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1. Introduction 
Some scientists believe that everything has been solved 
in control, consequently nothing remained to study 
and/or research. The purpose of this paper is to recall 
some interesting philosophical paradigms in the areas of 
modelling and control to prove the contrary. 
 
Only a few questions are discussed here, but there are 
many. Our aim is to encourage scientists to find further 
unsolved problems, blazes and interesting paradigms 
partly based on the modelling and control literature, 
partly on other disciplines. 
 
If we can invite only a few further authors to continue 
our discussions then this effort is worth while. 
 
In the sequel the YOULA parameterization [1], [2], [4], 
[5] will be used to discuss regulator and control system 
design. We found that this is very good basis for  
 
1.1. The YOULA parameterization 
 
The YOULA- (Y or Q ) -parameterization is a classical 
method for linear time invariant control system to 
characterize all realizable stabilizing regulators (ARS) by 
 

 
  
C = Q

1− QP
 (1) 

 
for open-loop stable plant   

� 

P∈ S , where   

� 

S  is the closed 
set of all stable proper real-rational systems, having all 
poles within the closed unit disc. The "parameter" 
 

 
  
Q = C

1+ C  P
     ;       Q∈S  (2) 

 
ranges over all proper (Q ω = ∞( )is finite), stable transfer 
functions [1], [5]. Observe that Q  is the transfer function 
from the r  to u  in the closed-loop (see Fig. 1), where 

� 

yn  is the output disturbance (or noise) signal in a SISO 
(Single Input Single Output) system. 
 
The transfer characteristics of the closed-loop can be 
easily computed 
 

 

� 

y = QP r − 1−QP( ) yn = yt + yd  (3) 
 
where yt  is the tracking (servo) and yd  is the regulating 

(or disturbance rejection) independent behaviors of the 
closed-loop response, respectively. 
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Fig. 1. Closed-loop with an ARS regulator 
 
Because the ARS regulator represented in Fig. 3 was 
formulated for an one-degree of freedom (1DF) control 
system, it is not surprising that the tracking part yt  of the 
transfer characteristics between y  and r  can not be set 
independently of the regulating behavior yd , i.e. 
independently of Q . 
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Fig. 2. The modified control system with an ARS 
regulator opening the closed-loop 

 
The Y-parameterization "almost" opens the closed-loop. 
Here "almost" means that 

� 

yt =QP r  is obtained instead 
of a real open-loop case with 

� 

yt = P r . So we need a 
Q−1 prefilter shown in Fig. 2, when the ARS regulator 
really "virtually" opens the closed-loop as 
 

 

� 

y = P r − 1−QP( ) yn = yt + yd  (4) 
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Fig. 3. The K-B-parameterized 2DF system with an ARS 
regulator 

 
An important and new observation of the authors was 
that the scheme in Fig. 2 is equivalent to the special 
control system given in Fig. 4 and its parameterization 
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has been named as Keviczky-Bányász-(KB) 
parameterization [1], [2]. Since in the case of the special 
structure presented in Fig. 3 we have 

� 

yt = P r , i.e., (3) 
holds, it is easy to introduce a new general form of any 
2DF control systems providing 
 

 

� 

y = Qr P yr − 1−QP( ) yn = yt + yd  (5) 
 
if a serial compensator Qr  is applied additionally as the 
Fig. 5 shows. 
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Fig. 4. The general form of the K-B-parameterized 2DF 
control system 

 
Here and in the sequel the general notation   yr  will be 
used for the reference signal for general 2DF systems. 
Equation (5) shows that the tracking properties 

� 

yt =Qr P yr  can independently be designed from the 
regulating behavior 

� 

yd = 1−QP( ) yn  by Qr . 
 
The last scheme was later named as a generic two-
degree of freedom (G2DF) system [1], [2]. The K-B 
parameterization for closed-loop control is not so widely 
known as the Youla-Kucera (Y-K) parameterization [4] 
however, it is much closer to a control engineering view 
and its most important advantage in 2DF systems is that 
it virtually opens the closed-loop. However, this 
parameterization can only be applied for open-loop 
stable processes. 
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Fig. 5. The generic 2DF (G2DF) control system 
 
A G2DF control system is shown in Fig. 5, where 
yr , u, y  and 

� 

yn  are the reference, process input, output 
and disturbance signals, respectively. The optimal 
discrete-time ARS regulator of the G2DF scheme [1], [2] 
is given by 
 

 
  
Co =

Rn Kn

1− Rn Kn P
=

Qo

1− Qo P
=

RnGn P+
−1

1− RnGn P−z−d
 (6) 

 
where 
 

 

� 

Qo =Qn = RnK n = RnGnP+
−1  (7) 

 
is the associated Y-parameter [1], furthermore 
 

 

� 

Qr = R rKr = R rGrP+
−1  ; 

� 

Kn =GnP+
−1 ; 

� 

Kr =G rP+
−1 (8) 

 
assuming that the continuous-time process is factorable 
as 
 

   P = P+P− = P+P−e−sTd  (9) 
 
and a discrete-time process is factorable as 
 

  G = G+G− = G+G−z−d  (10) 
 
where  P+ , 

� 

G+  means the inverse stable (IS) and 

� 

P− , 

� 

G−  
the inverse unstable (IU) factors, respectively. Here 

� 

Td  
is the continuous time delay and z− d  corresponds to the 
discrete time delay, which is the integer multiple of the 
sampling time 

� 

Ts. 
 
It was shown [1], [2] that the optimization of the G2DF 
scheme can be performed in 

  
H2  and 

  
H∞  norm spaces 

by the proper selection of the serial 

� 

Kr  and embedded 

� 

Kn  filters (compensators). These optimizations are 
reduced to the optimal computation of the Gr  and 

� 

Gn  
embedded filters. If Gr  and 

� 

Gn  are optimally selected, 
then 

  

C o  denotes the optimal ARS regulator in (6). It is 
interesting to see how the transfer characteristics of this 
system look like: 
 

 

  

y = Rr Kr Pyr − 1− RnKnP( ) yn =

= RrGr P−e−sTd yr − 1− RnGnP−e−sTd( ) yn = yt + yd

 (11) 

 
or 
 

 

  

y = Rr KrGyr − 1− RnKnG( ) yn =

= RrGrG−z−d yr − 1− RnGnG−z−d( ) yn = yt + yd

 (12) 

 
Here 

� 

Rr  and 

� 

Rn  are stable and proper transfer functions, 
that are partly capable to place desired poles in the servo 
and the regulatory transfer functions, furthermore they 
are usually referred as reference signal and output 
disturbance predictors. They can even be called as 
reference models, so reasonably 

� 

Rr ω = 0( ) = 1  and 

� 

Rn ω = 0( ) = 1  are selected. In this case the obtained 
regulator is always an integrating one. 
 
2. Prejudice Free Control 
 
The knowledge of a process is never exact, independent 
of the method how its model is determined, whether 
measurement-based identification (ID) or physico-
chemical theoretical considerations are used. The 
uncertainty of the plant can be expressed by the absolute 
model error 
 

  ΔP = P − P̂  (13) 
 
and the relative model error 
 

 
  
 = ΔP

P̂
= P − P̂

P̂
 (14) 

 

where  P̂  is the available nominal model used for 
regulator design and  P  is the real plant. 
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The parameters of the plant may change in terms of their 
nominal values in a given range. The closed-loop control 
system needs to be stable under the given uncertainty 
ranges of the parameters.  
 
Suppose that the open loop is stable. The regulator 
designed for the nominal plant ensures the stability of 
the nominal closed-loop control system. Let us analyze 
whether the system remains stable with the parameter 
uncertainties of the open loop. Stability is maintained if 
the NYQUIST diagram of the modified open loop does 
not encircle the   −1+ 0 j  point. 
 
If there is an uncertainty  ΔP  (or parameter change) in 
the transfer function of the plant, then if we apply the 
same regulator this uncertainty appears in the absolute 
error  ΔL = CΔP  of the loop transfer function, whereas 
its relative model error is 
 

 
   
L = ΔL

L̂
= L − L̂

L̂
= CP − CP̂

CP̂
= P − P̂

P̂
=   (15) 

 

Here  L̂  denotes the nominal and  L  denotes the real 
loop transfer function. 
 

 
 

Fig. 6. Change in the NYQUIST diagram of an uncertain 
system 

 
Robust stability means that the closed-loop control 
system should not display unstable behavior even in the 
“worst case” parameter changes. The bound for  ΔL  can 
be formulated based in Fig. 6 by taking the simple 
geometrical considerations into account: the 
NYQUIST diagram will not encircle the   −1+ 0 j  point, if 
the following relationship is satisfied for all frequencies: 
 

 
   
ΔL jω( ) =  jω( ) L̂ jω( ) < 1+ L̂ jω( )      ∀ω  (16) 

 
With further straightforward manipulations the necessary 
and sufficient condition for robust stability is obtained as 
 

 

   

 jω( ) < 1+ L̂ jω( )
L̂ jω( ) = 1

T̂ jω( )      ∀ω  (17) 

 
or 
 

 
   
T̂ jω( )  jω( ) < 1      ∀ω  (18) 

 

where 
  
T̂ = L̂ 1+ L̂( )  is the nominal complementary 

sensitivity function. 
 

This form is also called the dialectic relationship of 
robust stability. In the design the first factor 

 
T̂ jω( )  is 

calculated for the supposed (known) nominal parameters 
of the plant, and thus it depends on the designer. The 
second factor 

 
  does not (or only partly) depends on the 

designer, as it contains the uncertainties in the 
knowledge of the plant or its unexpected parameter 
changes. In those frequency ranges where the uncertainty 
is large, unfortunately only small transfer gain can be 
designed for the closed-loop. Where 

 
T̂ jω( )  is high, 

very accurate information is needed to reach a small 
error. The higher the absolute value of the 
complementary sensitivity function, the smaller the 
permissible parameter uncertainty. 
 

 

   

C ≤ η P̂−1 = 1
1− 

P̂−1  (19) 

 

where the 
 
η ( )  function is plotted in Fig. 7. The 

interpretation of this function is very interesting. For 
small 

 
  modelling error a model based controller 

design is suggested, which usually based on the inverse 
of the nominal model   P̂−1 . For very large errors no 
regulator design is advised. However, in the midrange 
domain, where the error is around 100 %, the regulator 
design practically does not depend on our knowledge of 
the process. This area can be called “prejudice free” 
domain 
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Fig. 7. The η  in the function of    
 
The robust stability condition (4), (5) and (6) can be 
rearrange in the form of 
 

 

   

C ≤ η P̂−1 = 1
1− 

P̂−1  (20) 

 

where the 
 
η ( )  function is plotted in Fig. 7. The 

interpretation of this function is very interesting. For 
small 

 
  modelling error a model based controller 

design is suggested, which usually based on the inverse 
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of the nominal model   P̂−1 . For very large errors no 
regulator design is advised. However, in the midrange 
domain, where the error is around 100 %, the regulator 
design practically does not depend on our knowledge of 
the process. This area can be called “prejudice free” 
domain 
 
Prejudice free control for Youla parameterized systems 
 
The condition of robust stability for the YP control 
loops can be further simplified so the expression 
(18) becomes 
 

 

   

y = Rr KrGyr − 1− RnKnG( ) yn =

= RrGrG−z−d Q̂P̂ = RnGn P̂+
−1P̂ =

= RnGn P̂−e−sT̂d = RnGn P̂− = RnGn P̂−  <1

yr − 1− RnGnG−z−d( ) yn = yt + yd

     ∀ω (21) 

 

where   T̂d  is the dead time of the model and 
  
e−sT̂d = 1 . 

The inequality (17), limiting the relative error, is now 
 

 

   

 jω( ) < 1
Rn Gn P̂−

     ∀ω  (22) 

 

If the process is IS, i.e.,   P̂− = 1 , then   Gn = 1  can be 
chosen and the condition of robust stability can be 
further simplified as 
 

 
   
 jω( ) < 1

Rn

     ∀ω  (23) 

i.e., it does not depend on the model  P̂  but only on 
the reference model or the design goal. 
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Fig. 8. Condition constraining the relative model error in 
the case of the first-order reference model 

 
The reference model is an important parameter of the 
general YOULA design, by means of which the condition 
of robust stability (23) can be guaranteed. Let 
 

 
  
Rn = 1

1+sTn
 (24) 

then the constraining condition of the right side of (23) 
can be seen in Fig. 8. Given the latter condition and 
choosing first-order reference model   Rn , we see that 
robust stability can be ensured even in the case of 100 % 
relative model error. Furthermore for the high frequency 
domain a real prejudice free case is obtained, 
 

If the process is IU, even the factor 
  
Gn P̂−  appears in 

(22), can significantly modify (22). Fig. 9 shows the case 
when two unstable zeros seriously decrease the prejudice 
free character of the stability. The worst case is when 
this factor has a large value in the region of the cut-off 
frequency. 
 
KALMAN was who tried to investigate the possibility of 
a prejudice free identification/modelling methodology 
[6]. He could not find any general applicable results, 
however many interesting, almost philosophical 
statements were developed. 
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Fig. 9. Conditions constraining the relative model error n 
the case of two unstable zeros 

 
3. The Heisenberg Uncertainty of Control 
 
The condition of robust stability (18) already contains a 
product inequality. Here 

 
T̂ jω( )  (although it is usually 

called a design factor) can be considered as the quality 
factor of the control. The other factor, however, can be 
considered as the relative correctness of the applied 
model. In the light of practical experience control 
engineers favor applying a mostly heuristic expression 
 
 (quality of the control) × (robustness of the control) 
≤ limit 
 
This product inequality can be simply demonstrated by 
the integral criteria of classical control engineering. Let 

  I2  be a square integral criterion (Integral Square of 

Error: ISE) whose optimum is   I2
*  when the regulator is 

properly set, and the NYQUIST stability limit (i.e., 
robustness measure) is  ρm . The well-known empirical, 
heuristics formula is 
 

 
  

I2
*

I2
ρm ≤ limit  (25) 

 
The inequality is illustrated in Fig. 15. The fact that the 
quality of the identification (which is the inverse of the 
model correctness) can have a certain relationship with 
the robustness of the control, is not very trivial. This can 
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be observed only in a special case, namely in the 
identification technique based on KB parameterization 
[1] [2] when    εID = − e . Introduce a new relationship for 
the characterization of the quality of the control 
 

 

   

δ = δ ω ,Ĉ( ) = − e jω( )
yn jω( ) = 1

1+ ĈP
= 1

1+ L
 (26) 

 

Notice that δ  is the absolute value of the sensitivity 
function. Obviously,  δρ = 1  for all frequencies (here 

   
ρ = 1+ L ). Of course, the same equalities are valid for 
the minimum and maximum values, i.e., 
 

  

ρm Ĉ( ) = min
ω

ρ ω ,Ĉ( )⎡
⎣

⎤
⎦ = min

ω
ρ( )

δM Ĉ( ) = max
ω

δ ω ,Ĉ( )⎡
⎣

⎤
⎦ = max

ω
δ( )

;  i.e.,:  δM ρm = 1(27) 

 

Denote the worst value of these measures by 
 

 

   

ρm = max
Ĉ

min
ω

ρ ω ,Ĉ( )⎡
⎣

⎤
⎦{ } = max

Ĉ
min
ω

ρ( )⎡
⎣⎢

⎤
⎦⎥


δM = min

Ĉ
max
ω

δ ω ,Ĉ( )⎡
⎣

⎤
⎦{ } = min

Ĉ
max
ω

δ( )⎡
⎣⎢

⎤
⎦⎥

δM
ρm = 1

 (28) 

 

The above three basic relationships can be summarized 
in the inequalities below 
 

   δρ = 1 ; δM ρm = 1 ;

δM
ρm = 1  (29) 

 

where the following simple calculations prove the 
existence of (34) and (35) 
 

 

  

ρm Ĉ( ) = min
ω

1+ ĈP = 1

max
ω

1
1+ ĈP

=

= 1
1

1+ ĈP ∞

= 1
δM Ĉ( )

 (30) 

 

 

   


δM = min

Ĉ
max
ω

1
1+ ĈP

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 1

max
Ĉ

max
ω

1
1+ ĈP

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

=

= 1

max
Ĉ

min
ω

1+ ĈP{ } = 1
ρm

 (31) 

 

Given (27), (28) and (29) further basic, almost trivial, 
inequalities can also be simply formulated 
 

 

   


δM ≤ δM Ĉ( ) ; ρm Ĉ( ) ≤ ρm

1
ρm

=

δM ≤ δM Ĉ( ) = 1

ρm Ĉ( )
 

   

1
δM Ĉ( ) = ρm Ĉ( ) ≤ ρm = 1

δM

 (32) 

 

The above results are not surprising. The fact, that they 
are valid even for the modelling error in the case of KB-
parameterized identification methods makes them 
special. So it can be clearly seen that when the modelling 
error decreases, the robustness of the control increases. 
Namely, if the minimum of the modelling error   


δM  is 

decreased, then the maximum of the minimum 
robustness measure   

ρm  is increased, since   

δM
ρm = 1 . 

 
Similar relationships can be obtained if the   H 2  norm of 
the “joint” modelling and control error is used instead of 
the absolute values. Introduce the following relative 
fidelity measure 
 

 
   
σ =

εID 2

yn 2

=
e

2

yn 2

     ; 
  

yn 2
≠ 0  (33) 

 
The upper limit for this measure can be formulated as 
 

 
   
σ =

εID 2

yn 2

=
e

2

yn 2

≤ 1
1+ ĈP

= δM Ĉ( )  (34) 

 
so it is very easy to find similar equations for σ . Let 
 

   
σM Ĉ( ) = max


σ ,Ĉ( )⎡
⎣

⎤
⎦   ;  

   

σM = min
Ĉ

max


σ ,Ĉ( )⎡
⎣

⎤
⎦{ }  

 
Using these definitions and the former equations we 
obtain the following interesting relationship 
 

 

   

σM ≤ σM Ĉ( ) ≤ δM Ĉ( ) = 1
ρm Ĉ( )  (35) 

 
for the relative quadratic identification error. 
 

Use the first-order reference model 
 

 
  
Rn =

bn1z−1

1+ an1z−1
 (36) 

 

for the design of the noise rejection in the IS process. 

Here the maximum of the robustness measure is 

   
ρm

o = ρm,IS
o = 0.9  according to 

 

 
   

ρm,IS
o = ρm,IS  = 0( ) = 1

1− Rn ∞

= min
ω

1
1− Rn

 (37) 

 

and 
 

 
   
ρm,IS

o =
an1 −1

2
 (38) 

 

This gives a robust measure of 
   
ρm,IS

o = 0.9  under the 

parameters   bn1 = 0.2  and   an1 = −0.8  chosen for 
reference models with unity gain (same as in (24)). 
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Figure 10. Illustration of uncertainty relationships (41) 
 

The values of the typical variables (see above) are 
 

 
   


δM

o = 1
ρm

o
= 2

an1 −1
= 1.1111      ⇒        


δM

o ρm
o = 1  (39) 

 

   

σM
o = 1

ρm
o

= 2
an1 −1

= 1.054       ⇒  

    σM
o ρm

o = 0.9486 ≤

δM

o ρm
o = 1  (40) 

 

Considering the data of (39) and applying again the 
relative sampling time   x = Ts Tn , the different 

measures in (35) are illustrated in Fig. 10. Here   Tn  

is the time constant of the continuous time (CT) 

first-order reference model. 
 

Introduce the following coefficient for the 

excitation caused by the reference signal 
 

 
  
ξ =

yr 2

yn 2

     ;      
 

yn 2
≠ 0  (40) 

 

which represents a signal/noise ratio. Investigate 
the product σρ  (which is called the uncertainty 

product) in an iterative procedure where the relative 

error    of the model is improved gradually. For 

simplicity, let us assume an IS process. It can be 

simply derived that 
 

 

   

σρm ≤ σρm
o ≤

1+ ξ Rn ∞

min 1+Rn
≤

1+ ξ Rn ∞


∞

1− ξ Rn ∞


∞ →0

=

= σo
ρm

o = 1

 (42) 

 

i.e., 
 

 
  
σρm ≤ σρm

o ≤
→0

σo
ρm

o = 1      or      

 
  
σ ≤ σo = 1

ρm
o

=

δM

o ≤ δM = 1
ρ

 (43) 

 

where 
  
σo = σ  = 0( ) . Similarly to the notations 

  
σM Ĉ( )  and   

σM  applied above, the notations 

   
σm ( ) = min


σ ,Ĉ( )⎡
⎣

⎤
⎦  and 

  
σm

o = σm  = 0( )  can also 

be introduced. It is not an easy task, however, to derive 
the relationship between  σm

o  and  σo  or   
σM  and 

  
σM Ĉ( ) . The simplest case to investigate (43) is when 

   = 0 , since then 
 

 

  

σm
o ≤ σM

o Ĉ( ) ≤ δM
o Ĉ( ) = 1

ρm
o Ĉ( )  (44) 

 
This equation gives a new uncertainty relationship, 
according to which 
 

 
   

e
2

yn 2

min
Ĉ

1+ ĈP ≤
→0

1  (45) 

 
The product of the modelling accuracy and the 
robustness measure of the control must not be greater 
than one, when the optimality condition    = 0  is 
reached. The obtained uncertainty relation can be written 
in another form, since 
 

 

   

sup
e

2

yn 2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
min

Ĉ
1+ ĈP

=0
= 1  (46) 

 

The earlier results of control engineering referred only 
for the statement that the quality of the control cannot be 
improved, only at the expense of the robustness, so this 
result, which connects the quality of the identification 
and the robustness of the control, can be considered, by 
all mean, novel. 
 

This phenomenon can arguably be considered as the 
HEISENBERG type uncertainty relationship of control 
engineering, according to which 
 

 
  

1
Δz

1
Δp

≤ 1  (47) 

 

Here  Δz  and  Δp  are the alterations of the canonical 
coordinate and the impulse variables, respectively, and 
thus their inverse corresponds to the generalized 
accuracy and “rigidity” which are known as performance 
and robustness in control engineering. 
 

The consequence of the new uncertainty relation is very 
simple: KB-parameterized identification is the only 
method where the improvement of the modelling error 
also increases the robustness of the control. With other 
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methods, and other identification topology, modelling 
and control errors are interrelated in a very complex 
way, and in many cases this relation cannot be given in 
an explicit form. This is the main reason why it is 
difficult to elaborate a method which guarantees, or at 
least forces, similar behavior by the two errors, though 
some results can be found in the literature [3]. 
 

 
 

Fig. 11. Relationship between the control and 
identification error in the general case  

 
There is a myth in the literature concerning the 
antagonistic conflict between control and identification. 
A “good” regulator minimizes the internal signal 
changes in the closed loop and therefore most of the 
identification methods, which use these inner signals 
provide worse modelling error, if the regulator is better. 
The exciting signal of KB-parameterized identification is 
an outer signal and therefore the phenomenon does not 
exist. The relevant feature of this relationship is shown 
in Figs. 11 and 12 for a general identification method 
and a KB-parameterized technique. 
 

σ

σ

1
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x
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  0

  
 
δ M
o

δM

ρm   
 ρ m
 
δ M = 1

x

δ

δ

   e = εID

   

δ =
e jω( )

yn jω( ) = 1
1+ L

ρm = min
ω

1+ L
   

δID =
εID

yn

= δ =
e

yn

σID =
var εID{ }
var yn{ } =

εID 2

yn 2

= σ =
e

2

yn 2

   ∞
→ 0

 
 

Fig. 12. Relationship between the control and 
identification error in the case 

of the KB-parameterized identification method  
 

In Fig. 11, there is no clear relation between  δID  and δ , 

or  σ ID  and σ , and therefore there it is not guaranteed 

that minimizing  δM  increases  ρm . In Fig. 12  δID = δ  

and  σ ID = σ , and thus the minimization of  δM  directly 

maximizes  ρm . Thus if during the iterative identification 

the condition 
   
k ∞

=
k→∞

0  is guaranteed then, at the 

same time, the convergences 
   


δM

k =
k→∞


δM

o  and 

   
ρm

k =
k→∞

ρm
o  are ensured. 

 

4. Conclusions 
 

The purpose of this paper is to highlight some 
interesting, may be philosophical, paradigm of modelling 
and control. 
 

Such problems are discussed here, which are worth 
further study and investigation. 
 

“I believe that the progress of science should be rather 
measured by the raised and not by the solved problems 
!” as Eddington stated !!! 
 
 
References 
 
[1] Keviczky, L. and Cs. Bányász (2015). Two-Degree-

of-Freedom Control Systems (The Youla 
Parameterization Approach), Elsevier, Academic 
Press. 

[2] Keviczky, L. and Cs. Bányász (2001). Generic two-
degree of freedom control systems for linear and 
nonlinear processes, J. Systems Science, Vol. 26, 4, 
pp. 5-24. 

[3] Ljung, L. (1999). System Identification, Theory for 
the User, Second Edition, Prentice Hall. 

[4] Maciejowski, J.M. (1989). Multivariable Feedback 
Design, Addison Wesley. 

[5] Youla, D.C., Bongiorno, J.J. and C. N. Lu (1974). 
Single-loop feedback stabilization of linear 
multivariable dynamical plants, Automatica, Vol. 
10, 2, pp. 159-173. 

[6] Kalman, R. (1991). Prejudice Free Modelling and 
Identification, (Plenary Paper), SYSID’91, 
Budapest. 

[7] Csáki, F. (1978). State-space methods for control 
systems, Akadémiai Kiadó, Budapest. 

[8] Kailath, T. (1980). Linear systems, Prentice Hall. 
[9] Cs. Bányász and L. Keviczky (2004). State-

feedback solutions via transfer function 
representations, J. Systems Science, Vol. 30, 2, pp. 
21-34. 

[10] L. Keviczky and Cs. Bányász (2007). Model 
error properties of observer-based state-feedback 
controller, 6. Int. Conf. System identification and 
control problems SICPRO'07, Moscow, pp. 879-
888. 

[11] Keviczky, L. and J. Bokor (2011). On the 
solution of an LQ control problem anomaly, Proc. of 
the Automation and Applied Computer Science 
Workshop AACS'11 (50th Anniversary of the Dept. 
of Automation and Applied Informatics), Budapest, 
pp. 22-37. 

[12] Keviczky, L. and J. Bokor (2012). On an LQ 
problem anomaly and a possible solution, 14th 
IASTED Int. Conf. on Control and Applications, 
Crete, 781-013. 

 
 

L. Keviczky, Cs. Bányász
International Journal of Control Systems and Robotics 

http://www.iaras.org/iaras/journals/ijcsr

ISSN: 2367-8917 12 Volume 7, 2022




