𝑏𝑖𝑖 − 𝑟𝑟𝑏𝑏𝑖𝑖−1 − 𝑞𝑞𝑏𝑏𝑖𝑖+1

1 − 𝑝𝑝𝑟𝑟 − 𝑞𝑞𝑠𝑠
  

𝑎𝑎𝑖𝑖−1 = 𝑏𝑏𝑖𝑖−1 −  
𝑝𝑝(𝑏𝑏𝑖𝑖 − 𝑟𝑟𝑏𝑏𝑖𝑖−1 − 𝑞𝑞𝑏𝑏𝑖𝑖+1)

1 − 𝑝𝑝𝑟𝑟 − 𝑞𝑞𝑠𝑠
  

𝑎𝑎𝑖𝑖+1 = 𝑏𝑏𝑖𝑖+1 −  𝑠𝑠(𝑏𝑏𝑖𝑖−𝑟𝑟𝑏𝑏𝑖𝑖−1−𝑞𝑞𝑏𝑏𝑖𝑖+1)
1−𝑝𝑝𝑟𝑟−𝑞𝑞𝑠𝑠

        (11) 

The practical import of Equation 11 is that the 
denominator (1 − 𝑝𝑝𝑟𝑟 − 𝑞𝑞𝑠𝑠) should not be allowed to 
have a value of zero otherwise the matrix M becomes 
singular and ai, ai-1 and ai+1 cannot be uniquely 
determined. Thus, the factors p, q, r and s should 
always have a value between zero and less than 1, 
making ai to be an amplified form of its actual value. 
If we make p = q = r = s = 0.5, then bi-1, bi and bi+1 
will have amplitudes with a maximum of 2 x ai.  
 
 
3 Design Methodology 
We present below, the summary of the three major 
steps we followed to design the peak pileup detection 
and recovery units using Matlab and Xilinx blocks. 
 

a. Step 1 – Design of random exponential pulse 
generator subsystem. The output of this 
subsystem simulates the input exponential 
signals from a pre-amplifier with varying 
arrival times and amplitudes. 

 
b. Step 2 – Design of trapezoidal/triangular 

digital filter subsystem. The subsystem shapes 
the exponential input signals to 
trapezoidal/triangular pulses in a series of four 
stages. 

 
c. Step 3 – Design of the pulse pileup detection, 

rejection and recovery units of the subsystem. 
This subsystem is made up of experimental 
units for normal pileup detection and rejection, 
hardware and software implementations of 
pileup detection and recovery. The units of the 
subsystem detect pulse peaks and pulse pileups 
and carry out the necessary recovery of piled 
up pulses either in a hardware or software 
manner. 
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3.1. Simulation of Radiation Detector Output 
Pulses – Random Pulse Generator Subsystem 
The random pulse generator subsystem simulates the 
detector output pulses. In a real system, such signals 
are the outputs from the high pass filter and pole-zero 
cancellation circuits. The pulses have exponential 
shape with decay time equal to the noise corner time 
constant of the detector-preamplifier (usually in order 
of a few microseconds – 5uS). The random pulse 
generator is first implemented in a Simulink library 
and then added into the spectroscopy design. In this 
situation and from a customized library listed in 
Simulink library browser, we create a subsystem 
from the Simulink Library which we can label as 
Random_Pulse_Generator block. In addition, we 
included the following lines to the parameter script 
file to define the random exponential pulse 
characteristics: 
 
 % Clock Period 
      Tclk = 0.02 e-6; % (50 MHz) 
  % Pulse period 

  Tpprd = 10e-6; 
            % Clock period 

  Tclk = 0.02*1e-6; 
  Tclkn = 0.02*1e-6; 

            % High pass filter constant 
  Taud = 5e-6; 

             % Sampling time 
  TRSS = 5; %7.2; 8; 10; 12; 15 
  T_st = TRSS*(1e-6); 

             % Peaking time 
  Taupk = T_st 
  Taupk_top = 1.8*e-6 

             % Random pulse generation sequences 
  gg3=[0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 

1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 
0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 
0 0 1 0 0 1 0 0 0 0 0 0]';  

             % Use TRSS = 5 - 7 
  gg = gg3; 

            % PHA group 
  pha_x1 = 0.1;% Noise threshold 

 
Other values stored in the parameter script file 
include the filter peaking time and top values, ADC 
resolution bits, pulse height analyser values and 
baseline restoration value. The simulated random 
exponential pulse outputs are as shown in Figure 1. It 
is to be noted that Steps 1 and 2 of the Design 

Methodology are not the subject of this writeup but 
are only needed for Step 3 to be realised. 
 
3.2. Simulation of Peak Pileup Detection and 
Recovery Functions  
The target of the peak pileup recovery algorithm is to 
find the relevant peaks in the spectroscopic raw data 
stream irrespective of pileup conditions as long as 
there is an identifiable peak in the stream. In this 
work, each three consecutive values are compared. 
To the best of our knowledge, there is no known 
open, custom-built or available commercial 
spectroscopy system based on the Xilinx Zynq-7000 
SoC Board that can perform this function. However, 
we are aware of an effort such as in [5] in which the 
peak detector subsystem is implemented in a 
software mode through an Mcode block using a state 
machine to accept only the “clean” pulses while 
rejecting all other piled up pulses. The simple 
procedure employed here can be written by a pseudo-
code as follows: 
 

while (xn > dxn) do the following 
{ 
If (xmax < xn) then xmax = xn 
}. 

In this case, the pulse peak detection and rejection 
function is performed by a subsystem which 
compares the current value with a temporary 
maximum ’xmax’. If the temporary maximum 
’xmax’ is lower than the current value ’xn’, then the 
temporary value is replaced by the current value. 
This happens when xn < dxn, where ’dxn’ is a one 
clock interval delayed input signal ’xn’.  
 
In this work in which the software design can be 
implemented with two circuit delay elements and 
simple codes in an Mcode block or in hardware form 
with a few simple logical operations using Matlab 
and Xilinx relational blocks, the peak is detected 
when the value in the middle is greater than the 
previous and the following. This approach can be 
implemented in any Xilinx FPGA based SoC such as 
the ZYNQ 7000 development board. The advantages 
of this algorithm are simplicity, low time 
consumption, easy to programme, and small number 
of logical elements or components involved. The 
subsystems in this design are implemented in both 
hardware form and software mode in which Nelder-
Mead algorithm is also applied. Nelder-Mead 
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algorithm is essentially a way of organizing and 
optimizing the changes in parameters to shorten the 
time required to fit a function to the required degree 
of accuracy. The most general way of fitting any 
model to a set of data is the iterative method. 
Consequently, iterative fit is performed as in the 
following general way for the peak pileup recovery 
based on [6]: 
 
For three (3) consecutive peak samples Xn, Xn-1 and 
Xn+1 where Xn is the peak sample taken at the present 
time sampling instant, Xn-1 is the peak sample taken 
one time sampling period before this instant and Xn+1 
is the peak sample taken during the next sampling 
instant, if Xn < Xn-1 and Xn > Xn+1 then Xn is a peak 
value. This algorithm can be implemented through a 
hardware form in an FPGA using the following steps: 
 

a. The radiation signal is captured through 
the detector (This is simulated through the 
Matlab/Simulink workplace). 
 
b. Implement appropriate stages of digital 
trapezoidal/triangular filtering, pole-zero 
cancellation and baseline restoration (also 
implemented through the Matlab/Simulink 
work place using Matlab and Xilinx blocks). 
 
c. Implement the matrix linear equation 
mathematical relationships as provided in 
Equation 10 using appropriate Matlab and 
Xilinx blocks to provide outputs for bi-1, bi and 
bi+1. 
 
d. Provide two relational blocks which 
compare the three consecutive values of bi-1, bi 
and bi+1 together such that when 1st value (bi-1) 
< 2nd value (bi) >3rd value (bi+1), a peak is 
detected in 2nd value (bi).  
 
e. The outputs of the two relational blocks 
of the previous step are connected to the inputs 
of an AND logical gate.  
 
f. The output of the AND gate is 
considered as a selector of 2 to 1 multiplexer 
(MUX). If this output is 1 then this position is 
a peak and is selected by MUX otherwise the 
output of the MUX is zero. Thus, if MUX 
output is 1, then allow the corresponding Peak 
Values for further processing. 

The software implementation of the algorithm is 
presented in Figure 2c. 
 
 
4 Results and Discussion 
With reference to the Design Methodology above, 
Steps 1 and 2 involve subsystems created to test the 
responses of the pulse peak pileup detection, 
inspection and recovery functions. Typical pulse 
shapes from the two subsystems are as shown in 
Figure 1.  
 
To appreciate the results and the discussion thereof, it 
is important to compare the functioning of the Peak 
Detector of [5] and our designed generic Peak 
Detector and Recovery subsystems as shown in 
Figure 2b while the Matlab and Xilinx block diagram 
for the hardware pileup detection and recovery are as 
shown in Figure 2a. The code snippet for the 
software implementation is presented in Figure 2c. 
Their responses to an input exponential pulse train 
are shown in Figure 3a for a light pileup situation and 
in Figure 3b for a severe pileup situation. A severe 
pileup situation can be said to be a sampling situation 
in which the pulse peaks in a sampled pulse train are 
least identifiable after which they are no longer 
distinguishable. 

 
Fig. 2a: Matlab and Xilinx blocks for the hardware 
implementation of pileup recovery 
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Fig. 2b: Simulation subsystems for pileup detection 
and rejection, hardware and software implementation 
of pileup detection and recovery 
 

 

Considering the simulation waveforms showing a 
light pileup situation (Figure 3a), the following 
observations could be made:  
 

a. In the case of pileup rejection with the pulse 
width of a randomly generated exponential pulses 
of 10uS, the random pulse spacing with a 
minimum of 5uS and peaking time of the 
trapezoidal filter set at 5uS and the top at 1.4uS: 

 
i. The pulses that are not affected by any 
other pulse within the duration of the 
trapezoidal/triangular pulse width (11.4uS) 
are allowed through as in (aa). Those pulses 
arriving after twice the peaking time and top 
(11.4uS) of an earlier trapezoidal/triangular 
filter pulses are also allowed through.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Code snippet for software implementation of 
pileup recovery 
 
function [xmax, data_rdy, xmin] = pha_pkd(xn, dxn, start, xt1, en, 
preset, blackout, pkd_counter_size, guarding, pha_noise) 
  
if(state == s1)         %check threshold 
            xmax_rdy = false; 
            xmax1 = 0; 
            tc = 0; 
            tc_en = false; 
            if (xn > pha_noise && xn > xt1 && xn > dxn && en == true)  
%above threshold 
                state = s2; 
            else 
                state = s1;         %below threshold: wait  
            end 
 elseif(state == s2)     %check if amplitude falls to 90% 
            if (xmax1 < xn)     % not yet maximum: track for maximum 
                xmax1 = xn; 
            end 
            if (xn < dxn && xn < xt1)       % pulse falls to X% of its amplitude, 
X depends on delay 
                if(xmax1 > xmin1 + pha_noise) 
                    xmax_rdy = true; 
                    tc_en = true; 
                end 
                state = s3; 
            end  

Fig. 2c: Code snippet for the software implementation 
of pileup recovery  

Fig. 3b: Pileup detection algorithms and output signals – 
Severe pileup situation 

cc 

Input Exponential Pulses 
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Fig. 3a: Pileup detection algorithms and output signals – 
Light pileup situation 
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ii. Those pulses which have peaked before the 
arrival of another pulse are also allowed 
through even when another pulse has started 
arriving as shown in (bb).  
 
iii. Those pulses arriving before the elapsing of 
the pulse width of 11.4uS are rejected as 
shown in (cc). Thus, only fourteen (14) ‘clean’ 
pulses out of nineteen (19) incident pulses are 
allowed through to be recorded in the multi-
channel analyser (MCA) as shown in (dd).The 
“clean” pulses include one pulse with two 
amplitude values as in dd1 and dd2 with the 
first amplitude dd1 being the one that is 
binned in the MCA. Thus, altogether, 5 out of 
the 19 pulses are rejected giving a percentage 
rejection of about 26%. 

 
b. In the case of pileup recovery as shown in 
Figure 3a, all the 19 peaks in the exponential 
pulse train are shaped in the digital filter with 
identifiable peaks. The whole 19 pulses are 
detected and recovered irrespective of their 
arrival times as shown in (ee1) for the hardware 
and (ee2) for the software implementation. It is 
observed that there is a constant time lag l in the 
time stamping of the measured pulses of the 
hardware implementation with respect to their 
original time of occurrence. 

 
In the case of severe pileup situation shown in Figure 
3b, all the 19 exponential pulses are shaped in the 
digital filter with identifiable peaks as shown in aa, 
bb and cc. It is observed that cc are severely piled up 
with barely identifiable peaks. For the pileup 
rejection, pulses around bb and cc are rejected. 
Altogether, 14 out of the 19 pulses are rejected 
giving a percentage rejection of about 74%. For 
both the hardware and software implementations, all 
the piled up pulses around bb and cc are 100% 
successfully recovered. The performances of both 
the hardware and software implementations are far 
better than in [3] where it was reported that more 
than 65% of the piled up pulses were recovered. 

Furthermore, one can observe from the simulation 
that: 

a. The dead time in this system is only limited to 
the pulse processing time given by the pulse width 

of the trapezoidal filter pulse. The pulse width 
varied from 1uS to 20uS, providing for 100% 
pileup recovery up to 17.2uS total trapezoidal 
pulse width. At a trapezoidal pulse width of 18uS, 
the hardware and software implementations had 
89% and 84% pileup recovery respectively. At 
20uS trapezoidal pulse width, they had about 79% 
pileup recovery each. 
 
b. It is also observed that if the sum of 2 times the 
peaking time is not a multiple of the flat top time 
ie remainder of ((2 x Taupk)/Taupk_top) ≠ 0 and 
subject to a maximum of 17.2uS, then errors will 
occur. For example, at a peaking time of 8.4uS 
and a flat top value of 0.8uS, (trapezoidal pulse 
width of 17.6uS), some spurious detections, which 
could be attributed to noise jitters, may 
occasionally slip into the detection blocks 
especially for the hardware implementation as 
shown in Figure 4. For the noise to be effectively 
suppressed, the sum of 2 x peaking time and the 
trapezoidal flat top should be as much as possible 
a whole number such as 10uS, 11uS, 12uS etc.  

 
 
 
 
 
 
 
 
 
 

 
 
 c. For more practical applications, it is expected 

that the peaking time of the trapezoidal filter can 
be set to 0.8uS with a top of 0.2uS, providing for 
a maximum count rate without errors of over 
500,000 counts per second, enough for most 
spectroscopic applications. 

 
 
5 Conclusion  
A linear equation matrix based mathematical 
algorithm for the detection and recovery of piled up 
pulses has been designed for implementation in an 
FPGA both in a hardware form using Matlab and 
Xilinx blocks and in a software format using a Xilinx 
Mcode block. This is achieved in conjunction with 
the Nelder-Mead algorithm which is essentially a 

Fig. 4: Spurious detections by the detection 
blocks in the form of noise 

Onyemaechi N. Ofodile, Matthew N. Agu
International Journal of Instrumentation and Measurement 

http://www.iaras.org/iaras/journals/ijim

ISSN: 2534-8841 7 Volume 4, 2019



 
 

way of organizing and optimizing the changes in 
parameters to shorten the time required to fit a 
function to a required degree of accuracy. The 
algorithm compares three consecutive values and 
detects a peak when the 1st value is less than the 2nd 
and the 2nd value is greater than the 3rd value. The 2nd 
value is the peak. Whereas in an earlier 
implementation based on an Mcode block using a 
state machine, out of a simulated pulse train of 19 
pulses, only 5 pulse peaks were detected while the 
remaining 14 or about 74% were rejected in a severe 
pileup situation. In this present work, and for the 
same severe pileup situation, hardware and software 
implementations resulted in a 100% recovery of piled 
up pulses. Also, it has been shown that all the pulse 
peaks can be recovered from piled up pulses by using 
the derived mathematical matrix linear equation 
solutions and the Nelder-Mead algorithm to 
implement the hardware detection and recovery using 
Matlab and Xilinx blocks or by using two delay lines 
and writing appropriate codes in an MCode block for 
software implementation accordingly. Both 
approaches have better performances than a similar 
approach in an earlier work based on only the derived 
mathematical matrix linear equation solutions as 
reported in [3]. 
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