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Abstract: This paper studies the cooperation or competition relationship from the perspective of dynamic games,
where two and three firms are considered, respectively. The associated mathematical models are described by
systems with nonlinear delayed differential equations. The equilibrium points are determined and the existence of
the Hopf bifurcation is investigated. The conclusions and future works are provided.
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1 Introduction
The economical evolutionary game comes from the
biological evolutionary theory which relies on the idea
of the survival of the fittest entity that it is based on the
interaction of behavior strategy and the iteration pro-
cess. It can use differential equations for modeling
the choice of the population among strategies. Each
player gains a fitness associated to a certain strategy
[12]. The strategy of choice is the one that provides a
payoff greater than or equal to the average payoff. A
standard approach is one of the replicator dynamics,
where the relative adjustment of the strategy dynam-
ics is proportional to the range of payoffs that is more
than the average payoff. In the existing literature, due
to the fact that the outcome of a chosen strategy in-
volves delays, there has been several works that stud-
ied the delayed replicator dynamics as shown in [1],
[3], [5], [9], [11], [15].

The evolutionary game theory takes into account
the bounded rationality, repeatedly performs game ac-
tivities through constant imitating and learning [10].
The replicator dynamics describes the strategy evolu-
tion and is given by an ordinary differential equation
[14]. In [2], the authors analyze the replicator dynam-
ics with distributed delays. In [11], a single fixed de-
lay is considered in the fitness function and the critical
delay is determined when the stability of the equilib-
rium point is lost. In [15], the existence of the Hopf
bifurcation in the two-strategy replicator equations is
examined, where the time delay is included in the fit-
ness of each strategy.

Based on the previous considerations, in Section
2 we present the mathematical model that describes

two firms as bounded rational players in a game which
have to choose between two strategies, one being co-
operation and the other one competition. Section 3
analyses the existence of the Hopf bifurcation. In Sec-
tion 4 we study the mathematical model with three
firms and two strategies. Section 5 provides the con-
clusions and future works.

2 The mathematical model for two
firms and two strategies

First of all, we consider two firms as bounded ra-
tional players in a game which have to choose be-
tween two strategies, one being cooperation and the
other one competition. The difference between the
two strategies is related to the cost to be paid by each
player when they choose cooperation while the cost is
0 when the competition is preferred.

When both players go for cooperation, the re-
sources and benefits are shared. Leta1 andb1 be the
net income of the players, respectively.

In case of competition being chosen by both play-
ers, there are neither shared resources nor benefits,
each player pays the transaction cost alone and there-
fore the income is not shared. The net incomes area4
andb4, respectively.

When the players go for different strategies, for
the one which chooses cooperation it implies that
his/her resources are shared, the net income is uncer-
tain and the costs are greater than or equal to the ones
associated to the cooperation of two sides. For the one
which chooses competition it implies: neither his/her
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resources nor the net income are shared and the cost
is0.

If the first firm chooses cooperation and the sec-
ond one chooses competition, the net income for the
first one isa2 and for the second one isb2. If the first
firm chooses competition and the second one chooses
cooperation, the net income for the first one isa3, and
for the second one isb3.

Based on the above considerations the payoffs
matrixes of the firms are given by:

Nr Portfolio Strategies Firm 1 Firm 2
1 x y a1 b1
2 x 1-y a2 b2
3 1-x y a3 b3
4 1-x 1-y a4 b4

The payoff of the first player in case of cooperati-
ve strategy is:

E(U1)x = ya1 + (1− y)a2 (1)

and
E(U1)1−x = ya3 + (1− y)a4. (2)

for a competitive strategy. Thus, the average payoff of
the mixed strategy is:

E(Ū1) = xE(U1)x + (1− x)E(U1)1−x. (3)

The preferred strategy is the one that delivers a
payoff greater than or equal to the average payoff.
The change rate of the probability for the first player
to choose cooperation is proportional to the range of
payoffs that is more than the average payoff [13]:

ẋ(t) = x(t)(E(U1)x − E(Ū1)). (4)

The payoff of the second player having a cooper-
ative strategy is:

E(U2)y = xb1 + (1− x)b3 (5)

and
E(U2)1−y = xb2 + (1− x)b4. (6)

for a competitive strategy. Thus, the average payoff of
the mixed strategy for the second player is:

E(Ū2) = yE(U2)y + (1− y)E(U2)1−y. (7)

Therefore, the change rate of the probability for
the second player to choose cooperation is propor-
tional to the range of payoffs that is more than the
average payoff:

ẏ(t) = y(t)(E(U2)y − E(Ū2)). (8)

Replacing (1) with (2) in (3) and (5) with (6) in
(7) we obtain the dynamic replicator is given by:

ẋ(t) = x(t)(1 − x(t))(α0 + α2y(t))
ẏ(t) = y(t)(1− y(t))(β0 + β1x(t))

(9)

where

α0 = a2 − a4, α2 = a1 − a2 − a3 + a4 (10)

β0 = b3 − b4, β1 = b1 − b2 − b3 + b4. (11)

Due to the fact that a firm chooses a strategy at
time t, the payoff is gained after a delay, in what fol-
lowing we analyze the dynamic replicator with time
delay given by:

ẋ(t) = x(t)(1 − x(t− τ1))(α0 + α2y(t))
ẏ(t) = y(t)(1− y(t− τ2))(β0 + β1x(t))

(12)

with τ1 ≥ 0, τ2 ≥ 0.

3 Hopf bifurcation analysis

The equilibrium points of (12) are:O(0, 0), A(0, 1),
B(1, 0), C(1, 1).

If d1 = −α0

α2
and d2 = −β0

β1
with |β0| < |β1|,

β0β1 < 0, |α0| < |α2|, α0α2 < 0, thenD(d1, d2) is
an equilibrium point as well.

Let E(x0, y0) be an equilibrium point. The cha-
racteristic equation of (12) is given by:

λ2 − (a11 + a22)λ+ a11a22 − a12a21−
−b22(λ− a11)e

−λτ2 − b11(λ− a22)e
−λτ1+

b11b22e
−λ(τ1+τ2) = 0,

(13)

where

a11 = (1− x0)(α0 + α2y0),
b11 = −x0(α0 + α2y0),
a22 = (1− y0)(β0 + β1x0),
b22 = −y0(β0 + β1x0),
a12 = x0(1− x0)α2, a21 = y0(1− y0)β1.

(14)

Using (13) and (14) we have:

Proposition 1 If a2 − a4 < 0, b3 − b4 < 0, the equi-
librium pointO(0, 0) is locally asymptotically stable,
for all τ1 ≥ 0, τ2 ≥ 0.

Proposition 2 If a1 − a3 < 0, b3 − b4 > 0, τ2 = 0,
the equilibrium pointA(0, 1) is locally asymptotically
stable, for allτ1 ≥ 0.
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If τ2 > 0, then the characteristic equation (13) is:

(λ− (a1 − a3))(λ + (b3 − b4)e
−λτ2) = 0. (15)

Let a1 − a3 < 0, b3 − b4 > 0, τ2 > 0. Let
λ = −iω0 be a root of the equation:

λ+ (b3 − b4)e
−λτ2 = 0. (16)

From (16) we obtain:

ω0 = b3 − b4, τ20 =
π

2(b3 − b4)
.

Then:

Proposition 3 If a1 − a3 < 0, b3 − b4 > 0, the equi-
librium pointA(0, 1) is locally asymptotically stable,
for τ1 = 0, 0 < τ2 < τ20. Whenτ2 = τ20 a Hopf
bifurcation occurs.

Proposition 4 If there are no delays,b1 − b2 < 0,
a2 − a4 > 0, the equilibrium pointB(1, 0) is locally
asymptotically stable. Ifb1 − b2 < 0, a2 − a4 > 0,
B(1, 0) is locally asymptotically stable, for any0 <

τ1 < τ10. Whenτ10 =
π

2(a2 − a4)
a Hopf bifurcation

occurs.

Proposition 5 If there are no delays anda1−a3 > 0,
b1 − b2 > 0, the equilibrium pointC(1, 1) is locally
asymptotically stable. Ifa1 − a3 > 0, b1 − b2 >
0, C(1, 1) is locally asymptotically stable, for any
0 < τ1, τ2 < min{τ10, τ20} = τ12, whereτ10 =

π

2(a1 − a3)
, τ20 =

π

2(b1 − b2)
. A Hopf bifurcation

occurs whenτ1 = τ2 = τ12.

Proposition 6 If τ1 = 0, τ2 = 0 the equilibrium point
D(d1, d2) is a saddle point.

4 The mathematical model with
three firms and two strategies

LetFi, i = 1, 2, 3 be three firms. FirmF1 chooses co-
operation with the probabilityx(0 ≤ x ≤ 1) and then
the probability1 − x is the probability for competi-
tion. FirmF2 chooses cooperation with the probabil-
ity y(0 ≤ y ≤ 1) and competition with1− y. For the
third firm the associated probabilities arez and1− z.

In the tripartite game there are eight portfolio
strategies and the corresponding payoffs are:

Nr Strategies Firm 1 Firm 2 Firm 3
1 x y z a1 b1 c1
2 x y 1-z a2 b2 c2
3 x 1-y z a3 b3 c3
4 x 1-y 1-z a4 b4 c4
5 1-x y z a5 b5 c5
6 1-x y 1-z a6 b6 c6
7 1-x 1-y z a7 b7 c7
8 1-x 1-y 1-z a8 b8 c8

In a similar case as in the previous case the de-
layed dynamics replicator is given by:

ẋ(t) = x(t)(1 − x(t− τ1))(α0 + α2y(t) + α3z(t)+
+α23y(t)z(y))
ẏ(t) = y(t)(1− y(t− τ2))(β0 + β1x(t) + β3z(t)+
+β13x(t)z(t))
ż(t) = z(t)(1− z(t− τ3))(γ0 + γ1x(t) + γ2y(t)+
+γ12x(t)y(t))

(17)
with τ1 ≥ 0, τ2 ≥ 0, τ3 ≥ 0 and

α0 = a4 − a8, α2 = a2 − a4 − a6 + a8,

α3 = a3 − a4 − a7 + a8,

α23 = a1 − a2 − a3 + a4 − a5 + a6 + a7 − a8,

β0 = b6 − b8, β1 = b2 − b4 − b6 + b8,

β3 = b5 − b6 − b7 + b8,

β13 = b1 − b2 − b3 + b4 − b5 + b6 + b7 − b8,

γ0 = c7 − c8, γ1 = c3 − c4 − c7 + c8,

γ2 = c5 − c6 − c7 + c8,

γ12 = c1 − c2 − c3 + c4 − c6 + c7 − c8.
(18)

The equilibrium point that do not depend on the
coefficients of the matrix are:A0(0, 0, 0), A1(1, 0, 0),
A2(0, 1, 0), A3(0, 0, 1), A12(1, 1, 0), A13(1, 0, 1),
A23(0, 1, 1), A123(1, 1, 1).

Let S(x0, y0, z0) be an equilibrium point. The
characteristic equation of (19) is given by:

(λ− a11 − b11e
−λτ1)(λ− a22 − b22e

−λτ2)·
·(λ−a33−b33e

−λτ3)−(a13a31+a12a21+a23a32)λ−
−a12a23a31 − a21a32a13 + a13a31a21 + a12a21a33+
+a23a32a11 + a13a31b22e

−λτ2 + a12a21b33e
−λτ3+

+a23a32b11e
−λτ1 = 0,

(19)
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where

a11 = (1− x0)(α0 + α2y0 + α3z0 + α23y0z0),
a22 = (1− y0)(β0 + β1x0 + β3z0 + β13x0z0),
a33 = (1− z0)(γ0 + γ1x0 + γ2y0 + γ12x0y0),
a12 = x0(1− x0)(α2 + α0z0),
a21 = y0(1− y0)(β1 + β13z0),
a13 = x0(1− x0)(α3 + α23y0),
a31 = z0(1− z0)(α1 + α12y0),
a23 = y0(1− y0)(α3 + α23y0),
a32 = z0(1− z0)(γ2 + γ12x0),
b11 = −x0(α0 + α2y0 + α3z0 + α23y0z0),
b22 = −y0(β0 + β1x0 + β3z0 + β13x0z0),
b23 = y0(1− y0)(β3 + β13x0),
b33 = −z0(γ0 + γ1x0 + γ2y0 + γ12x0y0).

(20)
Using (19) and (20) we have the following state-

ments:

Proposition 7 If a4−a8 < 0, b6−b8 < 0, c7−c8 < 0
the equilibrium pointA0(0, 0, 0) is locally asymptoti-
cally stable, for allτ1 ≥ 0, τ2 ≥ 0, τ3 ≥ 0.

Proposition 8 If a4−a8 > 0, b4−b2 < 0, c4−c3 < 0,
τi = 0, i = 1, 2, 3, the equilibrium pointA1(1, 0, 0)
is locally asymptotically stable. Ifa4 − a8 > 0, b4 −
b2 < 0, c4 − c3 < 0 and τ1 ∈ [0, τ10), whereτ10 =

π

2(a4 − a8)
, thenA1(1, 0, 0) is locally asymptotically

stable for anyτ2 ≥ 0, τ3 ≥ 0. A Hopf bifurcation
occurs whenτ1 = τ10.

Proposition 9 If a2−a6 < 0, b6−b8 > 0, c5−c6 < 0,
τi = 0, i = 1, 2, 3, the equilibrium pointA2(0, 1, 0)
is locally asymptotically stable. Ifa2 − a6 < 0, b6 −
b8 > 0, c5 − c6 < 0 and τ2 ∈ [0, τ20), whereτ20 =

π

2(b6 − b8)
, thenA2(0, 1, 0) is locally asymptotically

stable for anyτ1 ≥ 0, τ3 ≥ 0. A Hopf bifurcation
occurs whenτ2 = τ20.

Proposition 10 If a3 − a7 < 0, b5 − b7 < 0, c7 −
c8 > 0, τi = 0, i = 1, 2, 3, the equilibrium point
A3(0, 0, 1) is locally asymptotically stable. Ifa3 −
a7 < 0, b5 − b7 < 0, c7 − c8 > 0 and τ3 ∈ [0, τ30),

whereτ30 =
π

2(c7 − c8)
, thenA3(0, 0, 1) is locally

asymptotically stable for anyτ1 ≥ 0, τ2 ≥ 0. A Hopf
bifurcation occurs whenτ3 = τ30.

Proposition 11 If a2 − a6 > 0, b2 − b4 > 0,
c3 − c4 + c5 − c6 − c7 + c8 > 0, τi = 0, i = 1, 2, 3
the equilibrium pointA12(1, 1, 0) is locally asymp-
totically stable. If a2 − a6 > 0, b2 − b4 > 0,
c3−c4+c5−c6−c7+c8 > 0 andτ1 = τ2 ∈ [0, τ12),

whereτ12 = min{τ10, τ20}, τ10 =
π

2(a2 − a6)
, τ20 =

π

2(b2 − b4)
, thenA12(1, 1, 0) is locally asymptotically

stable for anyτ3 ≥ 0. A Hopf bifurcation occurs when
τ1 = τ2 = τ12.

Proposition 12 If a3−a7 > 0, b2−b4+b5−b6−b7+
b8 < 0, c3 − c4 > 0, τ1 = τ2 = τ3 = 0, the equilib-
rium pointA13(1, 0, 1) is locally asymptotically sta-
ble. If a3 − a7 > 0, b2 − b4 + b5 − b6 − b7 + b8 < 0,
c3 − c4 > 0 and τ1 = τ3 ∈ [0, τ13), whereτ13 =

min{τ10, τ30}, τ10 =
π

2(a3 − a7)
, τ30 =

π

2(c6 − c4)
,

thenA13(1, 0, 1) is locally asymptotically stable for
any τ2 ≥ 0. A Hopf bifurcation occurs whenτ1 =
τ3 = τ13.

Proposition 13 If a1 − a5 < 0, b7 − b5 > 0,
c6 − c5 > 0, τ1 = τ2 = τ3 = 0, the equilib-
rium pointA23(0, 1, 1) is locally asymptotically sta-
ble. If a1 − a5 < 0, b7 − b5 > 0, c6 − c5 > 0 and
τ2 = τ3 ∈ [0, τ23), whereτ23 = min{τ20, τ30}, τ20 =

π

2(b7 − b5)
, τ30 =

π

2(c6 − c5)
, thenA23(0, 1, 1) is lo-

cally asymptotically stable for anyτ1 ≥ 0. A Hopf
bifurcation occurs whenτ2 = τ3 = τ23.

Proposition 14 If a1 − a5 > 0, b1 − b3 > 0, c2 −
c1 > 0, τ1 = τ2 = τ3 = 0, the equilibrium point
A123(1, 1, 1) is locally asymptotically stable. Ifa1 −
a5 > 0, b1 − b3 > 0, c2 − c1 > 0 and τ1 = τ2 =
τ3 ∈ [0, τ123), whereτ23 = min{τ10, τ20, τ30}, τ10 =

π

2(a1 − a5)
, τ20 =

π

2(b1 − b3)
, τ30 =

π

2(c2 − c1)
,

thenA123(1, 1, 1) is locally asymptotically stable. A
Hopf bifurcation occurs whenτ1 = τ2 = τ3 = τ123.

The equilibrium points that depend on the
model’s parameters are unstable.

5 Numerical simulations

For the numerical simulations, with respect to the
mathematical model with two firms and two strate-
gies, we consider the following values for the param-
eters: a1 = 0.3, a2 = 0.3, a3 = 0.4, a4 = 0.5,
b1 = 0.2, b2 = 0.5, b3 = 0.4, b4 = 0.8. From
Proposition 1, the equilibrium point is(0, 0) is locally
asymptotically stable for anyτ1 ≥ 0, τ2 ≥ 0 and the
orbits of(t, x(t)), (t, y(t)) can be visualized in Fig. 1
and Fig. 2:
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Fig. 2. (t, y(t))

For a1 = 0.4, a2 = 0.5, a3 = 0.1, a4 = 0.1, b1 =
0.4, b2 = 0.2, b3 = 0.8, b4 = 0.4, from Proposition 5
in the neighbourhood of the equilibrium pointC(1, 1)
there is a Hopf bifurcation forτ1 = 5.058 andτ2 =
1.93. We can visualize the orbits of(t, x(t)), (t, y(t))
in Fig. 3 and Fig. 4:
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For the mathematical model with three firms and
two strategies, we use the following values for the pa-
rameters:a1 = 0.2, a2 = 0.3, a3 = 0.4, a4 = 0.8,
a5 = 0.1, a6 = 0.6, a7 = 0.1, a8 = 0.1, b1 = 0.6,
b2 = 0.2, b3 = 0.1, b4 = 0.6, b5 = 0.3, b6 = 0.8,
b7 = 0.2, b8 = 0.2, c1 = 0.4, c2 = 0.8, c3 = 0.2,
c4 = 0.1, c5 = 0.3, c6 = 0.6, c7 = 0.3, c8 = 0.7.
From Proposition 9 in the neighbourhood of the equi-
librium point A2(0, 1, 0) there is a Hopf bifurcation
for τ20 = 2.85. Fig. 5, Fig. 6 and Fig. 7 show the
orbits of(t, x(t)), (t, y(t)), (t, z(t)):
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6 Conclusions

This paper formulates the mathematical models of
cooperation and competition relationship among two
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and three firms from the dynamical games point of
view. For both cases the models are described by non-
linear systems with delayed differential equations. We
have introduced time delays, because the choice of
a strategy at timet leads to the payoff after a time
delay. The equilibrium points have been determined
and their local asymptotic stability has been analyzed.
The existence of the Hopf bifurcation has been stud-
ied. We have found periodic solutions due to the intro-
duction of lags. As in [4] the study will be continued
by considering distributed time delays and numerical
simulations will be carry out. Moreover, the stochas-
tic approach can be taken into consideration as in [8].
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