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Abstract: Consider a portfolio choice problem maximizing the expected return and simultaneously minimizing

a general (and frequently coherent) risk measure. This paper shows that every stock (or stock index) is often

outperformed by a buy and hold strategy containing some of its derivatives and the underlying stock itself. As a

consequence, every investment only containing international benchmarks will not be efficient, and the investors

must properly add some derivatives. Though there is still a controversy, this finding had been pointed out in

dynamic frameworks, but the novelty is that one does not need to rebalance the portfolio of derivatives before their

expiration date. This is very important in practice because transaction costs are sometimes significant when trading

derivatives.
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1 Introduction

There are many papers whose main purpose is to study

whether it is or it is not interesting to incorporate

derivatives in order to compose efficient portfolios

(Ahn et al., 1999, Haugh and Lo, 2001, Constanti-

nides et al., 2011, etc.). Actually, though there still

exits some controversy, it is becoming accepted that

derivatives are frequently useful. This usefulness has

been empirically pointed out by Balbás et al. (2016a),

among others. They showed that the most important

international stock indices may be outperformed (ac-

cording to the Sharpe ratio) by combinations of their

derivatives. Nevertheless, these authors dealt with a

dynamic framework, and the investor had to rebal-

ance her/his position frequently, provoking frictions

and other transaction costs.

In this paper we will prove that derivatives also

allow us to improve the portfolio (risk, return) if

one is looking for a buy and hold strategy, i.e.,
if the investment is not going to be rebalanced

within a significant time interval. Since the re-

turn variance (or the return standard deviation) is

not a good risk measure when dealing with deriv-

atives and other asymmetric securities because it is

not compatible with the second order stochastic dom-

inance (Ogryczak and Ruszczynski, 1999), we have

selected alternative risk measures such as the condi-

tional value at risk (CV aR, Rockafellar and Uryasev,

2000) the weighted CV aR (WCV aR, Rockafellar et

al., 2006), and other recently introduced risk measures

(Goovaerts and Laeven, 2008, Aumann and Serrano,

2008, Artzner et al., 1999, Rockafellar et al., 2006,

etc.). Furthermore, in order to get a model-free ap-

proach, we will also deal with worst case risk mea-

sures such as the robust CV aR (RCV aR, Balbás et

al., 2016b).1

The paper outline is as follows. Section 2 will be

devoted to fixing notations and assumptions. The buy

and hold portfolio choice problem will be presented

and studied in Section 3. The most important results

will be the necessary and sufficient optimality condi-

tions of Theorem 1 and Corollary 2, as well as the

characterization of Theorem 5, where we will show

that the absence of derivatives in the optimal strategy

1It is worth to pointing out that many classical actuarial and/or

financial problems have been revisited with the new risk measure-

ment methodologies (Kalichenko et al., 2012, Guan and Liang,

2014, Peng and Wang, 2016, Zhuang et al., 2016, etc.).
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only holds under very restrictive assumptions. Be-

sides, Remark 6 will show that the conditions of The-

orem 5 will barely hold if prices are given by a the-

oretical asset pricing model (binomial model, Black

and Scholes, stochastic volatility, etc.).

We will present a simple numerical example in

Section 4. This example will be very illustrative since

it will show that the approach may be really model-

free, and only the information provided by the market

(i.e., the market quotations) may matter. This is im-

portant because several reasons may provoke signifi-

cant discrepancies between the theoretical prices pro-

vided by the available pricing models and the real quo-

tations reflected by a real derivative market (Davis, et

al., 1993, Bondarenko, 2014, etc.). Moreover, the ex-

periment of Section 4 will clearly illustrate how deriv-

atives will really improve the portfolio performance,

and therefore some derivatives will often belong to the

optimal portfolio.

The last section presents the main conclusions of

the paper.

2 Preliminaries and Notations

Consider the probability space (Ω,F , IP) composed

of the set of states of nature Ω, the σ−algebra F and

the probability measure IP. As usual, denote by L2 the

Hilbert space of real valued random variables y on Ω
such that IE

(
y2
)
< ∞, endowed with the inner prod-

uct (x, y) → IE (xy) and norm ‖y‖2 =
(
IE
(
y2
))1/2

,

IE (.) representing mathematical expectation. We will

be dealing with a finite collection of available secu-

rities {S0, S1, ..., Sm} ⊂ L2, where S0 = 1 will be

the riskless asset, and S1 will represent the underlying

asset of the rest of securities {S2, S3, ..., Sm}, which

will be European style derivatives with the same ex-

piration date T . Assume that {S0, S1, ..., Sm} are

linearly independent,2 and suppose that their current

prices p0 = 1, p1, ..., pm are observable in the mar-

ket. Since p0 = 1 we are considering a null interest

rate. Obviously, this assumption is not at all restric-

tive, and its fulfillment can be easily achieved by the

usual the normalization method. In order to prevent

some mathematical problems, impose Assumption 1
below;

Assumption 1 IP (Sj ≥ 0) = 1, j = 1, 2, ...,m.

Consequently, the absence of arbitrage implies that

pj > 0, j = 1, 2, ...,m. �

2i.e., there are no non-trivial linear combinations leading to

the null asset, or, equivalently, the range of the covariance matrix

of {S1, S2, ..., Sm} equals m.

If ρ : L2 −→ IR is a risk measure then ρ (y)
may be understood as the “risk” associated with the

wealth y, for every y ∈ L2. Let us assume that ρ sat-

isfies a representation theorem in the line of Artzner

et al. (1999) or Rockafellar et al. (2006). More pre-

cisely, consider the sub-gradient of ρ

∆ρ =
{
z ∈ L2;−IE (yz) ≤ ρ (y) ,∀y ∈ L2

}
⊂ L2

(1)

composed of those linear expressions lower than ρ.

∆ρ will be convex and weakly−compact (Schaeffer,

1970) and ρ will be its envelope, in the sense that

ρ (y) = Max {−IE (yz) ; z ∈ ∆ρ} (2)

will hold for every y ∈ L2. Furthermore, we will also

assume that

{1} ⊂ ∆ρ ⊂
{
z ∈ L2; IE (z) = 1

}
(3)

and

∆ρ ⊂
{
z ∈ L2; IP (z ≥ 0) = 1

}
. (4)

These assumptions are equivalent to the usual proper-

ties of continuity, sub-additivity, homogeneity, mean

dominance, translation invariance and monotonicity.

To sum up, we have:

Assumption 2 ρ : L2 −→ IR is continuous, sub-

additive (ρ (y1 + y2) ≤ ρ (y1) + ρ (y2) if y1, y2 ∈
L2), homogeneous (ρ (αy) = αρ (y) if y ∈ L2 and

α ≥ 0), mean dominating (ρ (y) ≥ −IE (y) if y ∈
L2), translation invariant (ρ (y + k) = ρ (y) − k if

y ∈ L2 and k ∈ IR) and decreasing (ρ (y1) ≤ ρ (y2)
if y1, y2 ∈ L2 and IP (y1 − y2 ≥ 0) = 1). �

The closed sub-space Y ⊂ L2 generated by the

m + 1 available assets will represent the set of pay-

offs which can be attained by means of a buy and hold

(or static) strategy, and the pricing rule

Π

 m∑
j=0

yjSj

 =

m∑
j=0

yjpj . (5)

will provide us with the current price of Portfolio

(yj)
m
j=0 ∈ IRm+1 (or Pay-off

∑m
j=0 yjSj). Hence,

Π : Y → IR may be understood as a linear and con-

tinuous real valued function on Y .

3 Portfolio choice problem

A usual in the Markowitz approach and in recent stud-

ies about portfolio selection involving risk measures

(Agarwal and Naik, 2004, Stoyanov et al., 2007, Bal-

bás et al., 2010, Dupacová and Kopa, 2014, Zhao
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and Xiao, 2016, etc.), the optimal investment strategy

will simultaneously maximize the expected return and

minimize the global risk. Thus, our main problem will

be 
Min ρ

(∑m
j=0 yjSj

)
∑m

j=0 yjpj ≤ 1

IE
(∑m

j=0 yjSj

)
≥ R

yj ∈ IR, j = 0, 1, ...,m

(6)

R > 1 denoting the desired expected return. Problem

(6) is convex due to Assumption 2. Bearing in mind

this assumption, (1), (2), (3) and (4), and proceeding

as in Balbás et al. (2013), one can prove the existence

of a linear dual problem characterizing the solutions

of (6). Hence, let us present the result below whose

proof will be omitted because a similar one is avail-

able in the cited reference.

Theorem 1 Consider Problem
Max Rµ− λ

IE

(
Sj
pj

(z + µ)

)
= λ, j = 0, 1, ...,m

λ ≥ 0, µ ≥ 0, z ∈ ∆ρ

(7)

(λ, µ, z) ∈ IR× IR× L2 being the decision variable.

a) If Problem (6) is feasible bounded then Prob-

lem (7) is feasible, bounded and solvable, and the op-

timal values of (6) and (7) coincide.

b) Suppose that y∗ is (6)-feasible and (λ∗, µ∗, z∗)
is (7)-feasible. Then, y∗ solves (6) and (λ∗, µ∗, z∗)
solves (7) if and only if the complementary slackness

conditions below
∑m

j=0 y
∗
j IE (Sjz) ≥

∑m
j=0 y

∗
j IE (Sjz

∗) , ∀z ∈ ∆ρ

λ∗
(

1−
∑m

j=0 pjy
∗
j

)
= 0

µ∗
(∑m

j=0 y
∗
j IE (Sj)−R

)
= 0

hold. �

The first constraint of Problem (6) allows us to

simplify the dual problem.

Corollary 2 Consider Problem
Min (R− 1)µ− 1

IE

(
Sj
pj

(z + µ)

)
= 1 + µ, j = 0, 1, ...,m

µ ≥ 0, z ∈ ∆ρ

(8)

(µ, z) ∈ IR× L2 being the decision variable.

a) If Problem (6) is feasible and bounded then

Problem (8) is feasible, bounded and solvable, and

the optimal values of (6) and (8) coincide.

b) Suppose that y∗ is (6)-feasible and (µ∗, z∗) is

(8)-feasible. Then, y∗ solves (6) and (µ∗, z∗) solves

(8) if and only if the complementary slackness condi-

tions below
∑m

j=0 y
∗
j IE (Sjz) ≥

∑m
j=0 y

∗
j IE (Sjz

∗) , ∀z ∈ ∆ρ∑m
j=0 pjy

∗
j = 1

µ∗
(∑m

j=0 y
∗
j IE (Sj)−R

)
= 0

(9)

hold.

Proof. Suppose that λ = 1 + µ must hold for every

(7)-feasible element (λ, µ, z) ∈ IR× IR× L2. Then,

the result will trivially follows from Theorem 1 above.

Besides, the relationship between λ and µ is an obvi-

ous consequence of (3) and the first constraint of (7)

for j = 0. �
Remark 3 Notice that the solution (µ∗, z∗) of (8)

does not depend on R > 1, and therefore this opti-

mization problem essentially remains the same if the

objective function is replaced by µ. Furthermore, due

to (3), the first constraint of (8) becomes obvious if

j = 0, and therefore straightforward manipulations

imply that (8) and Problem
Min µ

IE

(
Sj
z + µ

1 + µ

)
= pj , j = 1, ...,m

µ ≥ 0, z ∈ ∆ρ

(10)

are equivalent.

If (µ∗, z∗) solves (10), then Corollary 2a implies

that

ρ∗ (R) = (R− 1)µ∗ − 1 (11)

will be the relationship between the desired return

R > 1, and the associated optimal risk level ρ∗ (R).

Notice that (11) is an affine expression. This result

was already pointed out by Balbás et al. (2010) in

a more general setting. Since µ∗ is the slope of the

straight line (11), this parameter will be called the

market price of risk. �
As said in Section 2, S1 is a risky index (or share)

and the underlying asset of Sj , j = 2, 3, ...,m. Since

the (null) riskless rate may be attained with the risk-

less asset, it is natural to assume that investors will not

buy S1 for a similar or lower expected return. There-

fore, the assumption IE (S1) > p1 is natural too. Be-

sides, a positive relationship (slope) between the de-

sired expected return and the optimal risk is also con-

sistent with many classical findings in portfolio the-

ory. Thus, bearing in mind (11), it seems natural to

impose that µ∗ > 0. To sum up;
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Assumption 3 Inequalities IE (S1) > p1 and

µ∗ > 0 hold. �

Conditions (9) enable us to find the optimal strat-

egy when there are no available derivatives.

Lemma 4 Suppose that (6) is feasible, bounded and

solvable. Suppose that m = 1. Then, the solution of

(6) is {
y∗1 = (R− 1) / (IE (S1)− p1)
y∗0 = 1− p1y

∗
1

(12)

whereas every solution of (10) is characterized by{
µ∗ = (p1 + ρ (S1)) / (IE (S1)− p1)
IE (z∗S1) = −ρ (S1) and z∗ ∈ ∆ρ

(13)

Proof. The second and third condition of (9), along

with Assumption 3, trivially lead to (12). The first

condition of (9) implies that

y∗1IE (S1z) ≥ y∗1IE (S1z
∗) , ∀z ∈ ∆ρ.

Since the first equality of (12) implies that y∗1 > 0, we

have

IE (S1z) ≥ IE (S1z
∗) , ∀z ∈ ∆ρ,

and (2) trivially leads to the second equality of (13).

Lastly, the first equality in (13) trivially follows from

the first constraint in (10) and the equality IE (z∗S1) =
−ρ (S1).

Conversely, if (13) holds then it is easy to see that

(µ∗, z∗) is (10)-feasible and and therefore it solves the

problem because (10) is solvable (Corollary 2 and Re-

mark 3) and the proved implication shows that its op-

timal value is µ∗. �

Theorem 5 Suppose that m > 1. Suppose that (6) is

feasible, bounded and solvable. Consider a solution

(µ∗, z∗) of (10). The solution y∗ contains no deriva-

tives (i.e., y∗j = 0, j = 3, 4, ...,m) if and only if

IE

(
Sj
z∗ + µ∗

1 + µ∗

)
= pj , j = 2, ...,m. (14)

If so, (y∗0, y
∗
1) is given by (12) and (µ∗, z∗) is given by

(13).

Proof. If y∗ = (y∗0, y
∗
1, 0, ..., 0) solves (6) then

(y∗0, y
∗
1) solves the same problem when S2, S3, ..., Sm

are removed. Thus, Lemma 4 implies that (12) and

(13) must hold. Furthermore, the first constraint in

(10) implies (14).

Conversely, (14) implies the fulfillment of the first

constraint of (10), and the rest of constraints of (6) and

(10), along with the conditions in (9) become obvious

if we bear in mind that (6) is solvable due to the The-

orem assumptions. �

Remark 6 Suppose that the pricing rule Π of (5) can

be extended to the whole space L2, and the exten-

sion Π : L2 −→ IR is still denoted by Π and it is

an increasing and linear (and therefore continuous,

Schaeffer, 1974) function.3 Then, there exists a unique

zΠ ∈ L2 such that

Π (y) = IE (yzΠ) , (15)

holds for every y ∈ L2,

IP (zΠ > 0) = 1 (16)

and

IE (zΠ) = 1.

zΠ is usually called stochastic discount factor (SDF ,

Duffie,1988). Bearing in mind (15), if m > 1 then

Condition (14) in Theorem 5 holds if and only if

IE (SjzΠ) = IE

(
Sj
z∗ + µ∗

1 + µ∗

)
, j = 2, ...,m.

(17)

However, there will be many practical cases making

(17) infeasible and, consequently, implying that the

optimal buy and hold strategy will contain derivatives.

Indeed, suppose for instance that Log (zΠ) is not es-

sentially bounded for below.4 Since (4) and Assump-

tion 3 imply that

IP

(
z∗ + µ∗

1 + µ∗
≥ µ∗

1 + µ∗
> 0

)
= 1,

then we will have that

zΠ 6=
z∗ + µ∗

1 + µ∗
,

3Interesting particular cases arise if the set of market quo-

tations (pj)
m
j=0 perfectly fit the theoretical prices generated by

a complete pricing model (binomial model, Black and Scholes

model, etc.). If (pj)
m
j=0 fits the theoretical prices generated by an

incomplete pricing model then the extension Π : L2 −→ IR often

exists as well. For instance, it exists if the set Ω only contains

finitely many states (Harrison and Kreps, 1979). Therefore, cases

such as the usual trinomial models are also included in or analy-

sis. If Ω contains infinitely many states then the existence of Π is

also possible. For instance, though “formally” stochastic volatil-

ity models are incomplete, in practice it is assumed the existence

of volatility dependent assets making them complete. Otherwise

it would be impossible to use these models so as to give a unique

price of the usual derivatives. Further details about the existence

of Π under general conditions for Ω may be found in Luenberger

(2001).
4Expression (16) shows that Log (zΠ) makes sense. More-

over, Log (zΠ) is bonded from below if and only if

IP (zΠ < ε) > 0

for every ε > 0, and it often holds in practive. For example,

it holds if zΠ has a log-normal distribution (Black and Scholes

model, Wang, 2000) or a heavier tailed one (stochastic volatility

pricing models).
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and therefore the set{
y ∈ L2; IE (zΠy) = IE

(
z∗ + µ∗

1 + µ∗
y

)}

=

{
y ∈ L2; IE

((
zΠ −

z∗ + µ∗

1 + µ∗

)
y

)
= 0

}
will be a closed proper sub-space (hyperplane) of L2.

In other words, the inequality

IE (zΠy) 6= IE

(
z∗ + µ∗

1 + µ∗
y

)
will hold for most of the derivatives y ∈ L2 of S1,

and therefore (17) will very easily fail. Moreover, no-

tice that the existence of an unbounded from below

Log (zΠ) only involves the pricing rule Π of (15), and

therefore the failure of (17) will hold for every risk

measure satisfying Assumption 2 (for example, the

CV aR, the WCV aR or the RCV aR).

To sum up, Theorem 5 implies that the buy and

hold optimal strategy will contain derivatives if the

real quotations of the derivative market respect the

predictions of some important pricing model of Finan-

cial Economics, and this finding is independent of the

selected risk measure ρ satisfying Assumption 2. �

4 Numerical experiment

Let us illustrate the results of Section 3 with a very

simple example. We will deal with an arbitrage free

and almost model-independent option market. As

above, suppose that S0 = 1 is a riskless asset and con-

sider a security S1 whose behavior is given by a geo-

metric Brownian motion (GBM ) with a current price,

drift and volatility equaling one dollar, 2% and 40%,

respectively. Consider also a derivative market where

European calls and puts can be traded. The unique

maturity is one year, and the available strikes are
Calls Puts
0.5 1.2
0.7 1.5
1 1.9


Suppose that the market quotations perfectly fit the

Black and Scholes model, i.e., all of the market prices

equal the theoretical ones given by the Black and Sc-

holes formula. Accordingly, they become
Calls Puts
0.504700865 0.291880947
0.333711519 0.539261689
0.158519419 0, 912489695

 (18)

Obviously, since the Black and Scholes model is arbi-

trage free, this market is arbitrage free as well. Con-

sider an investor who is interested in composing an

efficient portfolio. The selected risk measure ρ is the

CV aRα, α being the level of confidence. Suppose

that α = 85%. Despite the fact that this investor can

verify that the two matrices above lead to a constant

implied volatility σ = 0.4, and therefore the data con-

firm in this case the Black and Scholes model, let us

assume that he/she is still very ambiguous with re-

spect to that. Accordingly, he/she will accept devia-

tions between the predictions of the log-normal distri-

bution and the realized value of S1 in one year. He/she

considers that the error between the probabilities of

the log-normal distribution and the real probabilities

may become 100%. In other words, for every Borel

subset B ⊂ IR, the real probability Q (S1 ∈ B) of

the event S1 ∈ B will be laying within the spread

[0, 2IP (S1 ∈ B)], where IP (S1 ∈ B) is the theoreti-

cal probability under log-normality. In such a case,

instead of the CV aR85% risk measure, the investor

will use the robust risk measure RCV aR85%. In gen-

eral, RCV aRα (y) :=

Max
{
CV aR(Q,α) (y) ; 0 ≤ dQ

dIP ≤ 2
}
,

(19)

where Q is a IP−continuous probability measure and

CV aR(Q,α) (y) is the CV aRα of y under Q. Bal-

bás et al. (2016b) have shown that the RCV aRα (y)
above is well defined for every y ∈ L2, along with

the fulfillment of Assumption 2. Moreover the sub-

gradient (1) is composed of those random variables

z ∈ L2 satisfying the conditions

IE (z) = 1

0 ≤ dQ
dIP ≤ 2

0 ≤ z ≤ 1
1−α

(
dQ
dIP

) .

It is easy to see that the set above coincides with
{
z ∈ L2; 0 ≤ z ≤ 2

1−α , IE (z) = 1
}

={
z ∈ L2; 0 ≤ z ≤ 1

1−(1+α)/2 , IE (z) = 1
}
.

Since this is the sub-gradient of theCV aR(1+α)/2 risk

measure (Rockafellar et al., 2006),

RCV aRα = CV aR(1+α)/2 (20)

and the high ambiguity level of this example only

implies that the level of confidence must properly
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increase. In particular, for α = 85% one has

(1 + α) /2 = 92.5%, and our investor will optimize

the portfolio for the CV aR92.5% risk measure.

Though the existence of ambiguity only implies a

larger level of confidence, it is important to point out

that we are dealing with an ambiguous setting. Ex-

pression (19) implies “a worst case approach”, and

therefore the risk level guaranteed by the optimal

buy and hold strategy will be guaranteed by every

CV aR(Q,85%), and Q does not have to be known. In

this sense, the optimal buy and hold strategy will not

depend on the Black and Scholes model, since a huge

error of this model (up to 100%) is accepted.

Recovering the level of confidence (1 + α) /2 =
92.5% implied by (20), and the log-normal distribu-

tion for S1, one can consider the equality

S1 (ω) = Exp

((
r − σ2

2

)
T + σ

√
TΦ−1 (ω)

)
(21)

for ω ∈ (0, 1), and with r = 2%, σ = 40% and

T = 1 denoting the selected drift, volatility and ma-

turity (Wang 2000, Balbás et al., 2016a, etc.). There-

fore, bearing in mind that (21) generates an increasing

function of ω ∈ (0, 1), Expression (2) leads to

ρ (S1) = RCV aR85% (S1) = CV aR92.5% (S1) =

1−0.925∫
0

(
Exp

((
r − σ2

2

)
T + σ

√
TΦ−1 (ω)

))
dω

0.925− 1
.

Computing the integral with 106 Monte Carlo simula-

tions one can estimate

ρ (S1) = −0.448939385

Consequently, if one solves Problems (6) and (10)

with only two securities (S0 and S1,i.e., m = 1), then

Lemma 4, (12) and (13) lead to
y∗1 =

R− 1

0.02020134

y∗0 = 1− R− 1

0.02020134

(22)

and 
µ∗ = 27.27841887

z∗ =


1

1− 0.925
, ω ≤ 1− 0.925

0, otherwise

According to Theorem 5, the necessary and suffi-

cient condition guaranteeing that the solution above

remains the same if one also involves the six available

European options (i.e., m = 7) will be given by (14).

Since

IE

(
y
z∗ + µ∗

1 + µ∗

)
=

1∫
0

y (ω)
z∗ (ω) + µ∗

1 + µ∗
dω

for every random variable y, after estimating the six

integrals

IE

(
Sj
z∗ + µ∗

1 + µ∗

)
, j = 2, ..., 7

with 106 Monte Carlo simulations, the obtained re-

sults are 
Calls Puts
0.50567611 0.296603733
0.338486228 0.542180941
0.164017017 0.913931802

 (23)

Matrices (18) and (23) show that none of the given

options satisfy (14), i.e., (22) will not be the opti-

mal solution any more if the investor adds a single

available option.5 Actually, the investor will improve

her/his portfolio (risk, return) as much as possible if

he/she adds the six available options and then solves

(10) and (6). In the first step the linear optimization

problem (10) may be solved with several algorithms

(Anderson and Nash, 1987). In the second step (6)

may be solved by means of (9). We will not address

this question in order to shorten the paper exposition.

5 Conclusion

We have been dealing with a portfolio choice prob-

lem maximizing the expected return and simultane-

ously minimizing a general (and frequently coherent)

risk measure. Since derivative securities usually gen-

erate an asymmetric pay-off, the use of risk measures

beyond the variance is justified by the lack of compat-

ibility between this risk measure and the usual utility

functions (or the second order stochastic dominance).

Moreover, if the selected risk measure also incorpo-

rates the investor ambiguity (i.e., if one deals with a

robust risk measure), then the presented approach be-

comes model-independent.

Theorem 5 and Remark 6 have shown that every

stock index is often outperformed by a buy and hold

strategy containing the index and some of its deriva-

tives. As a consequence, every investment only con-

taining international benchmarks will not be efficient,

5Notice that this numerical finding is consistent with Remark

6.
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and the investor should properly add some derivatives.

Though there is still a controversy, this finding had

been pointed out in dynamic frameworks, but a main

novelty is that one does not need to rebalance any po-

sition before the expiration date of the incorporated

derivatives. This is very important in practice because

transaction costs and other market imperfections may

provoke significant capital losses when trading deriv-

atives.
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