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Abstract: - In this paper a dam-break flood model based on a contravariant integral form of the shallow water 

equations is presented. The equations of motion are numerically solved by means of a finite volume-finite 

difference numerical scheme that involves an exact Riemann solver and is based on a WENO reconstruction 

procedure. An original scheme for the simulation of the wet front progress on the dry bed is adopted. The 

proposed model is used to simulate the Rio Fucino dam-break and subsequent flood wave propagation, 

downstream of the Campotosto reservoir (Italy). 
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1 Introduction 

Rio Fucino dam is a lake-dam that functions as a 

barrier to the Campotosto reservoir (Italy). In the 

context of the safety assessment of the existing 

Italian dams, the Rio Fucino dam is of particular 

interest as it is very close to the Monti della Laga 

seismic fault. This fault, about 30km long, is 

parallel to the dam body and its track is distant 

about 300m from it. The Monti della Laga fault has 

caused the earthquakes that have led to the 

destruction of L'Aquila (6 April 2009) and Amatrice 

(24 August 2016). The short distance of this fault 

from the foundation of the dam compared to the size 

of the fault, does not preclude the foundations of the 

dam to be affected by the activity of the fault. In the 

event of fault breakage at the surface of the earth, 

the possible damages and the possible breaking of 

the aforementioned Rio Fucino dam would cause 

flood wave propagation along the Rio Fucino River 

and the Vomano valley. On the basis of such 

considerations, it is clear the need to simulate the 

Rio Fucino dam-break and subsequent flood wave 

propagation. 

The flood maps that have been produced several 

decades ago, have been realized by using one-

dimensional numerical schemes that approximate 

the unsteady flow, which takes place downstream of 

the dam, as a succession of steady flows. This 

simplification carries out a qualitative assessment of 

the outflow flow and of the trend over time of the 

flow produced by the flood wave. 

 

 

In the most recent literature ([3], [8], [10], [11], 

[12]), there are methods able to directly simulate the 

propagation of the discontinuity by means of shock-

capturing schemes based on the two-dimensional 

depth-averaged shallow water equations. 

Furthermore, in order to simulate the overflow 

phenomenon over computational domains 

reproducing the river channel complex morphology, 

it is possible to adopt a strategy that numerically 

integrates the equations of motion on generalized 

curvilinear boundary-conforming grids. By using 

boundary-conforming curvilinear coordinates, the 

equations of motion can be written in contravariant 

formulation ([1], [2], [4]). 

In this work we present the study of the flood 

wave propagation downstream of the Rio Fucino 

dam due to the dam-break and subsequent emptying 

of the Campotosto reservoir, in the case of initial 

full supply water level. The equations of motion are 

numerically solved by means of a finite volume-

finite difference numerical scheme that involves an 

exact Riemann solver and is based on a WENO 

reconstruction procedure ([5], [6]). For the 

simulation of the wet front progress on the dry bed, 

an original wet and dry scheme is used. 
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2 Problem Formulation 

The model is based on the integral contravariant 

formulation of the two dimensional shallow water 

equations. 

Let �� = ���ℎ where ℎ and ��� are, respectively, the 

water depth and the depth-averaged velocity vector 

whose components are defined in the Cartesian 

system of reference. 

We consider the coordinate transformation �� = ��(
�, 

) from the Cartesian coordinate 

system �� to the curvilinear coordinate system 
� 
(note that superscripts indicate the generic 

component and not powers). Let ��(�) = ��� �
�⁄  be 

the covariant base vectors and ��(�) = �
� ���⁄  the 

contravariant base vectors. The covariant and 

contravariant metric coefficients are given 

respectively by ��� = ��(�) ∙ ��(�) and ��� = ��(�) ∙
��(�). The Jacobian of the transformation is given by 

�� = �|���| where | | denotes the determinant of 

the covariant metric coefficients ���. The 

transformation relationships between vector �� in the 

Cartesian coordinate system and its contravariant, ��, and covariant, ��, components in the curvilinear 

coordinate system are given by 

 �� = ��(�) ∙ �� ; �� = ����(�) 
 �� = ��(�) ∙ �� ; �� = ����(�)   (1) 

 

The shallow water equations in contravariant 

formulation read 

 ��
�� + �,�� = 0       (2) 

 
���
�� + �����

� + �	��� �!

 ",� = −�ℎ	���$,� − %�  (3) 

 

where a comma with an index in a subscript stands 

for covariant differentiation, the second term on the 

left-hand side of both equation (2) and (3) is the flux 

term, � is the constant of gravity, −�ℎ	���$,� is 

the source term related to the bottom slope in which $ is the bottom elevation and %� is the bottom 

resistance term. 

The motion equations (2) and (3) are integrated 

over an arbitrary surface element of area ∆', whose 

contour line is (, and are solved in the direction in 

space of a parallel vector field, )*(
�, 

) = �+�(�) ∙��(*), which is normal to the coordinate line on 

which the coordinate line 
� is constant. By 

recalling that by definition )*,� = 0 and that 

��(*) ∙ ��(�) = ,*�, the integral expressions of the 

shallow water equations in contravariant 

formulation are 

 

∬ ��
�� .'∆/ + 0 ��1�.(2 = 0     (4) 

 

∬ �+�(�) ∙ ��(*) ��3
�� .'∆/ +  

0 ��+�(�) ∙ ��(*) ����
� + �+�(�) ∙ ��(�)� �!


 " 1�.(2   

= − ∬ �+�(�) ∙ ��(*)4�ℎ	�*�$,� + %*5.'∆/   (5) 

 

A restrictive condition on the surface element of 

area ∆' is now introduced: the surface element of 

area ∆' must be considered as a surface element 

which is bounded by four curves lying on the 

coordinate lines. Since .' = ��.
�.

 and by 

indicating the averaged values of ℎ and �� over the 

surface element of area ∆' as 

ℎ67 = �
∆/ ∬ ℎ��.
�.

∆/  and �̅7� = �

∆/ ∬ �+�(�) ∙∆/��(*)�*��.
�.

, equations (4) and (5) are 

rewritten as 

 
��9:
�� =  

− �
∆/ ∑ <0 �=��.
>∆?@A − 0 �=��.
>∆?@B C
=D�    (6) 

 
��67 �
�� = �

∆/ E−F ∑
=D�   

<0 ��+�(�) ∙ ��(*) �3�@
� + �+�(�) ∙ ��(=)� �!


 " ��.
>∆?@A −
0 ��+�(�) ∙ ��(*) �3�@

� + �+�(�) ∙ ��(=)� �!

 " ��.
>∆?@B C  

− ∬ �+�(�) ∙ ��(*)4�(G − G̅7)	�*�$,� + %*5∆/ .'  

−�G̅7 ∑ <0 �+�(�) ∙ ��(*)$��.
>∆?@A F −
=D�   

       F0 �+�(�) ∙ ��(*)$��.
>∆?@B C 

 + H

 ∑ <0 �+�(�) ∙ ��(*)$
��.
>∆?@A −F
=D�  

       F0 �+�(�) ∙ ��(*)$
��.
>∆?@B I   (7) 

 

where ∆
=J and ∆
=K indicate the segments of the 

contour line on which 
= is constant and which are 

located respectively at the larger and smaller value 

of 
= (L and M cyclic), G is the free surface 

elevation and G̅7 represents the averaged value of G 

on the surface element ∆'. The last three terms on 

the right-hand side of equation (7) are obtained by 

decomposing the source term related to the bottom 

slope on the right-hand side of equation (5) as 

proposed by [13]. It must be noted that in equations 

(6) ad (7) the Christoffel symbols are absent. 
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3 Problem Solution 

The numerical integration of the equations of 

motion (6) and (7) is carried out by a high order 

upwind WENO (weighted essentially non-

oscillatory) scheme. The computational domain 

discretization is based on a grid defined by the 

coordinate lines 
� and 

 and by the points of 

coordinates 
N� = O∆
� and 
P
 = Q∆

, which 

represent the centers of the calculation cells RN;P = T
NK� 
⁄� 	, 
NJ� 
⁄� U × T
PK� 
⁄
 	, 
PJ� 
⁄
 U. WX is 

the time level of the known variables, while WXJ� = WX + ∆W is the time level of the unknown 

variables. Let us indicate with Y(��, �
) the right-

hand side of equation (6) and with Z(ℎ, ��, �
) the 

right-hand side of equation (7). By integrating 

equations (6) and (7) over [WX, WXJ�\ we get 

 

ℎ67N;P(XJ�) = ℎ67N;P(X) − �
∆/ 0 Y(��, �
).W�]A^

�]     (8) 

 

�̅7�N;P(XJ�) = �̅7�N;P(X) − �
∆/ 0 Z(ℎ, ��, �
).W�]A^

�]    (9) 

 

Equations (8) and (9) represent the advancing 

from time level WX to time level WXJ� of the 

variables ℎ67N;P and �̅7N;P� . The state of the system is 

known at the center of the calculation cells and it is 

defined by the cell-averaged values ℎ67N;P and �̅7N;P� . 

In this paper, the time integration of equations 

(8) and (9) is carried out by means of a third order 

accurate Strong Stability Preserving Runge-Kutta 

method (SSPRK) reported in [9]. The SSPRK 

method can be written in compact form as follows 

 

ℎ67N;P(_) = ℎ67N;P(X)
  ; �̅7�N;P(_) = �̅7�N;P(X)

                 (10) 

 

ℎ67N;P(`) = ∑ <Ω`aℎN,P(a) + ∆Wb`aY ���(a), �
(a)"C`K�aD_  

                 (11) 

�̅7�N;P(`) =
∑ <Ω`a�̅7N;P� (a) + ∆Wb`aZ �ℎ(a), ��(a), �
(a)"C`K�aD_  

                 (12) 

 

ℎ67N;P(XJ�) = ℎ67N;P(c)
  ; �̅7�N;P(XJ�) = �̅7�N;P(c)

             (13) 

 

where d = 1,2,3. See [9] for the Ω`a and b`a 

values. 

For the calculation of the Y(��, �
) and Z(ℎ,��, �
) terms, the numerical approximation of 

integrals on the right-hand side of equations (6) and 

(7) is required. This calculation is based on the 

following sequence 

 

1. Starting from cell averaged values, the point 

values of the unknown variables at the centre of 

the contour segments which define the 

calculation cells are computed by means of 

WENO reconstructions. Two WENO 

reconstructions defined on two adjacent cells 

are used to get two point values of the unknown 

variables at the centre of the contour segment 

which is common with the two adjacent cells. 

 

2. The point values of the unknown variables at 

the centre of the contour segments are 

advanced in time by means of the so-called 

exact solution of a local Riemann problem, 

with initial data given by the pair of point-

values computed by two WENO 

reconstructions defined on the two adjacent 

cells. In accordance with the procedure 

proposed by [7], all Riemann problems are 

solved in a locally valid orthonormal basis. 

This orthonormalization allows to solve 

Cartesian Riemann problems that are devoid of 

metric terms. 

 

3. The spatial integrals that define the Y(��, �
) 

and Z(ℎ, ��, �
) terms are numerically 

approximated by means of a high order 

quadrature rule, starting from point values of 

the dependent variables computed at the 

previous step. 

 

In the numerical integration of the equations of 

motion (6) and (7) a particular treatment of the 

advancing solution of the shallow water equations 

on dry bed (wet and dry front) is requested. In order 

to simulate the wet and dry front, the following 

original procedure is proposed. 

For the sake of brevity the procedure of the wet 

and dry front is exposed referenced to a line which 

is parallel to the curvilinear coordinate line 

. At 

the centre of the segments which separate the dry 

cell RN;P from the wet cell RNK�;P, point values of the 

unknown variables are reconstructed, by means of 

an asymmetric WENO reconstruction defined on the 

wet cell. For example, at the centre of the segment 

which is the interface between dry cell RN;P and wet 

cell RNK�;P, WENO reconstructions defined on the 

RNK�;P cell lead to the evaluation of the variables 

ℎNK� 
⁄ ;P(X)K
 and ��NK� 
⁄ ;P(X)K

. The advancing in time is 

carried out by means of the exact solution of an 

apposite Riemann problem, with initial data given 

by the pair of point-values computed by the WENO 

reconstruction. It must be noted that the point values 
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of the unknown variables ℎNK� 
⁄ ;P(X)J
 and ��NK� 
⁄ ;P(X)J

 are 

equal to zero because they belong to the dry cell RN;P. 

Let us define h�(X)
 and i�(X)

 as the depth-

averaged components that are respectively normal 

and tangential to the coordinate line 

. By defining 

��(�) ����j  and ��(
) ��

j  as the unit vectors which 

are respectively normal and tangential to the 

coordinate line 

 and by recalling the 

transformation relationships, eq. (1), the following 

transformation relations are obtained 

 

h�(X) = �^(])
�	�k^^                 (14) 

 

i�(X) = �^(])
�

k^!
√k!! + �!(])

� ��

               (15) 

 

For example, in the point of coordinates T
NK� 
⁄� ,F 
	F
P
U belonging to the segment that lies on the 

coordinate line 

, which is the interface of cells RNK�;P and RN;P, the WENO reconstruction lead to the 

definition of the point values of dependent variables 

ℎNK� 
⁄ ;P(X)K
, h�NK� 
⁄ ;P

(X)K
 and i�NK� 
⁄ ;P(X)K

. 

Let define as ℎNK� 
⁄ ;P(XJ�)∗
, h�NK� 
⁄ ;P

(XJ�)∗
 and i�NK� 
⁄ ;P(XJ�)∗

 the 

solution, at the advanced time level WXJ�, of the wet 

and dry Riemann problem defined by the hyperbolic 

homogeneous system of the shallow water 

equations, written in the locally valid orthonormal 

basis, and let nNK� 
⁄ ;P(XJ�)∗
 be the propagation velocity of 

the wet and dry front. The exact solution of this 

Riemann problem on the interface between the wet 

cell RNK�;P and the dry cell RN;P gives 

 

ℎNK� 
⁄ ;P(XJ�)∗ = �
H o�

c ph�NK� 
⁄ ;P
(X)K + 2 ��ℎNK� 
⁄ ;P(X)K "

^
!qr

^
!
  (16) 

 

h�NK� 
⁄ ;P
(XJ�)∗ = �

c ph�NK� 
⁄ ;P
(X)K + 2 ��ℎNK� 
⁄ ;P(X)K "

^
!q         (17) 

 

i�NK� 
⁄ ;P(XJ�)∗ = i�NK� 
⁄ ;P(X)K
                (18)  

 

nNK� 
⁄ ;P(XJ�)∗ = h�NK� 
⁄ ;P
(X)K + 2 ��ℎNK� 
⁄ ;P(X)K "

^
!
                (19) 

 

Let .s.NK� 
⁄ ;P(XJ�)
 be the distance of the wet and 

dry front to the interface between the wet cell RNK�;P 

and the dry cell RN;P. Such distance is given by 

 

.s.NK� 
⁄ ;P(XJ�) = .s.NK� 
⁄ ;P(X) +  

  ph�NK� 
⁄ ;P
(X)K + 2 ��ℎNK� 
⁄ ;P(X)K "

^
!q ∆1            (20) 

 

where ∆1 is the time step. Finally, by an inverse 

transformation of the reference system, the solution 

of the Riemann problem in the curvilinear 

coordinate system is evaluated. 

 

 

4 Rio Fucino dam-break simulation 

The proposed model is used to simulate the shock 

wave caused by the instantaneous Rio Fucino dam-

break. Table 1 shows the significant data of the dam 

and of the reservoir as reported by the Operating 

Conditions and Maintenance Template of the dam 

operator. 

 
Table 1: Rio Fucino dam and Campotosto reservoir 

significant data as reported by the Operating Conditions 

and Maintenance Template 

 

Maximum height     49m 

Full supply level     39m 

Crest length     154m 

Capacity     218·10
6
m

3
 

 

The simulation of the shock wave generated by 

the instantaneous Rio Fucino dam-break has been 

carried out in the case in which the initial level 

coincides with the full supply level (see Table 1). 

The computational domain reproduces a wide 

area including the Campotosto reservoir and a 

segment of the Rio Fucino River that stretches out 

over 23,5km downstream the dam. At the end of 

such segment (last 2,3km), the width of the 

computational domain settles to around 1km, in 

such a way to include the areas occupied by the 

buildings included in the town of Montorio al 

Vomano. At the upstream boundary of the 

computational domain a flow closed boundary 

condition has been adopted, while at the 

downstream boundary of the computational domain 

a zero gradient boundary condition is applied once 

the shock-wave front has reached the boundary. The 

above simulation is performed using a curvilinear 

grid which is made up of 25843cells. Figure 1 

shows a detail of such curvilinear grid which 

includes the Campotosto reservoir and the Rio 

Fucino dam. The Manning's coefficient is set to 

0.05m
-1/3

 and the Courant number is set equal to 

0.25. 
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Fig. 1: Curvilinear calculation grid

 

The numerical results allow us to deduce that the 

shock wave generated as the result of the 

instantaneous Rio Fucino dam-break spreads rapidly 

in the stretch of river downstream of the dam, 

reaching considerable heights in correspondence to 

the houses belonging to the Montorio al Vomano 

municipality. In fact, the time taken by the wave 

front to reach the first houses (about 21km from the 

dam) is about 66minutes and, once these have been 

hit by the shock wave, the maximum water height 

about 15m. 

 

(a) 

 

Curvilinear calculation grid detail. Campotosto reservoir and Rio Fucino dam.

allow us to deduce that the 

ve generated as the result of the 

break spreads rapidly 

in the stretch of river downstream of the dam, 

reaching considerable heights in correspondence to 

the houses belonging to the Montorio al Vomano 

time taken by the wave 

front to reach the first houses (about 21km from the 

once these have been 

the maximum water height is 

Figure 2 shows the spreading of the wave front

over the Vomano valley 

Figure 2 shows how the presented model 

simulate the advancing of the wave front and the 

evolution of the boundaries of the wet area

complex geometries of the stretch of river 

downstream the Rio Fucino dam.

observing Figure 2 it is also possible to notice the 

high degree of irregularity of the computational 

domain corresponding to the sharp bends of the 

river in the area that precedes the 

section.

 (b) 

  

. Campotosto reservoir and Rio Fucino dam. 

Figure 2 shows the spreading of the wave front 

valley after the dam failure. 

Figure 2 shows how the presented model is able to 

the advancing of the wave front and the 

boundaries of the wet area over the 

of the stretch of river 

no dam. In particular, by 

t is also possible to notice the 

high degree of irregularity of the computational 

domain corresponding to the sharp bends of the 

in the area that precedes the considered final 
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(c) 

Fig. 2: Spreading of the shock 

Instantaneous elevation of the shock wave at 

The numerical results have been used in order to 

realize the flood map downstream of the Rio Fucino 

dam (Figure 3) corresponding to the 

subsequent emptying of the Campotosto reservoir

in the case of initial full supply water 

 

Fig. 3: Detail of the flood map downstream of the Rio Fucino dam

 

 

(d) 

 

shock wave front over the Vomano River valley floor after the dam failure

Instantaneous elevation of the shock wave at (a) t=62.5min, (b) t=68.5min, (c) t=71.25min

 

The numerical results have been used in order to 

downstream of the Rio Fucino 

 dam-break and 

mptying of the Campotosto reservoir, 

water level. By 

observing Figure 3 it can be d

supply water level, the dam

flooding of a considerable portion of the Montorio 

al Vomano municipality. 

 

 
map downstream of the Rio Fucino dam over the Vomano River valley floor

 

 

front over the Vomano River valley floor after the dam failure. 

t=71.25min, (d) t=73.75min 

observing Figure 3 it can be deduced that, for a full 

dam-break would lead to the 

flooding of a considerable portion of the Montorio 

 

over the Vomano River valley floor 
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5 Conclusion 

In this paper a dam-break flood model based on a 

contravariant integral form of the shallow water 

equations is presented. This model is used in order 

to simulate the dam-break phenomenon over 

computational domains characterized by complex 

shapes. The advancing in time of the flood wave 

front is carried out by means of an original wet and 

dry scheme. The presented model is used to 

simulate the shock (flood) wave caused by the 

instantaneous Rio Fucino dam-break. The 

simulation results make it possible to deduce that 

the shock wave reaches considerable water heights 

in correspondence to the houses belonging to the 

Montorio al Vomano municipality. 
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