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Abstract: In this paper, we present a novel approach of a nonlinear feedback control called augmented automatic
choosing control (AACC) using sigmoid type weighted gradient optimization automatic choosing functions for a
class of nonlinear systems. When the control is designed, a constant term which arises from linearization of a given
nonlinear system is treated as a coefficient of a stable zero dynamics. The controller is a structure-specified type
which has some parameters. Parameters of the control are suboptimally selected by extremizing a combination of
the Hamiltonian and Lyapunov functions with the aid of the genetic algorithm. This approach is applied to a field
excitation control problem of power system, which is Ozeki-Power-Plant of Kyushu Electric Power Company in
Japan, to demonstrate the usefulness of the AACC. Simulation results show that the new controller can improve
the performance remarkably.

Key–Words:augmented automatic choosing control, nonlinear control, genetic algorithm, weighted gradient opti-
mization automatic choosing function

1 Introduction

A genetic algorithm (GA) is one of evolutionary com-
puting algorithms in engineering sciences[1]. The
GA has been used to solve such complicated tasks
as nonlinear global optimization problems. The pur-
pose of this paper is to present a nonlinear feedback
control called Augmented automatic choosing control
(AACC), which is designed by making good use of
the GA.

Generally, it is easy to design the optimal control
laws for linear systems, but that is not the case for
nonlinear systems, though they have been studied for
many years[2]∼[7].One of the most popular and prac-
tical nonlinear control laws is synthesized by applying
a linearization method by Taylor expansion truncated
at the first order and the linear optimal control method
to a given nonlinear system. This is only effective in a
small region around the steady state point or in almost
linear systems[2]∼[5].

As one of approaches to overcome these draw-
backs, AACC is proposed for nonlinear systems[7].
Its design procedure is as follows.

Assume that a system is given by a nonlinear
differential equation. Choose a separative variable,
which makes up nonlinearity of the given system. The

domain of the variable is divided into some subdo-
mains. On each subdomain, the system equation is
linearized by Taylor expansion around a suitable point
so that a constant term is included in it. This constant
term is treated as a coefficient of a stable zero dynam-
ics. The given nonlinear system approximately makes
up a set of augmented linear systems, to which the
optimal linear control theory is applied in order to get
the linear quadratic (LQ) controls[3]. These LQ con-
trols are smoothly united by sigmoid type weighted
gradient optimization automatic choosing functions to
synthesize a single nonlinear feedback controller.

This controller is a structure-specified type which
has some parameters, such as the number of divi-
sions of the domain, regions of the subdomains, points
of the Taylor expansion, gradients of the automatic
choosing functions, and so on. These parameters must
be selected optimally to be just the controller’s fit.
Since they lead to a nonlinear optimization problem,
we are able to solve it suboptimally and successfully
by using the GA, which is one of evolutionary com-
puting algorithms in engineering sciences. In this pa-
per the suboptimal values of these parameters are ob-
tained by acquiring both minimization of the Hamilto-
nian and maximization of a stable region in the sense

Toshinori Nawata
International Journal of Control Systems and Robotics 

http://www.iaras.org/iaras/journals/ijcsr

ISSN: 2367-8917 43 Volume 3, 2018



of Lyapunov.
This approach is applied to a field excitation con-

trol problem of power system, which is Ozeki-Power-
Plant of Kyushu Electric Power Company in Japan, to
demonstrate the usefulness of the AACC. Computer
simulation results show that the new controller using
the GA is able to improve the performance remark-
ably.

2 Augmented Automatic Choosing
Control Using Zero Dynamics

Assume that a nonlinear system is given by

ẋ = f(x) + g(x)u, x ∈ D (1)

where· = d/dt, x = [x[1], · · · , x[n]]T is ann-
dimensional state vector,u = [u[1], · · · , u[r]]T is an
r-dimensional control vector,f : D → Rn is a non-
linear vector-valued function withf(0) = 0 and is
continuously differentiable,g(x) is ann × r driving
matrix with g(0) ̸= 0, D ⊂ Rn is a domain , andT
denotes transpose.

Considering the nonlinearity off , introduce a
vector-valued functionC : D → RL which de-
fines the separative variables{Cj(x)}, whereC =
[C1 · · ·Cj · · ·CL]

T is continuously differentiable. Let
D be a domain ofC−1. For example, ifx[2] is the el-
ement which has the higher nonlinearity inf , then

C(x) = x[2] ∈ D ⊂ R (L = 1).

The domainD is divided into some subdomains:D =
∪M
i=0Di, whereDM = D−∪M−1

i=0 Di andC−1(D0) ∋
0. Di(0 ≤ i ≤ M) endowed with a lexicographic
order is the Cartesian productDi = ΠL

j=1[aij , bij ],
whereaij < bij .

Introduce a stable zero dynamics :

ẋ[n+ 1] = −σix[n+ 1] (2)

(x[n+ 1](0) ≃ 1, 0 < σi < 1).

Eq.(1) combines with (2) to form an augmented
system

Ẋ = f̄(X) + ḡ(X)u (3)

where

X =

[
x

x[n+ 1]

]
∈ D×R

f̄(X) =

[
f(x)

−σix[n+ 1]

]
, ḡ(X) =

[
g(x)
0

]
.

We assume a cost function being

J =
1

2

∫ ∞

0

(
XTQX+ uTRu

)
dt (4)

whereQ = QT > 0, R = RT > 0, and the values
of these matrices are properly determined based on
engineering experience.

On eachDi, the nonlinear system is linearized by
the Taylor expansion truncated at the first order about
a pointX̂i ∈ C−1(Di) andX̂0 = 0 (see Fig. 1):

f(x)+g(x)u ≃ Aix+wi+Biu on C−1(Di) (5)

where

Ai = ∂f(x)/∂xT |x=X̂i
, wi = f(X̂i)−AiX̂i ,

Bi = g(X̂i).

Make an approximation of (3) by

Ẋ = ĀiX+ B̄iu on C−1(Di)×R (6)

where

Āi =

[
Ai wi

0 −σi

]
, B̄i =

[
Bi

0

]
.

An application of the linear optimal control
theory[3] to (4) and (6) yields

ui(X) = −R−1B̄T
i PiX (7)

where the(n + 1) × (n + 1) matrix Pi satisfies the
Riccati equation :

PiĀi + ĀT
i Pi +Q−PiB̄iR

−1B̄T
i Pi = 0. (8)

Expansion
point

D0 DM

f(x)

xX0 XM
^

D1

^X̂1

f(x)

A1x+w1

AMx+wMA0x

0

Fig. 1 Sectionwize linearization
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Introducea weighted gradient optimization auto-
matic choosing function of sigmoid type :

Ii(x) = di

L∏
j=1

{
1− 1

1 + exp (2N1i (Cj(x)− aij))

− 1

1 + exp (−2N1i (Cj(x)− bij))

}
(9)

whereN1i and di are positive real values,−∞ ≤
aij , bij ≤ ∞. Ii(x) is analytic and almost unity
onC−1(Di), otherwise almost zero whendi = 1(see
Fig. 2).

aij bij aij bij

N1i=3.0 N1i=6.00.5

1

Fig. 2 Automatic Choosing Function(N1i=3.0, 6.0)

Uniting {ui(X)} of (7) with {Ii(x)} of (9), we
have an augmented automatic choosing control

u(X) =
M∑
i=0

ui(X)Ii(x). (10)

3 Parameter Selection by GA

The Hamiltonian for Eqs.(3) and (4) is given by

H(X, u, λ) =
1

2

(
XTQX+ uTRu

)
+λT (

f̄(X) + ḡ(X)u
)
. (11)

Assume that the adjoint vectorλ ∈ Rn+1 is

λ =
M∑
i=0

PiXIi(x). (12)

The necessary condition of the optimality is
∂H/∂u = 0 or u = −R−1ḡ(X)Tλ , which derives
from Eq.(10) using Eq.(12) and

H(X, u, λ) =
1

2
XTQX− 1

2
uTRu+ f̄T (X)λ (13)

using Eq.(11).
Next, introduce a Lyapunov function candidate:

V (X) = XTΠ(X)X (14)

where
Π(X) =

M∑
i=0

PiΠi(x) ,

Πi(x) = ηi

L∏
j=1

{
1− 1

1 + exp (2N2 (Cj(x)− aij))

− 1

1 + exp (−2N2 (Cj(x)− bij))

}
, (15)

N2 andηi are positive real values.
By the Lyapunov’s direct method[4], the equilib-

rium point 0 is uniformly stable on a connected set:

DV =
{
x ∈ D : V (X) < γ, V̇ (X) < 0

}
where

γ = inf
{
V (X) : X ̸= 0, V̇ (X) = 0

}
. (16)

In order to design optimal control by the Hamilto-
nian and expand the stable region in the sense of Lya-
punov as wide as possible, we define a performance

PI = ω1

∫
D
|H(X, u, λ)|/XTXdX− ω2γ (17)

whereωi(ωi ≥ 0; i = 1, 2) is weight.
A set of parameters included in the control (10):

Ω̄ =
{
M,N1i, N2, di, aij , bij , X̂i, ηi

}
is suboptimally selected by minimizingPI with the
aid of GA[1] as follows.

<ALGORITHM>
step1:A-priori: Set values̄Ωapriori appropriately.
step2:Parameter:Choose a subsetΩ ⊂ Ω̄ to be

improved and rewrite it byΩ = {M,N1i, ··} =
{αk : k = 1, ··,K}.

step3:Coding: Represent eachαk with a binary bit
string ofL̃ bits and then arrange them into one
string ofL̃K bits.

step4:Initialization: Randomly generate an initial
population ofq̃ strings{Ωp : p = 1, ··, q̃}.

step5:Decoding:Decode each elementαk of Ωp by

αk = (αk,max − αk,min)Ak/
(
2L̃ − 1

)
+αk,min

whereαk,max:maximum,αk,min:minimum, and
Ak:decimal value ofαk.

step6:Control: Designu = u(X)p (p = 1, · · · , q̃)
for Ωp by using Eq.(10).

step7:Adjoint:Makeλ = λ(X)p (p = 1, · · · , q̃) for
Ωp by using Eq.(12).

step8:Lyapunov function: Makeγ = γp (p = 1,
· · · , q̃) for Ωp by using Eq.(16).

step9:Fitness value calculation:Calculate

PIp = ω1

∫
D

∣∣∣1
2
XTQX− 1

2
u(X)TpRu(X)p

+f̄T (X)λ(X)p
∣∣∣/XTXdX− ω2γp (18)
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by Eqs.(13) and (17), or fitnessFp = −PIp.
Integration of (18) is approximated by a finite
sum.

step10:Reproduction:Reproduce each of
individual strings with the probability of

Fp/
∑q̃

j=1 Fj .
step11:Crossover:Pick up two strings and exchange

them at a crossing position by a crossover
probabilityPc.

step12:Mutation: Alter a bit of string (0 or 1) by a
mutation probabilityPm.

step13:Repetition:Repeat step5∼step12 until
prespecified G-th generation. If unsatisfied,
go to step2.

Fig.3 is the flowchart of the GA.
As a result, we have a suboptimal controlu(X)

for the string with the best performance over all the
past generations.

Fig. 3 Flowchart of the GA

4 Numerical Example

Consider a field excitation control problem of power
system. Fig.4 is a diagram of Ozeki-Power-Plant of
Kyushu Electric Power Company in Japan. This sys-
tem is assumed to be described[6] by

M̃
d2δ

dt2
+ D̃

dδ

dt
+ Pe = Pin

Pe = E2
IY11 cos θ11 + EI Ṽ Y12 cos(θ12 − δ)

EI + T ′
d0

dE′
q

dt
= Efd

EI = E′
q + (Xd −X ′

d)Id

Id = −EIY11 sin θ11 − Ṽ Y12 sin(θ12 − δ)

D̃ = Ṽ 2
{T ′′

d0(X
′
d −X ′′

d )

(X ′
d +Xe)2

sin2 δ

+
T ′′
q0(Xq −X ′′

q )

(Xq +Xe)2
cos2 δ

}
,

Fig. 4 Diagram of Ozeki-Power-Plant

whereδ: phase angle,̇δ: rotor speed,̃M : inertia co-
efficient,D̃(δ): damping coefficient,Pin: mechanical
input power,Pe(δ): generator output power,̃V : refer-
ence bus voltage,EI : open circuit voltage,Efd: field
excitation voltage,Xd: direct axis synchronous reac-
tance,X ′

d: direct axis transient reactance,Xe: exter-
nal impedance,Y11 ̸ θ11: self-admittance of the net-
work, Y12 ̸ θ12: mutual admittance of the network,
and Id(δ): direct axis current of the machine. Put
x=[x[1], x[2], x[3]]T=[EI − ÊI , δ − δ̂0, δ̇]

T andu =

Efd − Êfd, so that ẋ[1]
ẋ[2]
ẋ[3]

 =

 f1(x)
f2(x)
f3(x)

+

 g1(x)
0
0

u (19)

where

f1(x) = − 1

kTd0
(x[1] + ÊI − Êfd)

+
(Xd −X ′

d)Ṽ Y12
k

X3 cos(θ12 − x[2]− δ̂0)

f2(x) = x[3]

f3(x) = − Ṽ Y12

M̃
(x[1] + ÊI) cos(θ12 − x[2]− δ̂0)

−Y11 cos θ11

M̃
(x[1] + ÊI)

2 − D̃

M̃
x[3] +

P0

M̃

g1(x) =
1

kTd0
, k = 1 + (Xd −X ′

d)Y11 sin θ11.

Parameters are
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Table 1: Performances

xT(0) : initial point
Method [0, 0.4, 0] [0, 1.3, 0] [0, 1.35, 0] [0, 1.414, 0]

LOC 0.95375 × × ×
AACC(Old,ω2=10) 0.99287 2.47172 × ×
AACC(Old,ω2=100) 0.99574 2.41060 × ×
AACC(New,ω2=1) 1.31332 2.93085 2.56388 2.77665

AACC(New,ω2=10) 1.09785 2.90358 2.56572 2.80244

AACC(New,ω2=100) 0.94484 3.17066 3.07067 ×
× : very large value

M̃ = 0.016095[pu] Td0 = 5.09907[sec]

Ṽ = 1.0[pu] P0 = 1.2[pu]
Xd = 0.875[pu] X ′

d = 0.422[pu]
Y11 = 1.04276[pu] Y12 = 1.03084[pu]
θ11 = −1.56495[pu] θ12 = 1.56189[pu]
Xe = 1.15[pu] X ′′

d = 0.238[pu]
Xq = 0.6[pu] X ′′

q = 0.3[pu]

T ′′
d0 = 0.0299[pu] T ′′

q0 = 0.02616[pu]

ÊI = 1.52243[pu] δ̂0 = 48.57◦

ˆ̇
δ0 = 0.0[deg/sec] Êfd = 1.52243[pu].

SetX = [xT , x[4]]T = [x[1], x[2], x[3], x[4]]T ,
n = 3, X̂0 = δ̂0 = 48.57◦,d0 = 1, C(x)=x[2], L =
1, Q=diag(1, 1, 1, 1), R=1, η0 = 1, ω1 = 1, σi =
0.33294(0 ≤ i ≤ M) andx[4](0) = 1. Experiments
are carried out for the new control(AACC), and the
ordinary linear optimal control(LOC)[3].

1) AACC(New,ω2=1):
M=1,X̂1 = 80◦, ω2=1, D0 = (−∞, a −
δ̂0], D1=[a − δ̂0,∞). The parameters are sub-
optimally selected along the algorithm of sec-
tion 3. Ω={N1i, N2, d1, η1, a},G=100, q̃=100,
L̃=8, Pc=0.8, Pm=0.03. D=[0.0,2.0]×[-0.5,2.0]×[-
5.0,5.0]×[0.0,1.5]. The result is thatN11=6.66,
N12=8.29,N2=2.16,d1=0.10,η1=0.58 anda=49.24◦.

2) AACC(New,ω2=10):
The parameters are suboptimally selected by using
the same way of the AACC(New,ω2=1) except the
weightω2=10. The result is thatN11=4.60,N12=5.77,
N2=0.14,d1=0.10,η1=2.57 anda=56.30◦.

3) AACC(New,ω2=100):
The parameters are suboptimally selected by using the
same way of the AACC(New,ω2=1) except the weight
ω2=100. The result is thatN11=9.73, N12=7.98,
N2=0.60,d1=0.29,η1=2.73 anda=69.93◦.

4) AACC(Old,ω2=10):
The parameters are suboptimally selected by using the
same way of the AACC(New,ω2=10) which uses the
fixed weight of the gradient optimization automatic
choosing function [7].Ω={N1i, N2, η1, a}. The re-
sult is thatN11=7.48,N12=1.11,N2=0.18, η1=2.83
anda=78.90◦.

5) AACC(Old,ω2=100):
The parameters are suboptimally selected by using
the same way of the AACC(Old,ω2=10) except
the weightω2=100. The result is thatN11=8.06,
N12=1.03,N2=0.10,η1=2.87 anda=78.90◦.

Table 1 shows performances by the AACC and
the LOC. The cost function of Table 1 is

J̃ =
1

2

∫ 25

0

(
XTQX+ uTRu

)
dt.

t(sec)

x[
1]

[p
u]

 : 
op

en
 c

ir
cu

it 
vo

lta
ge

LOC

AACC(New,ω
2

=10)

AACC(New,ω
2

=100)

AACC(New,ω
2

=1)

AACC(Old,ω
2

=10)

AACC(Old,ω
2

=100)

0 5 10 15 20 25
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Fig. 5 Responses of LOC, AACC
(xT (0) = [0, 1.3, 0])

Toshinori Nawata
International Journal of Control Systems and Robotics 

http://www.iaras.org/iaras/journals/ijcsr

ISSN: 2367-8917 47 Volume 3, 2018



t(sec)

x[
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] 
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 a
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AACC(New,ω
2

=10)

AACC(New,ω
2

=100)

AACC(New,ω
2

=1)

AACC(Old,ω
2

=10)
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Fig. 6 Responses of LOC, AACC
(xT (0) = [0, 1.3, 0])
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Fig. 7 Responses of LOC, AACC
(xT (0) = [0, 1.3, 0])
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Fig. 8 Responses of AACC
(xT (0) = [0, 1.35, 0])
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Fig. 9 Responses of AACC
(xT (0) = [0, 1.35, 0])
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Fig. 10 Responses of AACC
(xT (0) = [0, 1.35, 0])
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Fig. 11 Responses of AACC
(xT (0) = [0, 1.414, 0])
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Fig. 12 Responses of AACC
(xT (0) = [0, 1.414, 0])
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Fig. 13 Responses of AACC
(xT (0) = [0, 1.414, 0])

Figs. 5, 6 and 7 show the responses in the case
of xT (0) = [0, 1.3, 0]. Figs. 8, 9 and 10 show
the responses in the case ofxT (0) = [0, 1.35, 0].
Figs. 11, 12 and 13 show the responses in the case
of xT (0) = [0, 1.414, 0]. These results indicate that
the stable region of the new AACC is better than the
old AACC and the LOC.

5 Conclusions

We have studied an augmented automatic choosing
control designed by extremizing a combination of
the Hamiltonian and Lyapunov functions using the
weighted gradient optimization automatic choosing
functions for nonlinear systems. This approach was
applied to a field excitation control problem of power
system to demonstrate the usefulness of the AACC.
Simulation results have shown that this controller
could improve the performance remarkably.
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