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Abstract: In the previous papers [1] and [6] the authors introduced in the Buffon-Laplace type problems so-called
obstacles. They considered two lattices and considering a classic Buffon type problem introducing in the first

moment the maximum value of probability, i.e. reducing the probability interval and in the second considering
an irregular lattice. In [5] Caristi and Ferrara considered also a Buffon type problem considering the possibles
deformations of the lattice and in [2] Caristi, Puglisi and Stoka considered another particular regular lattices with
eight sides. Fengfan and Deyi [4] study similar problem using two concepts, the generalized support function and
restricted chord function, both referring to the convex set, which were introduced by Delin in [3]. In this paper,
we consider another particular irregular lattice (see fig. 1) and considering the formula of the kinematic measure
of Poincaré [7] and the result of Stoka [9] we study a Buffon problem for this irregular lattice. We determine the
probability of intersection of a body test needle of length [, [ < 3.
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1 Preliminaires

In this section we present some results and considera-
tions that will be needed in the rest of the paper.

Consider the irreguar lattice 3t with a fundamental
region Cy composed of the union by four trinagles and
an exagon (fig. 1) with a < b:
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We know that, any congruent polygon can be in-
laid in a plane. In this way we obtain a lattice that
covers the plane. A set of points in the plane is called
a domain if it is open and connected. A set of points
is called a region if it is the union of a domain with
some, or all of its boundary points. From the lattice of
fundamental regions in the plane, we understand a se-
quence of congruent regions that represent the Santalo
conditions [8]:
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With the notations of this figure we have

2
b= Eactgoc, IGL| = |HM| = |LE| =
a
MF| = ,
| | 3sin a
2
2
areaCy = %, Arctgg <a< %

We want to compute the probability that a seg-
ment s with random position and of constant length
[, < % intersects a side of lattice &, i.e. the prob-
ability P;,; that a segment s intersects a side of the
fundamental cell Cj.

The position of the segment s is determinated by
its middle point and by the angle ¢ that s formed with
the line AD o BC.

To compute the probability P;,; we consider the
limiting positions of segment s, for a specified value
of ¢, in the cells Cy;, (i = 1,2, 3)(fig.2).
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fig.2

By denoting M; (i = 1,...,5) as the set of seg-
ments s which have their center in C; and N; the set
of segments s all contained in the cell Cp; we have
[9]:

o Z?:l o (N;)

P’L?’lt - 1 - 57

21 b (M)

where 4 is the Lebesgue measure in the Euclidean
plane.

To compute the above measure p (M;) and p (N;)
we use the Poincaré kinematic measure [7] dk = dx A
dy A dp, where x, y are the coordinates of the middle
point of s and ¢ is the fixed angle.
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2 Main results

Considering that [ < § we can prove
Theorem. The probability that a random segment
s of constant length [ < g intersects a side of lattice

R is:

3tgo al
-Pint - g {

L L R YRS
(m — 2a) a? 3( st

ctga + Setgacos a) +

l2
Y [3 + 2sin 2 — 5 cos 2a+ 2)

(1 —tga + ctga) (m — 2a)]} .

Proof. Taking into account the symmetries of the
lattice and the different values of ¢ we have:

5
areaCo (p) = areaCoy — Z areaa; (),

i=1
R 5
areaCyz () = areaCpa — Z areab; (¢)
i=1

5
areaCos () = areaCyz — Z areac; ().
i=1
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5
area@m (p) = areaCyy — Z aread; ()
=1
R 5
areaCys () = areaCps — Z areae; ()
i=1

We obtain that:

N(Mi)—/2d‘/7// drdy =
a {(z,y)eCoi }

™

2 ™
/a (areaCy;) dp = (5 — a) areaCl;,

(i=1,..,5).
then

25:” (M;) = (g - a> i: areaCpy; =

=1

v (7 —2a)ctga ,
(5 - a) areaCy = #a . 3

In same way to compute /. (N;) we have that:

5
A1 (p) = A3 () = Y areaa; () =

=1

al .
3 [ctgacos @ + (ctgp + 1) sin ] —

12
7 [(1+ ctga) sin2¢ + 1 — cos 2¢] ,

5
Az (p) = Aa(p) = ) areab; () =
=1

al .
3 (cos ¢ + ctgasin p) —

2
1 [2s8in2¢ + (tga — ctga) cos 2 + tga + ctgal,

and

8
l
As () = E areae; (¢) = % (cos p + ctgasinp) —
i=1

2
1 [sin 2 — tgacos 2¢ — tgal.
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Then we obtain that:

,u(Ni):/Qdcp// R dxdy =
o {@y)eCoi(p) }

/a : [area(j’m (@)] dp = /a ’

(g — a) areaCy; — /g [A; (p)] dep.

«

lareaCo; — A; (p)] dp =

and

(7= 2a) ctga
D T

/f z;fh ()

In the end, from (1), (3) and (4) we obtain the
probability (2).

dep. “
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