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Abstract: In this paper we aim at exploiting the properties of the Brownian Local Time to estimate the Counterparty
Credit Risk for a specific class of financial derivatives, i.e. the so called Accumulator derivatives, within a Black
and Scholes-type market. The comparison with the results obtained by made use of a standard Monte Carlo
approach, clearly shows the superiority of our proposal, which runs in smaller execution times and with better
estimation accuracy.
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1 Introduction
The last decades have seen a rapid and significant
increase of Over-the-Counter (OTC) contracts, that
is, financial bilateral agreements among parties, or
their intermediaries, without the supervision of an ex-
change. Such a boost depends on several causes, es-
pecially a considerable flexibility in setting the terms
of the contracts, which allows an augmented market
liquidity, as well as a strong adaptability to the needs
of small companies, that would not be able to verify
all the requirements to be included in the exchange
listings.

On the other hand, these derivatives contracts
have a risk profile in which the counterparty credit
merit may play a crucial role, as seen after the finan-
cial crisis in 2008. In other words, the OTC con-
tracts expose to the so called Counterparty Credit
Risk, namely, the risk that a counterparty in a financial
transaction will default, before the final settlement of
the transaction’s cash flows, see [1], [2].

Standard techniques for the evaluation of such an
exposure are based on classical Monte Carlo meth-
ods, which are characterized by a strong dependence
on the number of considered assets and related high
computational time costs, see, e.g., [8]. As an exam-
ple, a medium bank requires D = O(104) deriva-
tive deals and U = O(103) risk factors, evaluated
in K = 20 time steps with N = 2000 simulations,
which need K · N · U = 4 · 107 grid points at first

step, K ·N ·D = 4 · 108 tasks at second step, etc.
In the present paper we propose an alternative ap-

proach, based on the theory of Brownian Local Times,
to estimate the Counterparty Credit Risk (CCR) ex-
posure, also providing a concrete example of its per-
formance when an exotic path-dependent derivatives
option is taken into account. In particular we ap-
ply our methods to the CCR related to the Accumu-
lator type derivatives, whose payoff depends on the
time spent by the underlying below or above a given
level, between two boundaries or outside of them, see,
e.g., [9]. We would also like to underline that sim-
lar computational problems also arise when consid-
ering very simple financial contracts, as in the case
of the European options, or when considering stan-
dard interest rate models, e.g. the CoxIngersollRoss
(CIR) model, or constant elasticity of variance (CEV)
model. Concerning latter cases, a powerful alterna-
tive to the Monte Carlo and enhanced Monte Carlo ap-
proaches, has been provided by the Polynomial Chaos
Expansion technique, see, e.g., [3], and references
therein.

Therefore, we first consider the theoretical prop-
erties of the aforementioned Brownian process, which
is defined as follows

Lt(a) =
1

2ε
lim
ε→ 0

µ{0 ≤ s ≤ t, : |Ws − a| ≤ ε} ,
(1)

for t ∈ [0, T ], a ∈ R and µ is the Lebesgue measure,
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indicating the amount of time spent by the Brownian
Motion {Wt}t≥0, close to a given point a ∈ R.

2 The mathematical framework
Introduced for the first time in the literature in 1948
by Paul Lévy, see [7], in terms of mesure de voisinage
as in Eq. (1), the Brownian Local Time, BLT from
now on, was thoroughly studied from a mathematical
point of view by several authors in the early nineties.
In particular, Takacs, see [10], states that the random
field

{Lt(x, ω) : (t, x) ∈ [0, T ]× R, ω ∈ Ω}

is called a Brownian Local Time if the random vari-
able Lt(x) is F-measurable, the function (t, x) 7−→
Lt(x, ω) results to be continuous and

Γt(B,ω) :=

∫ t

0
1B(Ws)ds =

∫
B
Lt(x, ω)dx , (2)

for 0 ≤ t ≤ ∞, B ∈ B(R).

The existence of such a stochastic process is
given, e.g., in [5]. In [4], the authors give a repre-
sentation of BLT in terms of probability density, i.e.

P (L(t, a) ∈ dy) = f(y; t, a, σ, ν, S)

=

√
2

πt
σa
( a
S

)ν
e−ν

2σ2 t
2
− (σ2ay+| log(a/S)|)2

2σ2t

+ |ν|σ2a
( a
S

)ν [
e−|ν|(σ

2ay+| log(a/S)|)

×Erfc

(
σ2ay + | log(a/S)|

σ
√

2t
− |ν|σ

√
t

2

)
−e|ν|(σ2ay+| log(a/S)|)

×Erfc

(
σ2ay + | log(a/S)|

σ
√

2t
+ |ν|σ

√
t

2

)]
,

(3)

where t represents the time up to which the BLT
is evaluated, a is the underlying, σ is the volatility pa-
rameter, ν := −1

2 + r
σ2 , r being the risk-free rate, S

represents the spot price, and Erfc(z) is the comple-
mentary error function, namely

Erfc(z) = 1− Erf(z),

with Erf(z) =
2√
π

∫ z

0
e−x

2
dx .

3 The proposal
We refer to a Black and Scholes financial market
model, consisting of a riskless security and a risky as-
set, namely we consider the following set of equations{

dBt = rBtdt

dSt = Stµdt+ StσdWt

, (4)

where µ ∈ R, σ > 0 and {Wt}t≥0 represents a stan-
dard Brownian motion.

In such a market we also consider an Accumulator
derivative, a structured financial product which is sold
by a seller to an investor, requiring the issuer to sell
shares of some underlying security at a predetermined
strike price.

It follows that accumulators do not give the option
to either party to refrain from exercising. The strike
price is typically settled on a periodical basis and in-
vestors are said to be accumulating holdings in the un-
derlying stock over time to maturity. As an example,
consider the Financial Times Stock Exchange (FTSE)
and the particular accumulator derivative known as In-
come Accumulator Plan 6., which is defined by the
following payoff

Payoff =


0, if max0≤τ≤tk Sτ ≥ H

(Stk −K), if max0≤τ≤tk Sτ < H, Sτ ≥ H

2(K − Stk ), if max0≤τ≤tk Sτ < H, Sτ < H

,

(5)
where tk, k = 1, . . . , N, represent N observation

times, which are fixed by the contract, Stk is the un-
derlying at time tk, K is the strike price, while H de-
scribe the possible knock-out barrier level. Thus, the
Fair Value at time tk, k = 1, . . . , N, reads as follows

FVtk =
N∑
j=1

[C(S0,K, T − tj , σ,H)

−2P (S0,K, T − tj , σ,H)] · e−r(T−tk) , (6)

where C(S0,K, T − tj , σ,H), resp. P (S0,K, T −
tj , σ,H), represents the fair price of a call option,
resp. of a put one.

On the other hand, the derivative we are consider-
ing, provides, at least, a daily fixing frequency, hence
we obtain

FV
(LT )
tk

= e−r(T−tk)
∫
R

∫ ∞
0

yf(y;T, x, σ, ν, S)

×
[
(x−K)+ − 2(K − x)+

]
dydx . (7)

The comparison between the benchmark, given
by Eq. (6), and our proposal, namely Eq. (7), is shown
in the following Table, with respect to different values
of the risk-free interest rate r, the strike price K and
volatility parameter σ.
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r K σ FV BSD FV LT ∆(LT,BSD)

0,01 0,9 15% 0,0961 0,0961 0,00%
0,01 0,9 25% 0,0783 0,0781 -0,26%
0,01 1 15% -0,0323 -0,0322 -0,31%
0,01 1 25% -0,0587 -0,0576 -1,87%
0,02 0,9 15% 0,1008 0,1008 0,00%
0,02 0,9 25% 0,0837 0,0839 0,24%
0,02 1 15% -0,0248 -0,0247 -0,40%
0,02 1 25% -0,0509 -0,0501 -1,57%

The Counterparty Risk estimation procedure

In what follows, we focus our attention on the
CCR appraisal, which represents the cornerstone of
the our original proposal.

In agreement with the Basel III accord, see [1],
the estimate of the CCR is equivalent to assess the ex-
tent to which a financial institute may be exposed to
a counterparty in case of default. Latter quantity is
known as the Exposure At Default (EAD).

Among the various metrics described in Basel
III for the CCR estimation, we choose the Expected
Exposure (EE) and the Expected Positive Exposure
(EPE).

The former is the average of the distribution of
exposures at any particular future date before the
longest maturity in the portfolio, while the latter is the
weighted average over time of the expected exposure,
where weights reflect the proportion that an individ-
ual expected exposure represents with respect to the
entire exposure horizon time interval, see, e.g., [11],
namely

EEtk =
1

N

N∑
n=1

MtM (tk, Sk,n)+ , N ∈ N+ , (8)

EPE =
1

T

K∑
k=1

EEk ·∆k , (9)

where ∆k = tk − tk−1 indicates the time inter-
val between two consecutive time buckets at the k-th
level, MtM(tk, Sk,n) is the fair value of the deriva-
tive at time bucket tk,, with respect to the underlying
value Sk.

By exploiting Eq. (3), we have, for all time bucket
tk, k = 1, . . . , N,

EE
(LT )
tk

= E
(
FV

(LT )
tk

)
(10)

EPE(LT ) =
1

T

∫ T

0

∫
R
e−r(T−t)E(L(T, x))

× [(x−K)+ − 2(K − x)+]dxdt . (11)

In the following Table we show the behaviour
of our approach against the classical Monte Carlo

method, for different values of the strike price K, the
risk-free interest rate r, and the volatility parameter σ.

(K,σ, r) EPE(BS) EPE(LT ) ∆(LT,BS)

(4.78, 0.15, 0.01) 0,9303454395 0,9303781163 0,00351%
(4.78, 0.2, 0.01) 0,9049015095 0,9048279190 -0,00813%
(4.78, 0.3, 0.01) 0,8251642939 0,8247838254 -0,04611%
(3.75, 0.15, 0.01) 1,9686102762 1,9686848833 0,00379%
(3.75, 0.2, 0.01) 1,9675941521 1,9676336107 0,00201%
(3.75, 0.3, 0.01) 1,9547899122 1,9547735333 -0,00084%
(2.98, 0.15, 0.01) 2,7348505526 2,7349168463 0,00242%
(2.98, 0.2, 0.01) 2,7348375084 2,7348585689 0,00077%
(2.98, 0.3, 0.01) 2,7336498018 2,7336545073 0,00017%
(4.78, 0.15, 0.02) 0,9556220367 0,9558308683 0,02185%
(4.78, 0.2, 0.02) 0,9318141129 0,9318254905 0,00122%
(4.78, 0.3, 0.02) 0,8548444479 0,8542861489 -0,06531%
(3.75, 0.15, 0.02) 1,9871484085 1,9873803563 0,01167%
(3.75, 0.2, 0.02) 1,9862637277 1,9864841609 0,01110%
(3.75, 0.3, 0.02) 1,9743416072 1,9744396571 0,00497%
(2.98, 0.15, 0.02) 2,7496039372 2,7497784936 0,00635%
(2.98, 0.2, 0.02) 2,7495932160 2,7497625846 0,00616%
(2.98, 0.3, 0.02) 2,7485174039 2,748661624 0,00525%

4 Conclusion
The methodology we propose in the present work is
founded on the possibility of expressing the Brow-
nian Local Time in terms of its probability density.
The implementation of this approach, with regard to
EPE evaluation, leads to numerical results that show
a twofold advantage over the use of standard Monte
Carlo techniques, namely: first it reduces the execu-
tion time, then it improves the EE appraisal accuracy.
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