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Abstract: In this paper, a discrimination system, using a neural network for electromyogram (EMG) 
externally controlled Arm is proposed. In this system, the Artificial Neural Network (ANN) is used to learn 
the relation between the power spectrum of EMG signal analysed by Fast Fourier Transform (FFT) and the 
performance desired by handicapped people. The Neural Network can discriminate 4 performances of the 
EMG signals simultaneously. The digital signal processing was realized using MATLAB and LabVIEW 
software. 
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1 Introduction  

Worldwide, disability is one of the most acute 
medical and social problems. Recently more than 
1.9 million people are living in America without 
one or more limbs: that is one out of every 200 
people. Thirty percent of these amputees suffer 
from arm loss. The causes leading to amputation of 
the arms include military conflicts, road, and 
industrial injuries, natural disasters and 
technological disasters, as well as diseases such as 
obliterating vascular lesions, atherosclerosis, and 
diabetes. Besides that, there are 50,000 new 
amputations each year [1]. The loss of an arm 
means a drastic reduction of live quality for 
affected people. Almost until the end of the 20th 
century, all inventions in the field of the prosthetics 
were mechanical, in some cases, the flexion was 
manually adjusted. The main problems of 
mechanical prostheses were the lack of any 
connection with the body, rigidity, and fragility. 
The prostheses that replaced the arm or leg could 
not function as a full-fledged prototype - this is just 
a surrogate that replaces the active parts of the body 
but is unable to get closer to the natural counterpart 
in capabilities. This is the main disadvantage of 

dentures - their "external" nature and low 
functionality. All that remains to be done by their 
owner is to use them as an element of the wardrobe, 
which eventually wears out and becomes unsuitable 
for further operation. In recent years, in the field of 
prosthetics, such a direction as "biomechatronics" 
has appeared, which is a combination of robotics 
and human nerve cells. To compensate for the lost 
live quality myoelectric hand prostheses have been 
developed, that can be controlled by muscle 
contractions in the patient's stump. Surface 
Myoelectric signal is still considered as an aid in 
various aspects of medical and biomedical 
applications. For example, they are used in the 
diagnosis of muscle disorders and the study of 
muscle function as well used to control prosthesis 
manipulators [2]. Myoelectric control prostheses 
have received widespread use as devices for 
individuals with amputations or congenitally 
deficient upper limbs and many systems are now 
available commercially to control a single device 
such as a hand, elbow, and wrist. There have been 
numerous approaches to interface humans with 
machines over the last century. Humans emit a 
variety of complex signals that today's technology 
can capture, process, and decipher to varying 
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degrees of success [3]. Advances in bioengineering 
have led to increasingly sophisticated prosthetic 
devices for the amputees and the paralyzed 
individuals. The control of such devices requires 
real-time classification of biosignals, for example, 
B. electromyographic signals (EMG signals) 
recorded by intact muscles [4]. Not only EMG 
electrodes that measure the biopotentials of 
contracting muscles, but also 
electroencephalography electrodes (EEG) that 
record the brain activity of the operator can be used 
as devices that record driving signals from a 
biological object (prosthesis operator). The choice 
of method for controlling the prosthesis of the 
upper limb is largely determined by the sources of 
useful signals used. For example, mechanical 
movement of segments of the arm, bioelectric 
signals of contracting muscles, and also varying 
impedance (impedance) to the alternating current of 
contracting muscles can be used as such signals. 
With the development of computer technology, 
fundamentally new technologies have appeared that 
are used in the management of upper limb 
prostheses: pattern recognition technology, neural 
networks, Fuzzy logic, and machine learning. The 
work presents a design and implementation of a 
prosthetic arm that can be controlled naturally, 
provide sensory feedback and allows two 
movement actions. In addition to that, it also 
focuses on extracting electromyogram (EMG) 
signals generated during contraction of the biceps. 
The proposed partial-prosthesis mechanism is 
controlled by a program. 

2. Literature review   
In work [5], the author presents an alternative 
approach in which you can intuitively control four 
different handles with the MPR and open/close 
grips and open/close in a multifunctional prosthetic 
hand.   The system was used for five days by a one-
sided person with dysmelia, whose arm never 
developed and yet learned to create patterns of 
myoelectric activity that are reported to be intuitive 
to multi-functionally control the prosthetics.  The 
authors collect data for further real-time processing. 

The authors in work [6] presents prostheses are 
monitored using surface electromyogram (sEMG) 

signals obtained from residual muscle tissue on the 
residual limb of an amputee. In their work, the 
intuitive control of the multifunctional upper-limb 
prosthesis achieved using pattern recognition (PR) 
sEMG. 

The article [7], introduces an anthropomorphic 
hand prosthesis with flexure joints that are 
controlled by surface electromyography (sEMG) by 
only 2 electrodes. The myoelectric control system, 
which can classify 8 gripping hand movements, is 
being built. The pattern recognition is used when 
the mean absolute value (MAV), the variance 
(VAR), the fourth-order autoregressive coefficient 
(AR), and the sample entropy (SE) are selected as 
the optimal feature set and the linear discriminant 
analysis (LDA) is used for the reduction 
Dimension. 

In their article [8], the authors introduce a fully 
integrated preinstalled artificial arm equipped with 
a human-machine feedback system. The artificial 
arm consists of five fingers. Hand driven by six DC 
motors, one per finger and one thumb. The motor is 
in the hand area and the sensors are distributed over 
the whole housing. The integrated control system is 
a subsystem and a sensory subsystem. The motion 
control subsystem is a critical factor as a sensory 
subsystem for the patient.  The controllability is 
achieved by using several types of sensors.   

The aim of work [9] is to design and construct a 
prosthesis that is strong and reliable and at the same 
time provides control over the exerted force. The 
design had to take into account the reliability and 
size of the mechanical and electrical design These 
objectives were achieved through the use of EMG 
in the electrical control system and a linear motion 
approach in Mechanics. 

The literature review shows that the developed 
system characterized by the complexity of design 
and implementation. On the other hand, the 
literature review emphasizes that the problem of 
controlling prostheses is still one of the most 
important issues. 
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Over the centuries, the design of upper limb 
prostheses has changed depending on the level of 
existing technology. The first wooden and iron 
prostheses appeared before our era. Over time, 
prostheses began to include mechanical elements: 
ratchet mechanisms, systems of levers, rods, joints, 
springs, and gears appeared. This led to the ability 
to control the grip and opening of the hand, as well 
as the use of working prostheses (auxiliary tools 
that enable operators to engage in physical labor). 
However, despite significant advances, in the 
mechanics of such prostheses had some 
fundamental shortcomings. The grip force 
depended solely on the spring force, which was 
very limited. Another drawback was that the effort 
being made in the prosthesis was too small [10]. 

In the middle of the XX century. upper limb 
prostheses with an external energy source appeared. 
During this period, pneumatic actuators were 
widely used as executive engines, but several years 
later electric motors took their place. With the 
development of microcontroller technology, a new 
element base has arisen, and prostheses have 
become an electromechanical control system, 
which includes master devices and controllers that 
implement algorithms and methods of control [11]. 
The idea of one of the first bioelectrically 
controlled prostheses working with an external 
energy source in case of amputation at the brush 
level was to control the electromechanical brush 
using biopotentials removed from the skin in the 
area of the projection of the abdomen of the 
contracting muscle. The signals are picked up by 
surface electromyography (EMG) electrodes from 
two groups of stump muscles (flexors and 
extensors) and are fed through amplifiers to the 
control system of the electromechanical brush [12]. 
Not only EMG electrodes that measure the 
biopotentials of contracting muscles, but also 
electroencephalography electrodes (EEG) that 
record the brain activity of the operator can be used 
as devices that record driving signals from a 
biological object (prosthesis operator). The 
methods used to control prostheses are based on 
common fundamental principles: open control 
(without feedback); feedback (closed-loop); 
compensation method.  

The choice of method for controlling the prosthesis 
of the upper limb is largely determined by the 
sources of useful signals used. For example, 
mechanical movement of arm segments, bioelectric 
signals of contracting muscles, as well as a variable 
impedance (impedance) to the alternating current of 
the contracting muscle [13]. 

In humans, the system of movements consists of the 
systems of the brain, nervous system, and muscle 
units. To create movement, the brain releases pulse 
signals. The signal is then sent through the nervous 
system.  
The muscle unit that is stimulated by the impulse of 
the nervous system, then squeezed and causes 
movement. When using a prosthesis, an 
electromyographic signal (EMG) is used to send a 
command to develop two types of actions: rotation 
or capture. 

A transformation of the scanned signal into a 
certain amount of grip or rotating types for 
prosthesis requires the same amount of unique 
signal patterns. The major problem using 
myoelectric signal patterns is the patients' 
deficiency to contract more than two muscles 
independently. Additionally, the EMG-signal is no 
pure signal of one specific muscle but contains 
information about all contracted muscle fibers in 
the range of the sensor. Thus, signal quality is 
reduced drastically and the success of 
discrimination of different signal patterns 
decreases. Several groups made promising attempts 
to increase the corresponding classification rate via 
preprocessing or sophisticated classification 
algorithms [14, 15], however, no control using 
more than two to three movements is commercially 
available. In this work, two states of movement are 
considered: rotating and gripping.  

Starting in a neutral state (prosthesis opened, and 
no rotation action is applied) the user may generate 
two switching signals depending on the intensity of 
the muscle contraction and the time of activation. 

4. Methodology  

When the fibers extend along the length of the 
muscle, the extracellular field potential is evoked. 
The typical amplitude of EMG ranges from 20-
2000μV, depending on the size of the motor unit 
and the position of the electrode. The EMG signals 
generated from a contracting muscle for and 
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detected by EMG electrodes are first to send to the 
instrumentation amplifier, the bandpass filter, and 
the rectifier circuits. Following amplification, 
filtering, and rectification the resulting signals are 
used for extracting features and consequently 
providing a control signal to control the movement 
of the prosthetic arm. The block diagram of the 
system is shown in Fig 1. 

 
Fig 1. Block diagram illustrates the main stages of 

myoelectric arm 
 Several signs of progress in biomechatronics 
technology bring a lot of benefits to increase the 
mobility of the amputee in their daily life activities. 
A prosthetic arm, for example, is used to 
compensate for the lost functions of the amputee's 
absent arm. The importance of this project stems 
from the local.   
The development of such products is required high 
levels of controllability and signal conditioning and 
processing in the local market. The project will be 
accomplished such as to minimize the discrepancy 
between the amputee's expectations and reality. 
This will be achieved by designing a prosthetic arm 
that has a sufficient number of degrees of freedom 
that result in a natural human-like arm motion 
while performing a daily life task.  
The goal of this article is to design and develop a 
prototype of prosthetic arm that can be controlled 
naturally, provide sensory feedback and allows 
some degrees of freedom. 
The prosthetic arm is to be perceived as an 
incentive that would encourage learning and to help 
advance current technology, with these specific 
goals:  
1. To develop a fully integrated prosthetic arm that 
can be used to compensate for the lost functions of 
the amputee's absent arm. The project offers a task 
that requires controllability and high level of signal 
conditioning and processing. 

2. Getting involved in building integrated systems 
such as a prosthetic arm. Developing a prosthetic 
arm offers a unique educational exercise that 
provides experience in physics, mechanics, 
hardware, .and, teamwork. 
The human body contains 650 muscles which 
represent 40% of the total weight of the body. 
Small electrical currents are generated by muscle 
fibers before the production of muscle force. These 
currents are generated by the exchange of ions 
across muscle fiber membranes, a part of the 
signaling process for the muscle fibers to contract. 
The signal is called the electromyogram (EMG) and 
can be measured by applying electrodes to the skin 
surface, or invasively within the muscle.  Figure2.  
shows an EMG signal obtained by placing surface 
EMG electrodes on normal person skin. 

 
Fig 2.   EMG signal obtained from muscle 

 
The EMG signal in a fiber muscle is stochastic. 
Normally, it shows the intensity of muscle 
contraction and the time of activation. 
The main characteristics of the EMG signal are: 
• Frequency is between 0 to 2000Hz, but the 
dominant energy is concentrated in the range of 50 
to 500Hz.  
• Amplitude is between 0 and 10 mV.  
• Noise Affectation is a common problem. 
There are several types of electrodes used for the 
collection of EMG data, including wire needle, and 
surface electrodes. Wire needle electrodes are 
useful for accessing individual motor units and 
muscles that are in deeper layers under the skin. 
Surface electrodes, on the other hand, are extremely 
low risk to the subject and require a little training to 
use properly also are the most suitable for assessing 
the time force relationship of EMG signals and 
interfacing an individual with a biomechanical 
device. 
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To minimize the impedance between the electrode-
skin contacts it is recommended that the skin 
surface be shaved of any hair and dead skin cells at 
the target location. Dry shaving works well for 
removing the dead skin cells. Once shaved, the skin 
should be cleaned with alcohol and allowed to dry 
before the electrode is placed [2]. 
After reading the electrical signals from the 
contracting muscles (EMG signals) using the 
surface EMG electrodes shown in Figure (2), the 
signal has an amplitude of about (0-10 mV) and 
contains noise from the AC supplies (50-60Hz), 
this means processing is a must before the control 
phase. Many steps should be done to prepare the 
EMG signal; amplification using instrumentation 
amplifier, filtering by a pass-band filter (50-500Hz), 
and rectification. 
 
System design and development  
Development of the preprocessing phase and Data 
acquisition system 

 
The preprocessing phase is given in Figure (3).  
This schematic diagram consists of amplification, 
filtration and rectification elements that are used to 
filter the EMG signal from the noises affecting it. 

 
Fig. 3. the block diagram of the preprocessing 
phase of the EMG signal and data acquisition 

system 
 
Because of the sensitivity of EMG signal to the 
surrounding effects, it is very important to use PCB 
processing circuit, this shown in following Fig.4. 

 

 

Fig 4. PCB processing circuit 
 

The experimental setup of the developed arm is 
shown in figure 5. 
 

 
Fig. 5. The experimental setup 

Development of Mechanical system  

The mechanical implementation was concerned 
locating the motors in the right position in the 
myoelectric arm.  There are two motors (servo and 
Stepper) control the gripping and rotating of 
Myoelectric arm, where the gripping motor has 
been calibrated to give a fully opening action and 
optimum closed action through the mechanical 
design of the gripper, it has been located after about 
20 cm from the wrist and connected with ring gear 
and shaft to pull up the cable that connected with 
gripper where the shaft will rotate about 160 
degrees while the total stroke for the cable is about 
5.1 cm to achieve fully open gripper.  

 Rotating motor has been putting in the shaft of a 
myoelectric arm and calibrated to rotate 90-degree 
CCW using time principle, and then it will be 
reverse its direction to return to the initial position. 
Figure (6) shows the final mechanical design 
system of a myoelectric arm. 

 
 
Fig. 6 final mechanical system of myoelectric arm 
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5. EMG Feature Extraction 
and Classification
  EMG Signal Classifications for Human-Computer 
Interaction 
With the increasing role of computerized machines 
in society, the Human-Computer Interaction (HCI) 
system is becoming an increasingly important part 
of our daily lives. HCI defines the effective use of 
the accessible information flow of computing, 
communication and display technologies. In recent 
years, there has been a huge interest in introducing 
intuitive interfaces that can recognize the 
movements of the user's body and translate them 
into machine instructions. For neural 
communication with computers, various biomedical 
signals (biosignals) can be used, which can be 
obtained from specialized tissue, organ, or cellular 
systems, such as the nervous system. For example, 
an electromyogram (EMG) signal. 

With the EMG feature extraction process, you can 
highlight the main features of the signal to 
distinguish more than one degree of freedom from a 
muscle, such as a muscle. B. detection and rotation. 
The feature extraction reduces the dimension of the 
EMG signal suitable for the control system. The 
feature extraction can be applied both in the time 
domain and in the frequency domain. Time-domain 
objects are usually calculated quickly because they 
do not need to be converted. For example, mean 
(MAV), wavelength (WL), Willison amplitude 
(WAMP), and variance (VAR), which are 
discussed later. 
A function in the frequency domain contains more 
useful information than a function in the time 
domain, which requires a transformation that slows 
down the system [16]. 
The first task is to detect the beginning of the 
movement. Due to the stochastic properties of the 
surface electromyogram, detecting the onset is a 
difficult task, especially when the surface response 
of the EMG is weak [17]. 
The algorithm we used for this task is the 
segmentation of the EMG signal. Each segment 
contains 40 readings (48.88 ms) of 0.001222 
seconds for each EMG reading. Calculate 
Willison's amplitude for this segment and compare 
it with a predefined 

Willison amplitude: If the amplitude of the Willison 
segment is greater than the predetermined 
amplitude of Willison, an EMG signal will be 
detected, otherwise it will be noise. The next 
section explains the Willison amplitude criteria [18]. 
The value of the threshold is determined using the 
following equation 
Threshold=mean (noise) +3*std (noise) (1) 
      
Where:  
std: standard deviation of the EMG signal.  
Mean: mean absolute value of the noise 100 
reading.  
In the feature extraction, we take windows of the 
EMG signal each window contains 1440 readings 
when the signal is detected. 
The Mean Absolute Value (MAV), as the name 
suggests, is calculated by taking the average of the 
absolute value of all-time samples. The equation is 
given here 
                      
(2)                                                        
Where N is the number of readings in each window. 
Fig. 7. shows the mean absolute value of the EMG 
signal where the signal is parting to windows each 
part contains 40 readings, and the mean absolute 
value is calculated for each part.   
 
 

 
 
Fig 7. EMG signal and the mean absolute value of 

each window 
The number of counts for each change of the EMG 
signal amplitude that exceeds a predefined 
threshold is called Willison Amplitude [19]. It is 
given by 
 

                               (3) 
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With f (x) = 1 if x > threshold, 0 otherwise. This 
unit is an indicator of the firing of motor unit 
Action potentials (MUAP) and, therefore, an 
indication of muscle contraction level [9]. 
The EMG signal was modeled as amplitude 
modulated Gaussian noise whose variance is related 
to the force developed by the muscle, a variance (or 
second-order moment) of the EMG is a measure of 
its power, and it is given by 

                       (4)                                          
 
The waveform is the cumulative length of the 
waveform over the time segment. It is defined as 

               (5)                                 
                          
Where ΔXk= Xk - Xk-1. , is parameter gives a 
measure of waveform amplitude, frequency, and 
duration all in one. 
There are several possible classification techniques 
[17-19]. Among them; the most used are artificial 
neural networks. Recently, some authors have tried 
to use a fuzzy classifier, but other authors reported 
that with the appropriate representation of the 
signal, a linear classifier performs better than a 
nonlinear one. 
The classification task includes linear discriminant 
analysis (LDA) classifier and multilayer perceptron 
(MLP) classifier. LDA and the MLP are easy to 
implement and are representatives of statistical and 
neural classifiers respectively, which were well 
understood [20].  
Pattern classifiers with adaptability are desired in 
this application because of the nature of EMG 
signals. As we introduced in the feature extraction 
part there are many factors influencing the 
acquisition of the EMG signals: Mean absolute 
value, Wilson amplitude, waveform length, and 
variances features are expected for different 
individuals. Similarly, there can be differences in 
EMG signals of a single person measured at 
different times. The patterns might be completely 
altered for different individuals, while for one 
individual the changes upon a time might be some 
"shifting", "increasing" or "growing" of the patterns. 
The classifiers need to be able to deal with these 
differences and variances while maintaining a 
certain level of stability. 
The recognition system of EMG patterns consists of 
three stages, all these stages are explained   Firstly, 
time-series data for EMG is measured by electrodes 
in the input part and then processed by filtration, 

amplification and amplitude rectification. The 
second stage is the EMG feature identification 
based on MLP-NN. The input data to the ANN are 
taken to have a dimension (P×I). The length of I 
represents the number of inputs to NN, which 
denotes the number of features that used for 
moving the human arm. The length of P represents 
the number of samples used in training the NN. The 
NN training algorithm, which is used in this stage, 
is MLP-NN (Fig. 8). 
 

 
 
Fig. 8. Flow chart for Processing EMG Signal and 

Identification of NN. 
 
The identification system depends on the reliability 
of the measured signal. If the obtained signal from 
the muscle by using directly surface electrode as a 
measurement source is unknown data, it must be 
classified as an EMG signal for the human. This 
purpose is fulfilled by taking many different EMG 
signal lengths from different muscles of the human 
arm. The third stage is the movement's recognition 
system. At this stage, an EMG signal features will 
be considered and processed in the same way of the 
first stage. The NN, which is used in this stage, is 
considered from the learned NN in the second stage. 
The processed features of EMG signal in this stage 
are taken as the input to NN in the forward path 
only and the output of this NN is compared by a 
microcontroller to decide about human arm 
movement as shown in Fig. 9. 
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Fig 9.  Block Diagram of testing Recognition 

Processing 
 
 

Training procedure 
The training process was implemented offline by 
taking many examples of the EMG signal which the 
user trained to produce. The user generates a long 
signal when he wants to rotate the arm, and 
generates a short signal when he want to gripe 
something by his arm as shown in the fig. 10 below. 
 

 
 
Fig. 10.  the left figure showing the signal produced 
by the user for rotating and the right figure showing 
the signal produced for gripping 
 
The feature vector of each window of the EMG 
signal represents the input vector of the neural 
network feature vector (Mean Willison Amplitude 
Variance Waveform Length). Table I shows the 
minimum and maximum values of each feature. 

Table 1. Features Values 
feature Min value Max value 

Mean absolute 
value 

0.1499 0.2067 

Waveform length 15.4581 175.552 
Willison amplitude 26.000 568 
Variance  0.0032 0.0476 

 
The target vector is built by calculating the 
Willison amplitude of each window if the Willison 
amplitude is greater than 5 and less than 200 then 

the target=1 “gripping” and if the Willison is 
greater than 200 then the target=2 “rotating”.  
the neural network will generate the output vector 
"Y" and its values [1, 2] 
the error is calculated using the following equation 

                                                (6) 
Where:  
T- target vector  
Y- the output of the neural network 
 
 
Conclusion  
In this paper, the design and implementation of a 
myoelectric arm is presented. Feature extraction of 
EMG signal is developed using a neural network. 
According to the peak detection the extracted 
feature is used to control the motion of the arm. 
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