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Abstract: - Concrete has become a major construction material all around the world with over ten billion tons 
consumed annually. One of the major issues to be kept monitored during manufacture of concrete is its initial 
setting time; that is to say, the time needed for the initiation of fresh concrete’s solidification. Information on the 
initial setting time of fresh concrete and/or cement paste are essential in construction scheduling, as well as in 
management of the haulage and placement of concrete. Conventional civil engineering laboratory tests for the 
determination of setting time are time and resources consuming in nature. This study aims to propose an 
intelligent model that will provide efficient prediction of setting time of cement pastes. An artificial Neural 
Network (ANN) model was proposed for the setting time predictions in this study; and its prediction performance 
was investigated systematically by using two training functions, under two different train:test data distributions 
together with five varying hidden neuron values. Setting time of cement pastes was predicted considering 12 
input parameters. The results obtained indicates that the prediction accuracy of the employed ANN model is 
satisfactory; since it yielded remarkably high values of correlation coefficient and low mean square error such as 
0.998 and 0.0003, respectively.  
 
Key-Words: - Civil Engineering; Artificial Neural Network; Cement pastes; Initial setting time; Feedforward 
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1 Introduction 

Cement is the fundamental material used in concrete 
manufacture. Setting is described as the solidifying 
of the cement paste. Setting mainly occurs through 
the ‘hydration’ reaction of cement compounds. 
Hydration is described as the reaction that happens 
instantly after the cement powder comes in contact 
with water with the consequent development of heat 
[1,2]. Setting of fresh concrete is significant, since 
the fresh concrete should be maintained in the plastic 
stage for sufficient time period in order to ensure 
completion of mixing, placing and compaction 
processes of concrete in a feasible manner [1]. 
Therefore, setting time of a particular cement paste 
provides useful information for planning, 
construction and completion of the final concrete 
product. Conventional setting time determination 
tests are done with several trial and error batches of 
materials in the laboratory and each trial costs 
significant amount of materials, time and labour. 
 
Artificial Neural Network perform a vital role in 
imitation of complex and indirect procedures [3]. 
Subsequently, for minimizing time loss and the plan 

cost, help of Artificial Neural Networks (ANN) is 
adopted to create models, with the goal that the 
information extracted from these neural system 
models, can be used to anticipate any cement mix. 
Artificial Neural Networks (ANN) have been utilized 
as an effective device for several applications in 
different fields of civil engineering [3,4]. 
 
This study aims to propose an alternative intelligent 
method for the prediction of initial setting time of 
cement pastes in a non-destructive manner; without 
consuming materials, time and labour by using ANN. 
Even though ANN has been employed for several 
other aspects of civil engineering studies previously, 
it was observed that setting time predictions with 
ANN for cement pastes and concrete was not studied 
in detail in the related literature. Hence, another 
objective covered within this study is to provide 
insight on the effects of varying train:test data 
distributions, as well as varying hidden neuron values 
on the performance of the ANN model employed for 
the case of cement paste setting time predictions.  
 
The methodology used for defining the proposed 
model parameters as well as the used ANN 
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architecture are described in detail in the below 
sections. 
 

2 Methodology 
2.1 Data Selection 
In this study, the dataset used includes 174 cases 
having comparable parameters, that were extracted 
from 6 experimental studies published in the related 
literature. Table 1 presents the information about 
these experimental studies.  

Table 1: References used for data acquisition 
Data Source  Number of test cases 
Brooks et al., 2000 [5] 13 
Gulbandilar & Kocak, 
2013 [6] 

18 

Khan & Ullah, 2004  [7] 39 
Tamas, 1960 [8] 23 
Yurdakul, 2010 [9] 16 
Güneyisi et al., 2009 
[10] 

65 

Total  174 
 

Twelve (12) input parameters having progressive 
effects on the setting time cement pastes were 
identified, by taking the discussions presented in the 
related experimental literature as a basis. The details 
of the parameters are presented in Table 2.  

Table 2:  Input and Output Parameters 
Description  Parameters Units 

 1 Cement’s CaO 
content 

% 

 2 Cement’s Al2O3 

content 
% 

 3 Cement’s Fe2O3 

content 
% 

 4 Cement’s SiO2 

content 
% 

 5 water/cement ratio % 
 6 Cement content kg/m3 
Inputs 7 Cement fineness cm2/g 
 8 Temperature oC 
 9 Slag % 
 10 Fly ash content % 
 11 Silica fume content % 
 12 Cementitious 

materials’ fineness 
cm2/g 

Output 1 Initial setting time mins 

 

Within these twelve inputs, the contents of cement’s 
chemical compounds were considered as individual 
parameters for the very first time in this study, as they 
are known to hydrate and set at different rates [2]. 
The novel inclusion of each cement compound’s 
content individually, enables the use of proposed 
ANN model for any kind of cement type of interest, 
as the cement type would be defined by considering 
the compositional information. Other input 
parameters included were the water to cement ratio, 
temperature and admixture used in the manufacturing 
of the cement paste.  

The target output considered in this study was the 
cement paste’s initial setting time. 

 

2.2 Data normalization 

Normalization of input and output dataset is 
considered as an important data pre-processing in 
training of an ANN model, since reduces the 
percentage of saturation of neurons which might lead 
to slower convergence where Sigmoid function is 
used on a network training [11-12]. According to the 
Sigmoid function principles, the dataset was 
normalized between 0 and 1. Also, to ensure that each 
parameters retains its importance within the network, 
normalisation was considered within each 
parameters. Each parameter was normalized within 
its minimum and maximum values [3]. The equation 
below was adopted for the normalization [13]: 

்ܵ ൌ
ௌ౟ିௌ࢔࢏࢓

ௌି࢞ࢇ࢓ௌ࢔࢏࢓
  (1) 

Where; S୫୧୬	= minimum,	S୫ୟ୶ = maximum, 

	S୲ = normalized,	S୧ = actual values used. 

2.3 ANN Training 
2.3.1 Network architecture 
Within the hidden layer, a Feedforward Multilayer 
Perceptron Networks was created having only one 
layer. In this study, the input layer contains 12 nodes 
corresponding to the twelve input parameters 
considered (See Fig. 1). The number of hidden layer 
nodes varied and its effect on the progress of the 
network was also studied and discussed in the 
following sections.  
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Fig. 1: ANN architecture used in this study  
 
 
2.3.2 Network learning structure 
The term learning structure (LS) considered in this 
study refers to the two different data partitions that 
were used with varying hidden neuron values. Two 
considered data partitioning ratios were; 70:30 and 
50:50 for train:test. The details of the combinations 
of data partitioning ratios and varying values of 
hidden neurons are presented in Table 3 below.  

Table 3: ANN learning structure 

 Data distribution 

      L.S 1             L.S 2 
 70/30 50/50 

Hidden neurons 

5 5 
12 12 
18 18 
23 23 
30 30 

In this way, it is aimed to study the influence of the 
training dataset ratio, as well as varying hidden 
values on the accuracy of the setting time predictions. 

 
2.3.3 Network training parameters 
In training a feedforward neural networks, certain 
parameters are adjusted with respect to the training 
function used in the network. In this study two 
training functions were considered; Levenberg-
Marquardt and Scaled Conjugate Gradient. 
Levenberg-Marquardt has been a commonly used 
training algorithm in modelling in neural nets [14]. 
Also the algorithm is a default algorithm in 
MATLAB® neural networks tool box. The algorithm 
is favored due to its speed of convergence. Similarly, 

Scaled Conjugate Gradient was also selected based 
on the results and outcomes of the research with 
similar cementitious input parameters [15]. The 
algorithm also has similar converging speed to that of 
the Levenberg-Marquardt. The two referenced 
training function trained respective networks with 
Sigmoid function.  
 
2.3.4 Network training 
ANN models were developed using MATLAB® 

2017a command line. For each training, the networks 
were trained until an optimal performance obtainable 
could be reached. It is noteworthy to mentioned here 
that, in training neural nets, optimisation could 
decrease or increase with each successive training, 
this is attributed to the different path a network might 
traced in its gradient descend. This is particularly 
associated with gradient descent based algorithm. In 
order not to lose the results of the previous optimal 
performance, multiple windows were opened and 
trained. MATLAB® software window with optimal 
performance was held in place while other windows 
were retrained until there is a higher result otherwise 
the results of the window are selected. 
 
 

3 Results and Discussions 
This study evaluated the effect of two data 
distribution ratios on the employed ANN model’s 
performance for the prediction of cement setting 
time. The results of 50:50 and 70:30 train:test data 
distributions use together with varying hidden 
neurons are presented in Tables 4 and 5, respectively. 
Levenberg-Marquardt and Scaled Conjugate 
Gradient Learning functions were used to optimize 
the network. 
 
The prediction performance obtained with different 
train:test distributions was evaluated based on the 
values of correlation coefficient (R) and the mean 
square error (MSE).  
 

The high R and low MSE values presented for all 
cases in Tables 4 and 5, indicate that ANN can be 
used as an efficient prediction method for the 
determination of setting time of cement pastes. In this 
aspect, ANN is observed to be have a high potential 
of serving satisfactorily as an alternative to 
conventional civil engineering laboratory tests.  
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Table 4: Prediction performance results with 50:50 
data distribution 

Training 
Func. 

H-
N 

    R-
Train 

R- 
Test 

R- 
Overall MSE

LM  0.9977 0.9972 0.9966 0.0007
SCG 5 0.9909 0.9819 0.9883 0.0128

      
LM  0.9974 0.9716 0.9721 0.0073
SCG 12 0.9907 0.9287 0.9732 0.0020

      
LM  0.9967 0.9877 0.9933 0.0010
SCG 18 0.9905 0.8688 0.9633 0.0024

      
LM  0.9964 0.9841 0.9917 0.0010
SCG 23 0.9903 0.9644 0.9837 0.0036

      
LM  0.9974 0.9928 0.9945 0.0008
SCG 30 0.9866 0.8990 0.9498 0.0046
 
 

Table 5: Prediction performance results with 70:30 
data distribution 

Training 
Func. H-N 

    R-
Train 

R-
Test 

R-
Overall MSE 

LM  0.9986 0.9989 0.9986 0.0003
SCG 5 0.9898 0.9928 0.9901 0.0009

      
LM  0.9984 0.9757 0.9934 0.0007
SCG 12 0.9903 0.9850 0.9893 0.0008

      
LM  0.9987 0.9973 0.9985 0.0003
SCG 18 0.9893 0.9115 0.9682 0.0021

      
LM  0.9985 0.9975 0.9982 0.0005
SCG 23 0.9875 0.9850 0.9871 0.0011

      
LM  0.9972 0.9812 0.9935 0.0004
SCG 30 0.9892 0.9684 0.9806 0.0056
 

Figures 2 and 3 presented below, illustrate the 
correlation coefficient (part-a) and mean square error 
(part-b) for the best performance cases among all 
combinations having 50:50 data distribution 
presented in Table 4 and among all combinations 
having 70:30 data distribution presented in Table 5, 
respectively.  

In both data distributions, it was observed that the 
best performance cases (i.e. highest R and lowest 
MSE) for both Levenberg-Marquardt (LM) and 
Scaled Conjugate Gradient (SCG) functions occurred 
at 5 hidden neuron values.  

 
Figure 2-a: Coefficient of correlation (R ) values 
for train-validation-test and overall for the best case 
of 50:50 data distribution; with LM at 5 Hidden 
neurons  

 

 
Figure 2-b: Mean square error (MSE ) values for 
train-validation-test and overall for the best case of 
50:50 data distribution; with LM at 5 Hidden 
neurons 
 

In both cases, LM was observed to yield R and MSE 
values indicating higher accuracies than the values 
yielded with SCG; even though the difference 
between the correlation functions yielded with LM 
and SCG become almost insignificant when the train 
data set percentage was increased to 70% (see the 
values in italics in Tables 4 and 5).  
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Figure 3-a: Coefficient of correlation (R ) values 
for train-validation-test and overall for the best case 
of 70:30 data distribution; with LM at 5 Hidden 
neurons 

 
Figure 3-b: Mean square error (MSE ) values for 
train-validation-test and overall for the best case of 
70:30 data distribution; with LM at 5 Hidden 
neurons 

More detailed evaluation of the effect of train:test 
data distribution and varying hidden neuron values 
on the evolution of R and MSE are presented in the 
below subsections.  

3.1 Evaluation of the Effect of Varying 
Train:Test Data Distribution on the 
Performance of Employed ANN Model for the 
Setting Time Predictions  
 
Figure 4 shows the evolution of correlation 
coefficient for each hidden neuron value at both 
50:50 and 70:30: train:test ratios in a comparative 
manner.  
 

 

Figure 4: Evolution of R-value with changing hidden 
neurons together with data distribution 

 
It is clearly seen that 70:30 train:test distribution 
yielded a higher R value, indicating more accurate 
prediction of setting time, for all employed hidden 
neurons with both LM and SCG training functions. 
The increase in the R value when the train data set 
was increased from 50% to 70% is observed to be 
more significant at certain hidden neuron values (e.g. 
at HN:12), and much less significant at other hidden 
neuron values, as in the case of employing 5 hidden 
neuron values.   
 
Another noteworthy remark that can be seen with 
Figure 4 is that; the effect of using increased train 
data distribution can be more or less significant 
depending on the training function employed for 
certain hidden neuron values. This feature can be 
observed with increased R difference with SCG at 30 
hidden neuron values, rather than the much less 
significant R difference observed with LM when 
train data percentage is increased (Figure 4). 
 
A similar observation can be made with Figure 5, 
which shows the evolution of MSE for each hidden 
neuron value at both 50:50 and 70:30: train:test ratios 
in a comparative manner. In this figure as well, the 
effect of yielding significantly higher accuracies for 
the case of increased train data set, seems to be 
training function-dependent also, at certain hidden 
neuron values. This can be observed with 5 hidden 
neurons in Figure 5; where for SCG, increasing the 
train data set from 50% to 70% made a clear 
difference in MSE, but this was not the case for LM 
at the same hidden neuron value.  
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Figure 5: Evolution of MSE with changing hidden 
neurons together with changing data distribution 
 
  
Similarly, in the case of using 12 hidden neurons; this 
time the difference in MSE for increasing train data 
set was more significant for LM but not for SCG. 
This finding implies that the selection of efficient 
train:test   data distribution should be made carefully, 
considering the combinations of hidden neurons and 
training functions to be employed in each case. As in 
the case of Figure 4, Figure 5 also indicates that an 
increased train data set percentage implies an 
increased accuracy in setting time predictions, since 
the use of 70% train data set yielded lower MSE 
values, in all cases. 
 
In case of using 50:50 data distribution ratio (see 
Table 4 and Fig 4), it can be seen that the highest 
overall R-values for both LM and SCG were obtained 
at hidden neuron 5; as 0.996 and 0.9883 respectively. 
For this data distribution, in certain selected hidden 
neurons (i.e. 18, 23 & 30), LM was found to yield 
higher R-values, except for the case of 12 hidden 
neuron where the percentage difference between the 
two algorithms was quite negligible (i.e. 0.11%). 
 
In the case of the 70:30 train:test ratio (see the Table 
5 and Fig 4), it can be seen that the highest overall R-
values for both LM and SCG were obtained at hidden 
neuron 5; as 0.9989 and 0.9928 respectively, with a 
negligible difference of 0.0061.  
 
 
Figure 6 illustrates the best performance cases with 
highest R values for both train:test data distributions 
with both LM and SCG, which occurred with five 
hidden neuron values. 

 
 

Figure 6: Coefficient of correlation values for 
optimum hidden neuron (5 H-N) for both train:test 
data distributions used. 

3.2 Evaluation of the Effect of Varying 
Hidden Neurons on the Performance of 
Employed ANN Model for the Setting Time 
Predictions  

ANN’s “blackbox” nature is expected to be also 
affected, to some extent, by the choice of hidden 
neuron values to be employed.  
 
Figures 7-a and 7-b illustrate the effect of increasing 
hidden neuron values for R and MSE values 
respectively, both in the case of 50:50 data 
distribution ratio. 
 

Figure 7-a: Evolution of R-value with increasing 
hidden neuron values for 50:50 data distribution ratio 
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Figure 7-b: Evolution of MSE-value with increasing 
hidden neuron values for 50:50 data distribution ratio 
 
In both Figures 7-a and b, SCG is observed to be 
relatively more sharply affected by the changes in 
hidden neuron values. This finding is more evident 
especially with the evolution of MSE presented in Fig 
7-b, which may imply that the selection of an 
efficient hidden neuron value at a certain data 
distribution ratio is highly dependent of the training 
function employed, and changes in the hidden 
neurons yield in different prediction accuracy 
evolution for each training function to be considered.  
 
 
Figures 8-a and 8-b illustrate the effect of increasing 
hidden neuron values for R and MSE values 
respectively, both in the case of 70:30 data 
distribution ratio. 
 

Figure 8-a: Evolution of R-value with increasing 
hidden neuron values for 70:30 data distribution ratio  

 
It can be observed in Fig. 8-a that, when R is taken as 
a basis for accuracy, SCG when employed with   the 
at 70:30 data distribution ratio, seem to be more 
sharply affected by the changes in hidden neuron 

values proposed to be used in the model. However, 
when MSE is considered (Fig 8-b), LM training 
function is observed to be more prone to the changes 
in the hidden neuron values proposed to be used in 
the prediction model.  
 

 
Figure 8-b: Evolution of MSE-value with increasing 
hidden neuron values for 70:30 data distribution ratio 
 
 
Hence, this observation may imply that the effect of 
variations in the hidden neuron values employed, on 
the evolution of prediction accuracy is observed to be 
changing depending on the training function used in 
each case at a certain data distribution ratio. 
 
As an overview, the results obtained within this study 
validates the sensitivity of the network performance 
depending on the hidden neuron size at each 
employed case. Similar effects are discussed in detail 
in the related literature [16–22]. The related literature 
further suggests that increase in hidden layer size 
could lead to network complexity due increased 
interconnectivity which may result to early saturation 
within the network [16–22].  
 
 

4 Conclusive Remarks 

The study was carried out to propose an intelligent 
method for cement paste setting time predictions that 
could serve as an alternative to the ‘time and 
resources consuming’ conventional civil engineering 
laboratory test methods. The ANN model’s 
performance was investigated systematically 
considering the use two optimization functions under 
70:30 and 50:50 train:test data distributions together 
with five different hidden layer nodes number of 5, 
10, 12, 23, and 30. With the interpretation of the 

0

0,01

0,02

0,03

0,04

0,05

0 10 20 30 40

M
S

E

H-N

LM SCG

0,85

0,90

0,95

1,00

0 10 20 30 40

C
or

re
la

ti
on

 c
oe

ff
ic

ie
n

t 
(R

)

Hidden Neuron (H-N)

LM

SCG

0

0,01

0,02

0,03

0,04

0,05

0 10 20 30 40

M
S

E
H-N

LM

SCG

Pinar Akpinar, Mariya A. Abubakar
International Journal of Control Systems and Robotics 

http://www.iaras.org/iaras/journals/ijcsr

ISSN: 2367-8917 43 Volume 4, 2019



obtained results presented in the previous sections, 
the following conclusions were drawn: 

I. The employed ANN model yielded 
satisfactorily high R-values, such as 0.949 
and above in all cases. Hence, ANN has the 
potential to serve efficiently as an alternative 
method for the determination of cement 
setting time in related civil engineering 
applications. 

II. It was observed that greater training data 
distributions such as 70% used in this study, 
yielded a higher accuracy in setting time 
predictions for both training functions 
employed. 

III. The best prediction performance for both 
train:test data distributions were obtained 
with five hidden neurons, with both training 
functions. However, increasing hidden 
neuron values were observed to yield 
different performance tendencies in the 
prediction of setting time for each type of 
training function used within ANN.  

IV. In the study, the higher prediction 
performances were observed to be obtained 
when Levenberg-Marquardt (LM) training 
function  was employed, for all combinations 
of data distributions and hidden neurons used 
within this study. The highest coefficient of 
correlation was obtained as 0.9986 when LM 
was used with five hidden neurons and 70:30 
train:test data distribution. 

5 Recommendations for Future 
Studies 
Authors of this study recommends further studies 
with data obtained preferably from one single 
laboratory, which would minimize the 
incongruity of the data and hence may yield in 
further increased accuracy. It is also 
recommended that different learning methods in 
ANN should also be additionally employed in 
future studies for the intelligent prediction of 
initial setting time of cement pastes. 
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