

Optimal Placement of Refugee Hot-Spots on Greek Islands

DIMITRA ALEXIOU
1, EVLAMPIA ATHANAILIDOU

2

1Department of Spatial Planning and Development, School of Engineering,

Aristotle University of Thessaloniki, Thessaloniki, GREECE

Email: dimitraalexiou@plandevel.auth.gr

2Department of Mathematics, Aristotle University of Thessaloniki,

Thessaloniki, GREECE

Email: athanailidoueva@yahoo.gr

Abstract: In this paper, we propose an algorithm to recommend Greek Islands that can host refugees.

The algorithm considers two conditions. The islands must be close to each other so that the

transportation can easily serve the refugees without extra transportation costs and the cost of the new

infrastructures is the minimum. The results showed that the Greek islands could host more than 100k

refugees without suffering from overcrowding since the number of refugees will be significantly

smaller than the number of locals. There is a mass influx of refugees in Greece for several reasons,

such as the war taking place in developing countries or poverty. Refugees seek safe places for a better

life with health and education systems, job opportunities, etc. However, this creates problems in small

countries, which have not dealt with such issues before.

One such problem is the accommodation for these people.

Key-Words: - Graph Theory, transportation cost, Greek region

1 Introduction
In recent years, the European countries have

been suffering from the immigration wave since

every single day people pass their borders.

Although the refugees seek safe places with

better opportunities for themselves and their

families, countries in the European Union have

difficulty serving them and providing a better

future for them. Greece is one country that has

been influenced much more than the other

countries in European Union since it is close to

the borders from where most refugees go

through to get into Europe. The main problem is

the accommodation for these people in Greece,

since the country is too small to select

appropriate places to transfer the refugees

without affecting the local regions.

To solve this problem, we propose an

algorithm that recommends Greek islands

where we could transfer a number of

refugees. The main characteristic of the

algorithm is that it locates refugees searching

for a subset of islands close to each other so

that the infrastructure costs can be the

minimum possible. In this way, the

transportation costs between the islands will

be the minimum, and the refugees' service will

be faster. Another characteristic is that the

algorithm locates refugees based on a

percentage of the local population which

means that the refugees will not be more than

this percentage on an island. In this way, we

try to avoid overcrowding in the islands,

which would affect the life of the locals. The

background for this study is correlated with

the traffic signal control and design

[10],[11],[12],[13],[14].

The rest of the paper is structured as follows.

In section 2, we describe the method used to

solve the problem of transferring of refugees

to the Greek Islands. Next, in section 3, we

mention the experimental setup. Section 4

presents the results of this study. Section 5

presents a case study after executing the

algorithm. Finally, section 6 concludes this

work and proposes future directions.

Dimitra Alexiou, Evlampia Athanailidou
International Journal of Environmental Science

http://www.iaras.org/iaras/journals/ijes

ISSN: 2367-8941 457 Volume 6, 2021

mailto:dimitraalexiou@plandevel.auth.gr
mailto:athanailidoueva@yahoo.gr

2 Algorithm
The problem of transferring refugees to the

Greek islands is an optimization problem

[15],[16] since our aim is to minimize the total

cost of the needed infrastructure to host the

refugees. In parallel, we have to select a subset

of islands where the islands have the minimum

distance between them [1],[2]. Each island has

more than one ports and when we calculate the

distance between the two islands, we consider

the distance between the two ports. If we select

a port for the infrastructure, then the other ports

of the island cannot be chosen. The assumption

here is that we can establish only one

infrastructure at each island.

Figure 1: A graph example for describing the algorithm

The costs are calculated considering the

individual costs as seen below:

1. Building Structure Cost: For each new

building, the cost is 𝑑 + 𝑏 ∗ 𝑀 where 𝑑 is

the cost of

the building 𝑏 is the cost per refugee and

𝑀 is the total number of refugees.

2. Installation Costs: It depends on the

density of an island 𝑝 and a cost that the

government gives as compensation to the

island 𝑒. It is estimated as 𝑝 ∗ 𝑒. The

density of an island can be calculated by

considering the division between the total

population of the island with the total area

of the island in km2.

As a graph-based problem following the

graph theory [17],[18], we consider an

undirected fully connected graph 𝐺 = (𝑉, 𝐸)

where 𝑉 is the set of vertices of the graph

representing the ports of the islands and 𝐸 the

set of edges that connects the nodes. Each

edge has a weight that corresponds to the

distance between two ports. Iteratively, we

select a source vertex in the graph and

search the minimum possible path between

the vertices visiting the vertex which is

closest to the source vertex. The decision of

selecting the next vertex is crucial since the

problem can be considered as NP-Complete

[5]. Finally, we select the set of vertices that

belong to the path with the minimum total

cost. Figure 1 illustrates an example of a

graph of 5 vertices and weights to their edges.

In each iteration, we select a source vertex

starting from the vertex with label 1. The

vertex with label 1 is added to the set of

nodes that we have visited, the cost of an

infrastructure is added to the total cost and the

closest node (label 5) is added to a stack. The

other ports belonging to the same island

(e.g. node with label 4) are also added to

the set of nodes that we have visited. Next,

we pop the node from the stack, and we add it

to the path the node is closest to (label 2). We

follow this procedure until we transfer all the

refugees to the islands. If there are a few

refugees available, it is important not to

create a new infrastructure since the cost is

high for just a few refugees. Instead of

creating a new infrastructure, we transfer the

refugees in an island with the lowest density

which belongs to the current path. We choose

such an island since we have already

transferred refugees there but there is still

plenty of room to transfer many more. Stack

is necessary in the case where there are more

than one paths to follow. For example, if we

select the node with label 3 as the source

node, there are two nodes close to it (labels

1,5) and it is possible for two paths to be

created, but one of them will have the

minimum total cost. As a result, we have to

Dimitra Alexiou, Evlampia Athanailidou
International Journal of Environmental Science

http://www.iaras.org/iaras/journals/ijes

ISSN: 2367-8941 458 Volume 6, 2021

follow the one path considering one of these

nodes and then backtrack to follow the second

path to find that path with the minimum total

cost [6],[7]. Stack implementation can be

accomplished using recursion. In detail, we

can use a function considering the base cases

and the recursive step.

The algorithm ends when we have selected all

nodes as source nodes, and we have found the

one path that has the minimum total cost.

Below, we mention the algorithm in

pseudocode.

Algorithm 1: Returns the path of a Graph with the minimum cost.

Input : A graph 𝐺 = (𝑉, 𝐸), 𝑀 number of refugees

Output : The path = (𝑎1, 𝑎2, … , 𝑎𝑘) where 𝑎𝑖 belongs to the path where the total cost

is minimum.

Step 1 : 𝑐𝑜𝑠𝑡 ← ∞

Step 2 : 𝑝𝑎𝑡ℎ ← ∅

Step 3 : for sourceN𝑜𝑑𝑒 ∈ 𝐺:

Step 4 : 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡, _, _ ←

𝑓𝑖𝑛𝑑𝑃𝑎𝑡ℎ 𝐶𝑜𝑠𝑡(𝑠𝑜𝑢𝑟𝑐𝑒𝑁𝑜𝑑𝑒, 𝐺, 𝑐𝑜𝑠𝑡, 𝑀, 0, ∅, ∅)

Step 5 : 𝑖𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡 < 𝑐𝑜𝑠𝑡:

Step 6 : 𝑐𝑜𝑠𝑡 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡

Step 7 : 𝑝𝑎𝑡ℎ ← ∅

Step 8 : 𝑝𝑎𝑡ℎ ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ

Step 9 : 𝑒𝑛𝑑𝑖𝑓

Step 10 : 𝑒𝑛𝑑𝑓𝑜𝑟

The Algorithm 1 gets as input the graph with

the ports with the weighted edges and the

total number of refugees. The output of the

algorithm is the path with the nodes of the

graph that are close to each other and the total

cost is minimum.

The recursive findPathCost function is

responsible to find the path given the source

node and the current total cost. Cost is used

further to cut some paths in cases where the

total cost of the new path tends to be higher

than the cost of a previous path. The other

parameters are discussed later in this section.

Function returns more than 2 values, however

in Algorithm 1, only two are necessary, while

the other two are important during recursion.

In step 5, the algorithm checks the cost of the

new path returned by the function with the

previous cost of the previous path. If the

current cost is lower than the previous one,

we update the path and the cost. Otherwise,

the variables do not change meaning that the

previous cost is lower than the current one.

The algorithm ends when there is no other

sourceNode in the graph implying that all

nodes in the graph[6],[7] have become source

nodes for the findPathCost function. Next, we

present the algorithm for the function.

Dimitra Alexiou, Evlampia Athanailidou
International Journal of Environmental Science

http://www.iaras.org/iaras/journals/ijes

ISSN: 2367-8941 459 Volume 6, 2021

Algorithm 2: Returns the path with nodes with the minimum distance between them and the

total cost for this path given a source node.

Input : A source node 𝑆, 𝐺 graph, 𝑐𝑜𝑠𝑡, 𝑀 number of refugees, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ ,

𝑣𝑖𝑠𝑖𝑡𝑒𝑑

Output : The path = (𝑆, 𝑎2, … , 𝑎𝑘) starting from the S and 𝑎𝑖 belongs to the path where the

total cost is minimum. The path cost

Step 1 : 𝑖𝑓 𝑀 = 0 𝑜𝑟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡 > 𝑐𝑜𝑠𝑡:

Step 2 : 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡, 𝑀, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑

Step 3 : 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑀 < 𝑀𝑡ℎ 𝑟𝑒𝑠ℎ 𝑜𝑙𝑑:

Step 4 : minDensity, minNode ← min (currentPath)

Step 5 : 𝑚𝑖𝑛𝑁𝑜𝑑𝑒. 𝑎𝑑𝑑(𝑀)

Step 6 : 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡 + 𝑏 ∗ 𝑀

Step 7 : 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡, 𝑀, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑

Step 8 : 𝑒𝑙𝑠𝑒:

Step 9 : 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ ∪ {𝑆}

Step 10 : 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝑆}

Step 11 : 𝑓𝑜𝑟 𝑝𝑜𝑟𝑡 ∈ 𝐼𝑠𝑙𝑎𝑛𝑑(𝑆). 𝑔𝑒𝑡𝑃𝑜𝑟𝑡𝑠():

Step 12 : 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝑝𝑜𝑟𝑡}

Step 13 : 𝑒𝑛𝑑𝑓𝑜𝑟

Step 14 𝑡𝑚𝑝𝑀 ← 0; 𝑥 ← 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝐼𝑠𝑙𝑎𝑛𝑑(𝑆)) ∗ 𝑎

Step 15 : 𝑖𝑓 𝑥 > 𝑐:

Step 16 : 𝑡𝑚𝑝𝑀 ← 𝑐

Step 17 : 𝑒𝑙𝑠𝑒:

Step 18 : 𝑡𝑚𝑝𝑀 ← 𝑟𝑜𝑢𝑛𝑑(𝑥)

Step 19 : 𝑒𝑛𝑑𝑖𝑓

Step 20 : 𝑖𝑓 𝑡𝑒𝑚𝑝𝑀 > 𝑀: 𝑡𝑒𝑚𝑝𝑀 ← 𝑀;

Step 21 : 𝑀 ← 𝑀 − 𝑡𝑚𝑝𝑀; currentCost ← tmpM ∗ b + d + density(Island(S)) ∗ e

Step 22 : 𝑖𝑓 𝑀 > 0:

Step 23 : 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑁𝑜𝑑𝑒𝑠 ← 𝑓𝑖𝑛𝑑𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝑁𝑜𝑑𝑒𝑠(𝑆, 𝐺, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑)

Step 24 : 𝑖𝑓 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑁𝑜𝑑𝑒𝑠 ≠ ∅:

Step 25 : 𝑡𝐶𝑜𝑠𝑡 ← 0; 𝑡𝑃𝑎𝑡ℎ ← 0; 𝑡𝑀 ← 0; 𝑡𝑉𝑖𝑠𝑖𝑡𝑒𝑑 ← 0;

Step 26 : 𝑓𝑜𝑟 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑁𝑜𝑑𝑒 ∈ 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑁𝑜𝑑𝑒𝑠:

Step 27 : 𝑐𝑃𝑎𝑡ℎ , 𝑐𝐶𝑜𝑠𝑡, 𝑐𝑀, 𝑐𝑉𝑖𝑠𝑖𝑡𝑒𝑑 ←

𝑓𝑖𝑛𝑑𝑃𝑎𝑡ℎ 𝐶𝑜𝑠𝑡(𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑁𝑜𝑑𝑒, 𝐺, 𝑐𝑜𝑠𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ , 𝑣𝑖𝑠𝑖𝑡𝑒𝑑, 𝑀𝑡ℎ 𝑟.)

Dimitra Alexiou, Evlampia Athanailidou
International Journal of Environmental Science

http://www.iaras.org/iaras/journals/ijes

ISSN: 2367-8941 460 Volume 6, 2021

Step 28 : 𝑖𝑓 𝑐𝐶𝑜𝑠𝑡 < 𝑡𝐶𝑜𝑠𝑡:

Step 29 : 𝑡𝐶𝑜𝑠𝑡 ← 𝑐𝐶𝑜𝑠𝑡; 𝑡𝑃𝑎𝑡ℎ ← 𝑐𝑃𝑎𝑡ℎ ; 𝑡𝑀 ← 𝑐𝑀; 𝑡𝑉𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑐𝑉𝑖𝑠𝑖𝑡𝑒𝑑

Step 30 : 𝑒𝑛𝑑𝑖𝑓

Step 31 : 𝑒𝑛𝑑𝑓𝑜𝑟

Step 32 : 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡 ← 𝑡𝐶𝑜𝑠𝑡; 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ ← 𝑡𝑃𝑎𝑡ℎ ; 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ←

𝑡𝑉𝑖𝑠𝑖𝑡𝑒𝑑; 𝑀 ← 𝑡𝑀;

Step 33 : 𝑒𝑛𝑑𝑖𝑓

Step 34 : 𝑒𝑛𝑑𝑖𝑓

Step 35 : 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡, 𝑀, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑

Step 35 : 𝑒𝑛𝑑𝑖𝑓

Algorithm 2 describes the steps for the

function which finds the best path based on

the criteria, we have selected. The input of the

algorithm is the source node, where the

algorithm starts to search to establish the

infrastructure, the number of refugees which

is important since the algorithm will end

when all refugees have been transferred to the

islands, the graph in which the algorithm will

search for another node to be visited and the

cost which will be used as a threshold for the

total cost of the current path. If the current

cost is greater than the cost, then the path is

not better than a previous one[3].The

other three parameters (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡,
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ , 𝑣𝑖𝑠𝑖𝑡𝑒𝑑) are used for the

recursive nature of the algorithm. The first

one tracks the changes on the total cost when

a new node is added to the path, the second

one stores the current path and the third one

stores the nodes that we have already visited

and we do not have to visit them again. In the

algorithm, there are free parameters that can

be set during parameters tuning process

named 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑀𝑡ℎ 𝑟𝑒𝑠ℎ 𝑜𝑙𝑑 which

corresponds to the percentage of the island

people under which we can transfer refugees,

b is the cost for each refugee, c is the

maximum number of refugees that can be

transferred to an island, d is the cost of the

building that will host the refugees, e is an

extra cost for each amount of islands density,

and Mthreshold is the number of refugees

under which we don’t create a new

infrastructure but instead we transfer the rest

of the refugees to the island with the lowest

density. The algorithm has two base cases. In

the first case, the function returns either when

all the refugees have been transferred to the

islands or if the current cost is greater than the

cost of a previous path. The second case

checks whether there are few refugees to

transfer. In this case, we search for the island

with the minimum density, and we transfer

the refugees there, further we update the

current cost calculating the costs per refugee.

The third case is the recursive step. In this

case, the current visited port along with the

ports of the same island are added to the set of

visited nodes since the algorithm does not

have to visit them again. Then, the number of

refugees that the island can host is subtracted

by the number of refugees and the cost is

updated properly. The cost is calculated

estimating the cost per refugee, the cost of the

building which will host the refugees and the

cost based on the island density.

Next, if there are refugees that have to be

transferred, we search for the closest node(s).

Each closest node pass in the recursive

function. The function returns the path, cost,

visited set and M of the path that is created by

the closest node of the current node. If there

are multiple closest nodes, then the condition

in step 28 guarantees that we will choose that

path with the minimum total cost. Finally, in

step 35, the current path, cost, visited set and

M are returned.

Dimitra Alexiou, Evlampia Athanailidou
International Journal of Environmental Science

http://www.iaras.org/iaras/journals/ijes

ISSN: 2367-8941 461 Volume 6, 2021

3 Experimental Setup
We consider 100k refugees that we want to

transfer to Greek Islands, the costs are the

same as the ones described in the

experimental setup section and the parameter

of the percentage of the island people under

which we can transfer refugees is defined as

15%.

Figure 6 illustrates the path that is extracted

from our method. The source node is from a

port in the island of Crete while the last

destination is the port in the island of Evia.

Table 3 shows the path starting from the

source Island and moving to the destination

island. For each source island, we also

estimate the number of refugees that will be

transferred[8],[9]. Crete is a large island with

large number of locals, thus we can transfer

the maximum accepted number of refugees

there. We observe that the algorithm also

chooses small islands to transfer refugees. For

example, it is possible to transfer just 457

refugees to Patmos and 744 refugees to

Skopelos. The decision of the algorithm

depends on the condition that we defined to

choose the next closest island. The number of

islands depends significantly on parameter a

since if we choose a to be equal to 0.20 then

the total number of islands would 15 instead

of 16 and the path will be different if starting

from the Evia island.

Figure 7: The path from the Crete to Evia for transferring 100k refugees.

Dimitra Alexiou, Evlampia Athanailidou
International Journal of Environmental Science

http://www.iaras.org/iaras/journals/ijes

ISSN: 2367-8941 462 Volume 6, 2021

Source Island Destination Island #refugees in Source Island

Crete Karpathos 20000

Karpathos Rodos 933

Rodos Kos 17323

Kos Kalimnos 5008

Kalimnos Leros 2426

Leros Patmos 1187

Patmos Ikaria 457

Ikaria Samos 1263

Samos Chios 4946

Chios Lesvos 7698

Lesvos Limnos 12799

Limnos Thasos 2550

Thasos Skopelos 2065

Skopelos Skiathos 744

Skiathos Evia 991

Evia - 19610

Table 3: The path from the source island to destination island. For each source island, we mention the total number of

refugees that can be transferred.

4 Conclusion
In this paper, we present an algorithm so that

we can recommend Greek islands to transfer

refugees. The algorithm considers two

conditions [16] the islands have to be close to

each other so that the transportation will be

easy to service the refugees better without

any extra transportation costs and [4] the total

cost of the new infrastructures will be the

minimum. The results showed that the

number of refugees selected for each island is

important to decide the transferring of all the

refugees to the islands. The significant costs

for this movement are related to the

maximum number of refugees that will be

transferred to the islands and the costs of the

infrastructure including the buildings.

References:

[1] Aho, A., Hopcroft, J., Ullmanm, J., Data

Structures and Algorithms, Addison-

Wesley, Boston, 1987.

[2] Alexiou, D., Katsavounis, S., In: Springer

Proceedings in Mathematics & Statistics,

Determining the minimum number of ware-

houses and their space- size for storing

compatible items, optimization theory,

decision making, and operations research

applications, 2013, pp. 189–198.

[3] Christofides, N., Academic Press, Graph

Theory. An Algorithmic Approach, New

York, 1975

[4] Diakaki, C., Papageorgiou, M., Aboudolas,

K., Control Eng. Pract. 10(2), A

multivariable regulator approach to traffic-

responsive network-wide signal control,

2002, pp. 183–195.

[5] Garey, M.R., Johnson, D.S., Computer

Intractability: A Guide to the theory of NP-

Completeness, Freeman, San Francisco,

1979.

[6] Harary, F., Graph Theory, Addison

Wesley, Boston, 1969.

[7] Jinwoo, L., Baher, A., Amer, S., Eui-Hwan,

C., J. Intell. Transp. Syst. 9(3), Real-time

Dimitra Alexiou, Evlampia Athanailidou
International Journal of Environmental Science

http://www.iaras.org/iaras/journals/ijes

ISSN: 2367-8941 463 Volume 6, 2021

optimization for adaptive traffic signal

control using genetic algorithms, 2005.

[8] Mathew, T., Krishna R., NPTEL, Chap. 41,

Traffic signal design-I, 2006.

www.cdeep.iitb.ac.in/nptel/Civil%20Engin

eering/Transportation%20Engg%201/41-

Ltexhtml/nptel_ceTEI_L41.pdf

[9] Michaels, J.G., Kenneth, H.R., McGraw-

Hill Inc, Application of Discrete

Mathematics, New York, 1991.

[10] Opsut, R.J., Roberts, F.S., Networks 13, I-

Colorings. I-Phasings and I-intersection

assignments for graphs, and their

applications, 1983b, pp. 327–345.

[11] Raychaudhuri, A., Discrete Appl. Math

40(3), Optimal multiple interval

assignments in frequency assignment and

traffic phasing, 1992, pp. 319–332.

[12] Roberts, F.S., Some applications of graph

theory. Department of Mathematics and

DIMACS, Rutgers University, draft October

1 2000.

http://citeseerx.ist.psu.edu/viewdoc/downlo

ad?doi=10.1.1.76.5815&rep=rep1&type=p

df

[13] Stoffers, K.E., Scheduling of traffic lights–

a new approach, Transport. Res. 2, 1968,

pp. 199–234.

[14] Traffic Signal Design, Section 7, Phasing

and Signal Groups, Department of

Transportation, Minnesota, 2013.

http://www.dot.state.mn.us/trafficeng/publ/

signaloperations/2013_Signal_Opt_and_Ti

ming_Manual.pdf

[15] Traffic Signal Design, Section7, Phasing

and Signal Group display sequence, Roads

and Traffic 2011.

http://www.rms.nsw.gov.au/documents/bus

iness-industry/partners-and-

suppliers/guidelines/complementary-traffic-

material/tsdsect7v12-i.pdf

[16] Traffic Signal Guidelines, Boston

Transportation Department, Massachussets,

2004.

https://www.cityofboston.gov/transportatio

n/pdfs/traf_signal_oper_design_guide.pdf

[17] Traffic Signal Operation Handbook, Texas

Transportation Institute, The Texas A&M

University System, Research and

Technology Implementation Office, Austin,

Texas, 2009.

http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu

.edu/documents/0-5629-P1.pdf

[18] Van Rossum, G., & Drake Jr, F. L. Python

tutorial, Centrum voor Wiskunde en

Informatica, Amsterdam, Vol. 620, 1995.

Dimitra Alexiou, Evlampia Athanailidou
International Journal of Environmental Science

http://www.iaras.org/iaras/journals/ijes

ISSN: 2367-8941 464 Volume 6, 2021

http://www.cdeep.iitb.ac.in/nptel/Civil%20Engineering/Transportation%20Engg%201/41-Ltexhtml/nptel_ceTEI_L41.pdf
http://www.cdeep.iitb.ac.in/nptel/Civil%20Engineering/Transportation%20Engg%201/41-Ltexhtml/nptel_ceTEI_L41.pdf
http://www.cdeep.iitb.ac.in/nptel/Civil%20Engineering/Transportation%20Engg%201/41-Ltexhtml/nptel_ceTEI_L41.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.5815&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.5815&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.5815&rep=rep1&type=pdf
http://www.dot.state.mn.us/trafficeng/publ/signaloperations/2013_Signal_Opt_and_Timing_Manual.pdf
http://www.dot.state.mn.us/trafficeng/publ/signaloperations/2013_Signal_Opt_and_Timing_Manual.pdf
http://www.dot.state.mn.us/trafficeng/publ/signaloperations/2013_Signal_Opt_and_Timing_Manual.pdf
http://www.rms.nsw.gov.au/documents/business-industry/partners-and-suppliers/guidelines/complementary-traffic-material/tsdsect7v12-i.pdf
http://www.rms.nsw.gov.au/documents/business-industry/partners-and-suppliers/guidelines/complementary-traffic-material/tsdsect7v12-i.pdf
http://www.rms.nsw.gov.au/documents/business-industry/partners-and-suppliers/guidelines/complementary-traffic-material/tsdsect7v12-i.pdf
http://www.rms.nsw.gov.au/documents/business-industry/partners-and-suppliers/guidelines/complementary-traffic-material/tsdsect7v12-i.pdf
https://www.cityofboston.gov/transportation/pdfs/traf_signal_oper_design_guide.pdf
https://www.cityofboston.gov/transportation/pdfs/traf_signal_oper_design_guide.pdf
http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/0-5629-P1.pdf
http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/0-5629-P1.pdf

