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Abstract: In this paper, we propose an algorithm to recommend Greek Islands that can host refugees. 

The algorithm considers two conditions. The islands must be close to each other so that the 

transportation can easily serve the refugees without extra transportation costs and   the cost of the new 

infrastructures is the minimum. The results showed that the Greek islands could host more than 100k 

refugees without suffering from overcrowding since the number of refugees will be significantly 

smaller than the number of locals. There is a mass influx of refugees in Greece for several reasons, 

such as the war taking place in developing countries or poverty. Refugees seek safe places for a better 

life with health and education systems, job opportunities, etc. However, this creates problems in small 

countries, which have not dealt with such issues before. 

One such problem is the accommodation for these people. 
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1 Introduction 
In recent years, the European countries have 

been suffering from the immigration wave since 

every single day people pass their borders. 

Although the refugees seek safe places with 

better opportunities for themselves and their 

families, countries in the European Union have 

difficulty serving them and providing a better 

future for them. Greece is one country that has 

been influenced much more than the other 

countries in European Union since it is close to 

the borders from where most refugees go 

through to get into Europe. The main problem is 

the accommodation for these people in Greece, 

since the country is too small to select 

appropriate places to transfer the refugees 

without affecting the local regions. 

To solve this problem, we propose an 

algorithm that recommends Greek islands 

where we could transfer a number of 

refugees. The main characteristic of the 

algorithm is that it locates refugees searching 

for a subset of islands close to each other so 

that the infrastructure costs can be the 

minimum possible. In this way, the 

transportation costs between the islands will 

be the minimum, and the refugees' service will 

be faster. Another characteristic is that the 

algorithm locates refugees based on a 

percentage of the local population which 

means that the refugees will not be more than 

this percentage on an island. In this way, we 

try to avoid overcrowding in the islands, 

which would affect the life of the locals. The 

background for this study is correlated with 

the traffic signal control and design 

[10],[11],[12],[13],[14]. 

The rest of the paper is structured as follows. 

In section 2, we describe the method used to 

solve the problem of transferring of refugees 

to the Greek Islands. Next, in section 3, we 

mention the experimental setup. Section 4 

presents the results of this study. Section 5 

presents a case study after executing the 

algorithm. Finally, section 6 concludes this 

work and proposes future directions. 
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2 Algorithm 
The problem of transferring refugees to the 

Greek islands is an optimization problem 

[15],[16] since our aim is to minimize the total 

cost of the needed infrastructure to host the 

refugees. In parallel, we have to select a subset 

of islands where the islands have the minimum 

distance between them [1],[2]. Each island has 

more than one ports and when we calculate the 

distance between the two islands, we consider 

the distance between the two ports. If we select 

a port for the infrastructure, then the other ports 

of the island cannot be chosen. The assumption 

here is that we can establish only one 

infrastructure at each island. 
 

 

Figure 1: A graph example for describing the algorithm 
 

The costs are calculated considering the 

individual costs as seen below: 

1. Building Structure Cost: For each new 

building, the cost is 𝑑 + 𝑏 ∗ 𝑀 where 𝑑 is 

the cost of     

the building 𝑏 is the cost per refugee and 

𝑀 is the total number of refugees. 

2. Installation Costs: It depends on the 

density of an island 𝑝 and a cost that the 

government gives as compensation to the 

island 𝑒. It is estimated as 𝑝 ∗ 𝑒. The 

density of an island can be calculated by 

considering the division between the total 

population of the island with the total area 

of the island in km2. 

As a graph-based problem following the 

graph theory [17],[18], we consider an 

undirected fully connected graph 𝐺 = (𝑉, 𝐸) 

where 𝑉 is the set of vertices of the graph 

representing the ports of the islands and 𝐸 the 

set of edges that connects the nodes. Each 

edge has a weight that corresponds to the 

distance between two ports. Iteratively, we 

select a source vertex in the graph and 

search the minimum possible path between 

the vertices visiting the vertex which is 

closest to the source vertex. The decision of 

selecting the next vertex is crucial since the 

problem can be considered as NP-Complete 

[5]. Finally, we select the set of vertices that  

belong to the path with the minimum total 

cost. Figure 1 illustrates an example of a 

graph of 5 vertices and weights to their edges. 

In each iteration, we select a source vertex 

starting from the vertex with label 1. The 

vertex with label 1 is added to the set of 

nodes that we have visited, the cost of an 

infrastructure is added to the total cost and the 

closest node (label 5) is added to a stack. The 

other ports belonging to the same island 

(e.g. node with label 4) are also added to 

the set of nodes that we have visited. Next, 

we pop the node from the stack, and we add it 

to the path the node is closest to (label 2). We 

follow this procedure until we transfer all the 

refugees to the islands. If there are a few 

refugees available, it is important not to 

create a new infrastructure since the cost is 

high for just a few refugees. Instead of 

creating a new infrastructure, we transfer the 

refugees in an island with the lowest density 

which belongs to the current path. We choose 

such an island since we have already 

transferred refugees there but there is still 

plenty of room to transfer many more. Stack 

is necessary in the case where there are more 

than one paths to follow. For example, if we 

select the node with label 3 as the source 

node, there are two nodes close to it (labels 

1,5) and it is possible for two paths to be 

created, but one of them will have the 

minimum total cost. As a result, we have to 
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follow the one path considering one of these 

nodes and then backtrack to follow the second 

path to find that path with the minimum total 

cost [6],[7]. Stack implementation can be 

accomplished using recursion. In detail, we 

can use a function considering the base cases 

and the recursive step. 

The algorithm ends when we have selected all 

nodes as source nodes, and we have found the 

one path that has the minimum total cost. 

Below, we mention the algorithm in 

pseudocode.  

  

 

Algorithm 1: Returns the path of a Graph with the minimum cost. 

Input : A graph 𝐺 = (𝑉, 𝐸), 𝑀 number of refugees 

Output : The path = (𝑎1, 𝑎2, … , 𝑎𝑘) where 𝑎𝑖 belongs to the path where the total cost 

is minimum. 

Step 1 : 𝑐𝑜𝑠𝑡 ← ∞ 

Step 2 : 𝑝𝑎𝑡ℎ  ← ∅ 

Step 3 : for sourceN𝑜𝑑𝑒 ∈ 𝐺: 

Step 4 : 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡, _, _ ← 

𝑓𝑖𝑛𝑑𝑃𝑎𝑡ℎ 𝐶𝑜𝑠𝑡(𝑠𝑜𝑢𝑟𝑐𝑒𝑁𝑜𝑑𝑒, 𝐺, 𝑐𝑜𝑠𝑡, 𝑀, 0, ∅, ∅) 

Step 5 : 𝑖𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡 < 𝑐𝑜𝑠𝑡: 

Step 6 : 𝑐𝑜𝑠𝑡 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡 

Step 7 : 𝑝𝑎𝑡ℎ  ← ∅ 

Step 8 : 𝑝𝑎𝑡ℎ  ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ  

Step 9 : 𝑒𝑛𝑑𝑖𝑓 

Step 10 : 𝑒𝑛𝑑𝑓𝑜𝑟 

 

The Algorithm 1 gets as input the graph with 

the ports with the weighted edges and the 

total number of refugees. The output of the 

algorithm is the path with the nodes of the 

graph that are close to each other and the total 

cost is minimum. 

The recursive findPathCost function is 

responsible to find the path given the source 

node and the current total cost. Cost is used 

further to cut some paths in cases where the 

total cost of the new path tends to be higher 

than the cost of a previous path. The other 

parameters are discussed later in this section. 

Function returns more than 2 values, however 

in Algorithm 1, only two are necessary, while 

the other two are important during recursion. 

In step 5, the algorithm checks the cost of the 

new path returned by the function with the 

previous cost of the previous path. If the 

current cost is lower than the previous one, 

we update the path and the cost. Otherwise, 

the variables do not change meaning that the 

previous cost is lower than the current one. 

The algorithm ends when there is no other 

sourceNode in the graph implying that all 

nodes in the graph[6],[7] have become source 

nodes for the findPathCost function. Next, we 

present the algorithm for the function. 
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Algorithm 2: Returns the path with nodes with the minimum distance between them and the 

total cost for this path given a source node. 

Input : A source node 𝑆, 𝐺 graph, 𝑐𝑜𝑠𝑡, 𝑀 number of refugees, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ , 

𝑣𝑖𝑠𝑖𝑡𝑒𝑑 

Output : The path = (𝑆, 𝑎2, … , 𝑎𝑘) starting from the S and 𝑎𝑖 belongs to the path where the 

total cost is minimum. The path cost 

Step 1 : 𝑖𝑓 𝑀 = 0 𝑜𝑟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡 > 𝑐𝑜𝑠𝑡: 

Step 2 : 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡, 𝑀, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 

Step 3 : 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑀 < 𝑀𝑡ℎ 𝑟𝑒𝑠ℎ 𝑜𝑙𝑑: 

Step 4 : minDensity, minNode ← min (currentPath) 

Step 5 : 𝑚𝑖𝑛𝑁𝑜𝑑𝑒. 𝑎𝑑𝑑(𝑀) 

Step 6 : 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡 + 𝑏 ∗ 𝑀 

Step 7 : 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡, 𝑀, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 

Step 8 : 𝑒𝑙𝑠𝑒: 

Step 9 : 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ  ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ  ∪ {𝑆} 

Step 10 : 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝑆} 

Step 11 : 𝑓𝑜𝑟 𝑝𝑜𝑟𝑡 ∈ 𝐼𝑠𝑙𝑎𝑛𝑑(𝑆). 𝑔𝑒𝑡𝑃𝑜𝑟𝑡𝑠( ): 

Step 12 : 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝑝𝑜𝑟𝑡} 

Step 13 : 𝑒𝑛𝑑𝑓𝑜𝑟 

Step 14  𝑡𝑚𝑝𝑀 ← 0; 𝑥 ← 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝐼𝑠𝑙𝑎𝑛𝑑(𝑆)) ∗ 𝑎 

Step 15 : 𝑖𝑓 𝑥 > 𝑐: 

Step 16 : 𝑡𝑚𝑝𝑀 ← 𝑐 

Step 17 : 𝑒𝑙𝑠𝑒: 

Step 18 : 𝑡𝑚𝑝𝑀 ← 𝑟𝑜𝑢𝑛𝑑(𝑥) 

Step 19 : 𝑒𝑛𝑑𝑖𝑓 

Step 20 : 𝑖𝑓 𝑡𝑒𝑚𝑝𝑀 > 𝑀: 𝑡𝑒𝑚𝑝𝑀 ← 𝑀; 

Step 21 : 𝑀 ← 𝑀 − 𝑡𝑚𝑝𝑀; currentCost ← tmpM ∗ b + d + density(Island(S)) ∗ e 

Step 22 : 𝑖𝑓 𝑀 > 0: 

Step 23 : 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑁𝑜𝑑𝑒𝑠 ← 𝑓𝑖𝑛𝑑𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝑁𝑜𝑑𝑒𝑠(𝑆, 𝐺, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑) 

Step 24 : 𝑖𝑓 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑁𝑜𝑑𝑒𝑠 ≠ ∅: 

Step 25 : 𝑡𝐶𝑜𝑠𝑡 ← 0; 𝑡𝑃𝑎𝑡ℎ  ← 0; 𝑡𝑀 ← 0; 𝑡𝑉𝑖𝑠𝑖𝑡𝑒𝑑 ← 0; 

Step 26 : 𝑓𝑜𝑟 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑁𝑜𝑑𝑒 ∈ 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑁𝑜𝑑𝑒𝑠: 

Step 27 : 𝑐𝑃𝑎𝑡ℎ , 𝑐𝐶𝑜𝑠𝑡, 𝑐𝑀, 𝑐𝑉𝑖𝑠𝑖𝑡𝑒𝑑 ← 

𝑓𝑖𝑛𝑑𝑃𝑎𝑡ℎ 𝐶𝑜𝑠𝑡(𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑁𝑜𝑑𝑒, 𝐺, 𝑐𝑜𝑠𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ , 𝑣𝑖𝑠𝑖𝑡𝑒𝑑, 𝑀𝑡ℎ 𝑟. ) 
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Step 28 : 𝑖𝑓 𝑐𝐶𝑜𝑠𝑡 < 𝑡𝐶𝑜𝑠𝑡: 

Step 29 : 𝑡𝐶𝑜𝑠𝑡 ← 𝑐𝐶𝑜𝑠𝑡; 𝑡𝑃𝑎𝑡ℎ  ← 𝑐𝑃𝑎𝑡ℎ ; 𝑡𝑀 ← 𝑐𝑀; 𝑡𝑉𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑐𝑉𝑖𝑠𝑖𝑡𝑒𝑑 

Step 30 : 𝑒𝑛𝑑𝑖𝑓 

Step 31 : 𝑒𝑛𝑑𝑓𝑜𝑟 

Step 32 : 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡 ← 𝑡𝐶𝑜𝑠𝑡; 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ  ← 𝑡𝑃𝑎𝑡ℎ ; 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 

𝑡𝑉𝑖𝑠𝑖𝑡𝑒𝑑; 𝑀 ← 𝑡𝑀; 

Step 33 : 𝑒𝑛𝑑𝑖𝑓 

Step 34 : 𝑒𝑛𝑑𝑖𝑓 

Step 35 : 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡, 𝑀, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 

Step 35 : 𝑒𝑛𝑑𝑖𝑓 

 
 

Algorithm 2 describes the steps for the 

function which finds the best path based on 

the criteria, we have selected. The input of the 

algorithm is the source node, where the 

algorithm starts to search to establish the 

infrastructure, the number of refugees which 

is important since the algorithm will end 

when all refugees have been transferred to the 

islands, the graph in which the algorithm will 

search for another node to be visited and the 

cost which will be used as a threshold for the 

total cost of the current path. If the current 

cost is greater than the cost, then the path is 

not better than a previous one[3].The 

other three parameters (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡, 
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ , 𝑣𝑖𝑠𝑖𝑡𝑒𝑑) are used for the 

recursive nature of the algorithm. The first 

one tracks the changes on the total cost when 

a new node is added to the path, the second 

one stores the current path and the third one 

stores the nodes that we have already visited 

and we do not have to visit them again. In the 

algorithm, there are free parameters that can 

be set during parameters tuning process 

named 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑀𝑡ℎ 𝑟𝑒𝑠ℎ 𝑜𝑙𝑑 which 

corresponds to the percentage of the island 

people under which we can transfer refugees, 

b is the cost for each refugee, c is the 

maximum number of refugees that can be 

transferred to an island, d is the cost of the 

building that will host the refugees, e is an 

extra cost for each amount of islands density, 

and Mthreshold is the number of refugees 

under which we don’t create a new 

infrastructure but instead we transfer the rest 

of the refugees to the island with the lowest 

density. The algorithm has two base cases. In 

the first case, the function returns either when 

all the refugees have been transferred to the 

islands or if the current cost is greater than the 

cost of a previous path. The second case 

checks whether there are few refugees to 

transfer. In this case, we search for the island 

with the minimum density, and we transfer 

the refugees there, further we update the 

current cost calculating the costs per refugee. 

The third case is the recursive step. In this 

case, the current visited port along with the 

ports of the same island are added to the set of 

visited nodes since the algorithm does not 

have to visit them again. Then, the number of 

refugees that the island can host is subtracted 

by the number of refugees and the cost is 

updated properly. The cost is calculated 

estimating the cost per refugee, the cost of the 

building which will host the refugees and the 

cost based on the island density. 

Next, if there are refugees that have to be 

transferred, we search for the closest node(s). 

Each closest node pass in the recursive 

function. The function returns the path, cost, 

visited set and M of the path that is created by 

the closest node of the current node. If there 

are multiple closest nodes, then the condition 

in step 28 guarantees that we will choose that 

path with the minimum total cost. Finally, in 

step 35, the current path, cost, visited set and 

M are returned. 
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3 Experimental Setup 
We consider 100k refugees that we want to 

transfer to Greek Islands, the costs are the 

same as the ones described in the 

experimental setup section and the parameter 

of the percentage of the island people under 

which we can transfer refugees is defined as 

15%. 

Figure 6 illustrates the path that is extracted 

from our method. The source node is from a 

port in the island of Crete while the last 

destination is the port in the island of Evia. 

Table 3 shows the path starting from the 

source Island and moving to the destination 

island. For each source island, we also 

estimate the number of refugees that will be 

transferred[8],[9]. Crete is a large island with 

large number of locals, thus we can transfer 

the maximum accepted number of refugees 

there. We observe that the algorithm also 

chooses small islands to transfer refugees. For 

example, it is possible to transfer just 457 

refugees to Patmos and 744 refugees to 

Skopelos. The decision of the algorithm 

depends on the condition that we defined to 

choose the next closest island. The number of 

islands depends significantly on parameter a 

since if we choose a to be equal to 0.20 then 

the total number of islands would 15 instead 

of 16 and the path will be different if starting 

from the Evia island. 

 

 
 

Figure 7: The path from the Crete to Evia for transferring 100k refugees. 
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Source Island Destination Island #refugees in Source Island 

Crete Karpathos 20000 

Karpathos Rodos 933 

Rodos Kos 17323 

Kos Kalimnos 5008 

Kalimnos Leros 2426 

Leros Patmos 1187 

Patmos Ikaria 457 

Ikaria Samos 1263 

Samos Chios 4946 

Chios Lesvos 7698 

Lesvos Limnos 12799 

Limnos Thasos 2550 

Thasos Skopelos 2065 

Skopelos Skiathos 744 

Skiathos Evia 991 

Evia - 19610 

 

Table 3: The path from the source island to destination island. For each source island, we mention the total number of 

refugees that can be transferred. 

 

 

4 Conclusion 
In this paper, we present an algorithm so that 

we can recommend Greek islands to transfer 

refugees. The algorithm considers two 

conditions [16] the islands have to be close to 

each other so that the transportation will be 

easy to service the refugees better without 

any extra transportation costs and [4] the total 

cost of the new infrastructures will be the 

minimum. The results showed that the 

number of refugees selected for each island is 

important to decide the transferring of all the 

refugees to the islands. The significant costs 

for this movement are related to the 

maximum number of refugees that will be 

transferred to the islands and the costs of the 

infrastructure including the buildings. 
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