
Interactive Debug and Exploration of Recursive Functions

Rashkovits, Rami; Ilana Lavy

Information Systems, Max Stern Yezreel Valley College

ISRAEL

ramir@yvc.ac.il; ilanal@yvc.ac.il

Abstract: - One of the most difficult concepts students learn in computer science (cs) studies is the concept of

recursion. Recursion refers to the situation in which a solution to a problem contains its own (reduced) copy.
Recursive algorithms are very common in the cs field and therefore a good understanding of the concept is

necessary. The difficulty in understanding recursive processes is that recursive thinking is not intuitive. Over the

years, several visual models have been developed to address this problem, such as the 'little man' and the 'top-
down frames', but they do provide only limited framework to assist the design, monitoring and understanding of

new problems. As part of this research, we built a computerized tool which may facilitate understanding of

recursion and serve as a tool for the learner to follow a recursive process run visually. In this paper we describe

the exploratory tool, and indicating its potential contributions. We prove by an empirical comparative study that
the tool contributed to students and promoted higher-quality solutions with fewer errors.

Key-Words: - Recursion, educational technology.

1 Introduction
Recursion has always been one of the most

difficult concepts to understand and apply by

computer science students. While typical algorithm

has straightforward and trackable steps to follow, a

recursion algorithm is built in a way that in order to

solve a problem, one has to solve the same smaller-

scale problem up until the problem becomes very

simple that a solution can be provided without further

calls to smaller problems. Once the solution to the

simple problem is return, it is possible to solve the

higher-scale problem which in turn enable the

solving of higher-scale problem and so on until the

original problem can be solved. The recursive

algorithm is much less intuitive, and the reader has

difficulties to track its steps [1,2]. Recursive

solutions are essential in the field of computer

science, and many times a problem can be solved

only using such an algorithm (i.e., Hanoi towers), and

therefore understanding well the concepts involved,

and being able to plan and apply correctly recursive

algorithm is an obvious goal of introductory course

in computer science.

In order to overcome the above difficulties, few

metaphors were developed to assist the learner to

understand the execution of recursive algorithms,

among them are the little-man metaphor [3], and the

frame model [4]. These visual metaphors

demonstrate the advance process of a recursive

function by illustrating the recursive call as a package

delivered forth and back from one little man to the

next one in the chain (e.g., little-man model) or as

series of frames each located inside a larger one.

Indeed, these metaphors were found to be quite

effective in explaining the way linear recursive

functions behave. However, not all recursive

algorithms are linear (i.e., form a simple chain of

recursive calls), and there are many multi-

dimensional recursive algorithms which form

complex non-linear chains of recursive calls. Since

the above models are linear, they cannot be adapted

to more complex forms of recursion (e.g., Inorder

tree traversal).

In this study we developed an interactive software

tool that enhances the understanding of recursion

concepts (linear and non-linear) by tracking the
recursive calls visually, running them step by step,

tracking variables and return values of each call, and

continue running until the algorithm stops. In
addition, we examined the tool's effectiveness as

perceived by the students who participated in the

research.

2 Background
Recursive functions can be linear or multi-

dimensional. The most common recursive functions

are linear ones, in which the function makes a single
call to itself each time it runs. The factorial function

appears in Figure 1 is a good example of such a

function. In some cases, as shown in Figure 1, the

recursive call is the last command in the functions
(called tail recursion). In other cases, as shown in

Figure 2 (reversing an integer number) there are more

Rashkovits Rami, Ilana Lavy
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 143 Volume 2, 2017

mailto:ramir@yvc.ac.il
file:///C:/Users/rami/Desktop/כונן%20G/מחקר/recursion/ilanal@yvc.ac.il

commands to be executed after the recursive call

returns with or without a value. A double recursion is

shown in Figure 3 (calculating a Fibonacci number),

in which multiple recursive calls are made. A more
complex form of recursion is indirect recursion, in

which a function f does not call itself, but rather call

another function g, which in turn calls yet another
function k, that calls f again. Such a mutual recursion

is shown in Figures 4 and 5, where two functions

is_odd() and is_even() that are mutually call each
other.

Fig. 1. Tail Linear Recursion

Fig. 2. Non-Tail Linear Recursion

Fig. 3. Double Recursion

Fig. 4. Mutual Recursion (part 1)

Fig. 5. Mutual Recursion (part 2)

The little-man metaphor [3] and the frames model [4]
are effective when tail linear recursion is discussed.

The factorial algorithm is demonstrated with the

little-man metaphor in Figure 6, and with the frame

metaphor in Figure 7 for the input value n=4. As

shown, the learner sees an illustration of the

recursion, and able to track its steps. However, given

more complex linear recursions (e.g., non-tail),

multi-dimensional recursions (e.g., double, multi),
not to mention indirect recursion (e.g., mutual), these

models would not promote the learner with

understanding of the functions' behavior.

Fig. 6. Little Man Model

Fig. 7. Frame Model

3 Related work
Various teaching strategies were suggested and

recommended in the literature as to recursion

algorithms, starting with recurrence relations from

the theory of mathematical inductions [5,6], through

concur-and-divide methods [7], and even algebraic
substitution techniques [8]. However, experiments

have shown that concrete conceptual models assist

learner better than abstract ones [9]. The use of
visualization technology in class has made a great

impact on learners, and promoted significantly the

understanding of recursion concepts [10]. Sa & Hsin

[11] have developed RGraph, a tool that visualizes a
recursive function calls, forth and back. A tutorial on

recursion exploration based on RGraph was

developed and used to teach recursion with initial

Rashkovits Rami, Ilana Lavy
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 144 Volume 2, 2017

encouraging results about better understanding [12].

However, RGraph is currently a tool with a few pre-

defined problems, all of them are linear. It does not

enable the learner to run and explore user-defined
recursive functions, neither it supports the

visualization and understanding of more complex

recursive functions (e.g., multi-dimensional and/or
indirect recursions).

4 The Study
A new and novel tool was developed, aiming to

provide learners and developers with an interactive
environment for the exploration of recursive

functions of all kinds. After the completion of the

development process, we plan to examine its
effectiveness as regard to the understanding and

implementation of recursion concepts in problem

solving as perceived by both the students and the
teaching staff. Then, we plan to build a tutorial,

which is based on the implementation of the tool in

introductory computer science course and advanced

data structures and algorithms courses.

4.1 The tool
The tool operates in a similar fashion to software

development environment (e.g., Eclipse, Visual

Studio). The user writes a recursive function/s (See

Figure 8), and run it using the tool, while providing
the necessary initial inputs. Once the function has

been compiled successfully (using background

processes) the user will be able to control its running,
in a similar fashion to typical debugging. The user is

able to trace the program step-by-step, back and

forth, and explore its variables. In addition to

standard debugging, the user will be provided with
the opportunity to track the function calls visually.

Fig. 8. Environment

Each recursive call will open new icon on the screen

with all the information relevant to the exploration of

this call: parameters and the current state of the call,

the value returned, the line of code that was executed

and the recursion depth.

Fig. 9. Frames

In Figure 9 we can see the result of running the

factorial function with n=5. The first (lowest) frame

refers to the main method, calling the fact() function

on line 3, the frame above refers to the first call to
fact(), with n=5 as a parameter. The subsequent

frames refer to the successive calls to fact() till the

last call to fact() with n=1 (base case). The user can
track the recursion, and whenever a new recursive

call is made a frame with all the necessary

information required (i.e., current line, parameter

value, calling functions).
The above frames can address linear recursion when

each function calls itself at most once. However, for

more complex recursions such as double or mutual
recursions, the linear representations of the frames as

shown in Figure 9 might not be sufficient. For these

kind of recursion, we provide a more sophisticated
visualizer, in which the hierarchical structure of the

recursion is revealed.

Fig. 10. Tree-like structure

Rashkovits Rami, Ilana Lavy
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 145 Volume 2, 2017

In Figure 10 we see the result of running the

Fibonacci function (shown in Figure 3). In this

function, two recursive calls are made from each
function calls. A tree-like structure is more trackable,

as shown in figure 10. Each node represents a

function call, with the value of the parameter inside,
and the return value below. Another way to track the

recursion is available via graph-like representation,

as shown in Figure 11, in which calls to similar copies
(a function call with identical parameter values) are

shown as incoming edges, enabling the user to better

track the complexity of her recursion.

Fig. 11. Graph-like structure

The tool was developed in a web-based environment.

It provides the user with information about the

number of recursive calls, enabling her to estimate
the complexity of the recursive function. The output

is presented graphically, plotting the recursive calls

for each input size. The output is shown gradually,
not all at once. This way the user can explore the code

along with the output nodes, tracking thoroughly the

recursion.
For instance, if the user run the Fibonacci function

(see Figure 3) with initial input of n=5, the diagram

will plot for every recursive call the number of

recursive calls derived: for n=0 and n=1 the number
of calls is zero, for n=2 it is two, for n=3 it is three,

for n=4 it is five, and last for n=5 it is eight. Actually,

in this example, as the input size rise, the number of
derived recursive calls grows exponentially, and the

user is able to view this complexity via the graphical

diagram.

The visualization process start with analysis of the
input function, embedding breaking commands

inside the function that enables the debugging

operations, tracking and saving the current call's
state, and managing the whole running of the

recursive function.

4.2 Environment and population
We tested the tool in the course "data structures and
algorithms". The study subjects were Information

Systems (IS) students in their second year of studies

in a regional academic college. 78 students
participated in the courses, divided into two lecture-

groups.

4.3 Data collection and analysis tools
As regards to the examination of the tool's

effectiveness, we used an empirical comparative
study in which two groups were involved. The

students were divided into two equal-size groups.

The experimental group study recursion using the

tool, while the control group study recursion using
classical methods (e.g., frame model, little-man

model). Both groups were presented with the

recursion problems presented in figures 1-3. The
experiment group were presented with the tool we

developed, and the students could run the solutions

using the debugger, while exploring the solutions
using the visualization shown in figures 9-11.

After studying the recursion concepts, all students

from both groups were given a series of problems that

require recursive solutions. We expected that
students who learned recursion using the proposed

tool will be able to perform better than the students

from the control group given that they were permitted
to use the tool while solving the given problems.

During the solutions we were observing the students

to see whether and how they used the tool, and we

were asking them to report whether they used it while
solving each of the given problems.

When we checked the solutions, we divided them

into the following four categories: correct solutions,
faulty base cases, faulty recursive call, and faulty

return command. Solutions to problems that work

perfectly on any legal input were classified as correct
ones. Solutions with base case other than expected,

even partially correct, were classified as faulty base

case. Solutions that had problems with the recursive

call (e.g., incorrect parameters) were classified as
faulty recursive call. Solutions with errors in the

return command (e.g., return too early) were

classified as faulty return command.
After checking the solutions, we also made

observations and interviews with selected

participants, in order to gain better understanding of
the tool advantages and shortcomings. With these

essential feedbacks, we intend to further improve the

tool and add desired functionality.

Rashkovits Rami, Ilana Lavy
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 146 Volume 2, 2017

4.4 The problems
The students were provided with the following three

problems:
(1) Calculate recursively the sum of the first n

integers, n is given as a parameter. For instance

sum(5) = 5+4+3+2+1 = 15. Assume non-
negative n.

(2) Reverse a string recursively. For instance,

reverse("hello") = "olleh". Assume non-empty

string.
(3) Given the formula given in Figure 12, calculate

recursively how many combinations there are

when choosing k elements out of a set of n
elements. Assume non-negative k and n.

The three problems above were given with increasing
difficulty, addressing tail recursion, non-tail

recursion, and double recursion, respectively.

Fig. 12. K out of N formula

The correct solutions for these problems are given in

figures 13-15.

Fig. 13. Problem 1 solution

Fig. 14. Problem 2 solution

Fig. 15. Problem 3 solution

Both groups, were allowed to use the regular IDE

(Eclipse Neon) to write and test their solutions. The

experiment group was provided also with a link to a

web page in which the tool presented above was
implemented. They were told that if they want they

can use the tool while developing solutions to the

given problems. They were given 60 minutes to
address the problem, and were instructed not to

consult with each other. Also, in order to prevent

cheating, we took all cellular phones, and blocked all
network communication except the debugger web

page.

4.5 Results
A summary of the results is shown in Table 1. As

expected, most of the participants were able to
provide a correct solution to the first problem. Since

it was very simple, one could address the problem

without using a debugger. As to the second problem,

we observe a decrease in the number of the students
who provided correct solutions. This is also expected

as the solution is not so simple, and it requires an

understanding of the recursion structure. In the third
problem we see an increase in the number of correct

solutions, probably because this problem was

provided with a formula, which can be translated

easily to a recursive method. When comparing the
results of the experiment group and the control group

we observe that the experiment group outperformed

the control group in all three problems. We also see
that the as the problem gets harder, the difference is

more notable. While in the first problem there is a

difference of 2% in the number of correct answers, in
the second problem there was a difference of 17%,

and in the third problem 25% difference. The

participants of the experiment group indeed used the

tool extensively. All of them were using the tool to
solve the second and third problems, while only 52%

of them have used it also with the first problem. As

to the control group, only 3 out of 38 sketched some
kind of frame model or little man model to monitor

their solutions.

Table 1: Percentage of correct answers

Problem Experiment group Control group

1 85% 83%

2 62% 45%

3 77% 51%

The percentages of errors according to these types are

presented in table 2. As shown, in the experiment

group the percentages of errors referring to base
cases, and return commands is lower than the control

group, while the percentages of recursion calls

category is higher in the experiment group.

Rashkovits Rami, Ilana Lavy
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 147 Volume 2, 2017

Table 2: Percentage of errors' types

Error Experiment group Control group

Base case 18% 34%

Method call 58% 45%

Return 25% 21%

4.6 Interviews
After the completion of the assignment described

above, we conducted interviews with five students
from the experiment group, that were observed while

making intensive use of the tool. We asked them to

describe the benefits it provided them. We also asked

about their criticism on the tool and asked for
suggestions to improve it.

In what follows we provide few excerpts given by the

interviewees.

4.6.1 Benefits the tool provides
" The tool made for me a visualization of the
recursive process. Without it, it is more difficult

for me to follow the development of the

recursion and the logic involved. "

" What I loved in the tool is the ability to track

the hierarchy of the recursion calls, and to

follow the return values. That was very helpful.
"

" The tool helped me find an infinite recursion I
made by mistake. It just didn't run… It took me

only a while until I noticed the error. "

"I used the graph-like visualizations when I

solved the third problem. I think that the solution

I gave was correct but not very efficient. Many

nodes had plenty of incoming edges. I tried to
think of a better solution but I ran out of time. "

"running the recursion in a step-by-step manner,
forward and back, while watching all the

recursion calls on screen, including the calls

that were already ended, was of a great value. "

4.6.1 Improvement suggestions
"I would like to have these abilities in the
regular IDE I'm using. It can help a lot when

solving recursion problems. "

" I would like to add a conditional breakpoint,

so I will be able to stop the running and watch

the current state visually upon the case I want to

explore. Now I have to run it step-by step. "

" You should consider hover-event over the

nodes, so that if one passes over a node, the

relevant line of code will be painted. "

" I would add statistics to each node, for

instance how long did it take from the start until

return, how many calls with the same values
occurred, and alike. "

4.7 Discussion
The results presented in section 4.5 support our

assumption that a visualizer tool can effectively

improve the understanding of students concerning
recursion concepts. The results show that if

visualization is used, the results are better and there

are fewer errors. Moreover, the results show that
regarding to base cases and return parts of the

recursion, fewer mistakes are made by the students,

as the visualizer make it more easy to capture such

errors. The fact that only 3 participants from the
control group have tried to draw the recursion call's

hierarchy indicate that in the absence of a

visualization tool, the student will not make an extra
effort to visualize the solution, and accordingly the

number of faulty solutions grow.

From the participants' excerpts we learn that indeed

the tool was helpful. Recursion is an abstract concept,
and many students find it very difficult to understand.

Visualization has always been [13] a mean to

improve the understanding of complex concepts,
including recursion algorithms. It assists the user to

track the calls, the logic behind the recursion, the

convergence towards the base cases, and the process
of returning from the recursive calls. It even helps

one who cares about the complexity of the algorithm

(depends on the number of repeating calls).

Based on the students' suggestions for the tool

improvements, we plan to make few changes to make

the tool even better, and then we intend to build a
tutorial on recursion teaching, based on the tool and

its exploration capabilities. The tutorial will include

complete lessons that can assist educators with the
instruction of all related issues including linear and

tail recursion, double and multi-dimensional

recursion, direct and indirect recursion, recursive

calls, base condition, running a recursion forth and
back etc. We believe that using our tutorial will

contribute to the understanding and the ability to

apply recursive solution among students and learners,
and we also believe that such a tool can be valuable

as well to practitioners in the industry when testing

and debugging complex recursive algorithms in

various fields (e.g., computational biology, machine
learning, enterprise systems etc.)

Rashkovits Rami, Ilana Lavy
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 148 Volume 2, 2017

5. Conclusions
To address students' difficulties to implement

recursive algorithms in problem solving relating to

programming, we developed an interactive tool that

enable to run and debug recursive functions and track
them visually. The tool enables tracking of user-

defined, direct and indirect, linear and multi-

dimensional recursive functions. We tested the tool
empirically, and our findings support our assumption

that a visual debugger for recursive algorithms might

assist in understanding better recursion and promote

higher-quality solutions with fewer errors.
In the future, we plan to expand the tool further with

features related to multi-thread recursion and test it in

additional academic institutes, as well as in the
industry.

References:
[1] Gal-Ezer, J., & Harel, D. 1998. "What (else)

should CS educators know?". Communications

of the ACM, (41:9), pp. 77-84.

[2] Dann, W., Cooper, S., & Pausch, R. 2001.
"Using visualization to teach novices recursion".

ACM SIGCSE Bulletin, (33:3), pp. 109-112.

[3] Harvy, B. (1985). Computer science Logo style.
Volume 1: Intermediate programming. MIT

Press.

[4] Roberts, E. 2006. Thinking recursively with
Java. Hoboken, NJ: John Wiley.

[5] Ford, G. 1984."An implementation-independent

approach to teaching recursion". ACM SIGCSE

Bulletin, (16:1). pp. 213–216.
[6] Wilcocks, D., and Sanders, I. 1994. "Animating

recursion as an aid to instruction". Computers &

Education (23:3) pp. 221-226.
[7] Ginat, D., and Shifroni, E. 1999. "Teaching

recursion in a procedural environment—how

much should we emphasize the computing

model?". ACM SIGCSE Bulletin (31:1), pp.
127-131.

[8] Lewis, C. M. 2014. "Exploring variation in

students' correct traces of linear recursion". In
Proceedings of the tenth annual conference on

International computing education research. pp.

67-74. ACM.
[9] Wu, C. C., Dale, N. B., & Bethel, L. J. 1998.

"Conceptual models and cognitive learning

styles in teaching recursion". In ACM SIGCSE

Bulletin (30:1), pp. 292-296.
[10] Hundhausen, C. D., Douglas, S. A., and Stasko,

J. T. 2002. "A meta-study of algorithm

visualization effectiveness". Journal of Visual
Languages & Computing, (13:3), pp. 259-290.

[11] Sa, L., & Hsin, W. J. 2010. "Traceable

Recursion with Graphical Illustration for Novice

Programmers". InSight: A Journal of Scholarly

Teaching (5), pp. 54-62.
[12] AlZoubi, O., Fossati, D., Di Eugenio, B., Green,

N., Alizadeh, M., and Harsley, R. 2015. "A

Hybrid Model for Teaching Recursion". In
Proceedings of the 16th Annual Conference on

Information Technology Education. pp. 65-70.

ACM.
[13] Dann, W., Cooper, S., & Pausch, R. 2001. Using

visualization to teach novices recursion. ACM

SIGCSE Bulletin, 33(3), 109-112.

Rashkovits Rami, Ilana Lavy
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 149 Volume 2, 2017

