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Université Tunis Elmanar

École Natinale d’Ingénieurs
de Tunis ENIT

Laboratoire RISC
BP,37 le Belvédère,1002 Tunis

TUNISIA
khraiefnahla@yahoo.fr

SAFYA BELGHITH
Université Tunis Elmanar
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Abstract: This paper focuses on the application of a disturbance observer control of an exoskeleton upper-
extremity. In order to achieve this target, arm two steps were executed; first of all, a prototype of the exoskeleton
robot has been designed using Solidworks software, after its dynamic model has been accomplished. Then, the
development of non linear controller (Computed Torque Control) was performed. Finally, to the application of a
disturbance observer in the control, we have used the Lyapunov method to estimate the external disturbance about
the device.
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1 Introduction
The partial or the full loss of motor human limbs is
known especially of the elderly people as it may occur
due a stroke or sports injuries, occupational injuries,
or trauma and spinal cord injuries..
In recent decades, an enormous increase has been pre-
sented in the number of such cases. But the dura-
tion of treatment becames longer.In order to improve
the quality of therapies, including intensity, robotics
has made its appearance quite naturally in this area
of rehabilitation as an evolution of existing mechan-
ical devices. In this context of neuro-motor rehabil-
itation robotics upper limb that the researchers have
developed a wide of exoskeleton systems. These
devices are characterized by the number of degrees
of freedom, joints with which they are destined to
interact(Shoulder, Elbow, Wrist, Fingers ), the na-
ture of their actuator (electric, hydraulic, pneumatic...)
and the technology power transmission (gears, cables,
rods...). Among these different devices may be found:
MGA (Maryland Georgetown-Army) Exoskeleton [?]
[?] is a robotic arm with five degrees of freedom ded-
icated to the rehabilitation of pathological shoulder.
This exoskeleton arm will evaluate strength, speed
and range of motion. ARMin I, II and III [?][?] is an
exoskeleton with six degrees of freedom and equipped
by position and force sensors. Also, it’s equipped by
a multimodal display system (visual and audio feed-

back). The ARMin enables us to offer a virtual im-
mersion for the limb to make simple games or ADL
(Activities of Daily Living) of the patient. CADEN-
7 (Washington University) Exoskeleton [?][?][?] was
designed by a team from the University of Washing-
ton Which has seven degrees of freedom. They were
interested in the problems of singularities. The de-
vice and the patient’s limb are connected via various
force sensors to allow the use of force control. In
the aim of obtaining sufficient transparency, the team
added EMG signals to the control. Soft-Actuated Ex-
oskeleton [?][?] is an exoskeleton with seven degrees
of freedom. This latter is equipped by pneumatic
muscles, that moves the seven active joints, to con-
trol the stiffness of each joint as well as to provide a
smoother interaction ensuring safety to the user. Fi-
nally, ETS-MARSE [?][?], is a lightweight robot with
seven DoFs, it controls all the joints of the upper limb.
This robot has a optimal ratio of power / weight and is
able to compensate the gravity efficiently.
This article deals with the modeling,the control and
applaying a disturbance observer based on Lyapunov
method of an exoskeleton upper-extremity with seven
degrees of freedom.
This paper is organized as follows: Section 2 deals
with the Human arm anatomy. Section 3 deals with
two points: First point describes the mechanical
modeling of the proposed prototype. Second point
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Figure 1: The seven basic degrees of freedom of the
arm. Copied from[?]

presents the kinematic and dynamic models of the ex-
oskeleton which will be used to control this device
by applying the Computed torque control. Section 4
is dedicated to the description of the disturbance ob-
server based on Lyapunov method. Section 5 reports
the results of the simulation. Finally, a brief conclu-
sion resume our main contributions as well as the per-
spectives of this project.

2 Human Arm Anatomy
The human upper limb anatomy can be represented as
a set of three rigid bodies; the arm, the forearm and
the hand. These bodies are interconnected by three
complex articulations; the shoulder, the elbow and the
wrist.
The shoulder is the proximal joint of the limb; it has
three degrees of freedom (DoF) (flexion/extension,
adduction/abduction and externel/internel rotation).
The elbow is the intermediate joint of the limb; it has
only one degree of freedom (DoF) (flexion/extension).
And finally the wrist is the distal joint of the
limb; it has three degrees of freedom (DoF)
(pronation/supination, flexion/extension and adduc-
tion/abduction).
These articular motions and its workspace are shown
in Fig.1

3 Modeling and Control of the Ex-
oskeleton Upper limb

This section describes the modeling and control of the
upper limb exoskeleton. In section 3.1. a mechanical

structure of the robot has been developed, after
that section 3.2. presents the kinemtic and dynamic
modeling. After description of the modeling, different
controllers have been developed in the section 3.3.

3.1 Mechanical structure
In our research we have based on the mechanical stru-
ture of the robotic arm ETS-MARSE1, the last was de-
signed to be worn on the right upper-limb as shown in
Fig.2 Left. This robot is a redundant kinematic chain
with seven revolute joints; each of them is controlled
by an actuator. Its kinematic structure is a simplified
model of the kinematic structure of a human arm.
By the use of Solidworks software, we have designed
a identical prototype of ETS-MARSE shown in Fig.2
right.

3.2 Modeling of the exoskeleton
In order to achieve a compliant controller for the ex-
oskeleton, it is necessary to determine the kinematic
and dynamic models.

3.2.1 Kinematic model:
Modified Denavit-Hartenberg has been used to de-
scribe the geometry and morphology of the robot[?].
By applying this convention on our prototype, the
seven joint axes of exoskeleton upper-limb are de-
picted in Fig 3. The geometric parameters of the

1MARSE: ”Motion Assistive Robotic Exoskeleton for Supe-
rior Extremety” which was develped by a team from ETS (École
de Technologie Supérieure of CANADA)
www.etsmtl.ca
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Figure 2: Mechanical model:(a)ETS-MARSE.
Copied from [?], (b) Our prototype

robot have been shown in Table 5. The model shown
in Fig 3 depicts the joint axes of rotation of human
arm, where joints 1, 2 and 3 together constitute the
glen-humeral joint, commonly known as the shoul-
der joint: Joint 1 corresponds to abduction/adduction
movement, joint 2 to flexion/extension movement and
joint 3 to internal/external rotation movement. The
joint 4 corresponds to flexion/extension of the elbow,
and finally, the last three joints 5, 6 and 7 together
intersect at point known as the wrist joint, they cor-
respond successively to pronation/supination, abduc-
tion/adduction and flexion/extension.

Articulations ai−1 di θi αi−1

1 0 de θ1 0
2 0 0 θ2 −Π

2

3 0 dc θ3
Π
2

4 0 0 θ4 −Π
2

5 0 dp θ5
Π
2

6 0 0 θ6 −Π
2

7 0 0 θ7 −Π
2

Table 1: Geometric parameters by Modified
Denahvit-Hartenberg

With respect the general form of link transforma-
tion that relates frame (i) relative to the frame (i-1) is
the following:[?]

i−1
i T =


cos qi − sin qi 0 ai−1

sin qi × cosαi−1 cos qi × cosαi−1 − sinαi−1 −di × sinαi−1

sin qi × sinαi−1 cos qi × sinαi−1 cosαi−1 −di × cosαi−1

0 0 0 1

 (1)

Using equation (1) and table 5, we obtained the

following seven homogeneous transformation
matrix:

0
1T =


cos q1 − sin q1 0 0
sin q1 cos q1 0 0
0 0 1 de
0 0 0 1



1
2T =


cos q2 − sin q2 0 0
0 0 1 0

− sin q2 − cos q2 0 0
0 0 0 1



2
3T =


cos q3 − sin q3 0 0
0 0 −1 −dc

sin q3 cos q3 0 0
0 0 0 1



3
4T =


cos q4 − sin q4 0 0
0 0 1 0

− sin q4 − cos q4 0 0
0 0 0 1



4
5T =


cos q5 − sin q5 0 0
0 0 −1 −dp

sin q5 cos q5 0 0
0 0 0 1


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Figure 3: Joint axes of rotation by Modified Denavit-
Hartenberg.

5
6T =


cos q6 − sin q6 0 0
0 0 1 0

− sin q6 − cos q6 0 0
0 0 0 1



6
7T =


cos q7 − sin q7 0 0
0 0 1 0

− sin q7 − cos q7 0 0
0 0 0 1

 (2)

The forwords kinematics results through the homoge-
nous transformation matrix 0

7T that relates frame (7)
to frame (0). For that, the following operation is
performed:

0
7T = 0

1T × 1
2T × 2

3T × 3
4T × 4

5T × 5
6T × 6

7T (3)

3.2.2 Dynamic model
The dynamic behavior of the exoskeleton has been ob-
tained using Lagrangian method and can be expressed
by the following equation:

M(q)q̈ +N(q, q̇)q̇ +G(q) = τ (4)

Where, M(q) ∈ R7×7 : is the inertia matrix,
N(q,q̇)∈ R7×7 : is the coriolis/centrifugal matrix,
G(q)∈ R7×1 : is the gravity vector, τ ∈ R7×1 : is
the generalized torques vector, and (q,q̇,q̈ ): represent
the joint position, velocity and acceleration vectors
created by the motion generator.

3.3 Controller design
In this section, we propose to use the nonlinear control
law called ”Computed Torque Control”. Note that, we
added unknown inputs (External disturbances) in the
dynamic behavior of the exoskeleton, so that the equa-
tion (4) becomes as follows:

M(q)q̈ +N(q, q̇)q̇ +G(q) = τ + δext (5)

This control type allows tracking trajectory of the de-
veloped model. Whether the following control law:

τ = α× τ ′ + β (6)
α =M(q),
β = N(q, q̇)q̇ +G(q)− δext,
τ ′ = q̈

From relation (5) and (6), we may write,

M(q)τ ′ +N(q, q̇)q̇ +G(q) = τ + δext (7)

The general layout of the computed torque control is
depicted in Fig4.:

Figure 4: Schematic diagram of the computed torque
control [?].

From this schematic (Fig4) the control law can be
written as follows:

M(q)(q̈d+KpE+KvĖ)+N(q, q̇)q̇+G(q) = τ+δext
(8)
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Where;
E = (qd − q)
Ė = (q̇d − q̇)
Ë = (q̈d − q̈)

Kp,Kv: Are the gain matrices, they are diagonal
and positive definite.
qd, q̇d and q̈d are the desired position, velocity and
acceleration respectively.
For the system to be stable it is necessary that the
following equation is verified:

Ë +KvĖ +KpE = 0 (9)

4 Observer
In this section, we design an observer based on the
Lyapunov method that will estimate the external dis-
turbances exerted on the robot to ensure a rapid con-
vergence towards zero error. The general lay out of
the disturbance observer applied in the control of an
exoskeleton robot is depicted in Fig 5.:

Figure 5: The structure of disturbance observer.

4.1 Nonlinear Disturbance Observer
From the equation (5), the disturbance force can be
written as follows:

δext =M(q)q̈ +N(q, q̇)q̇ +G(q)− τ (10)

Thus, the Disturbance Observer can be proposed as
follows:

ˆ̇
δext = −L(q, q̇)δ̂ext+L(q, q̇)(M(q)q̈+N(q, q̇)q̇+G(q)−τ)

(11)
Where, L(q, q̇) ∈ R7×7 is a matrix chosen in such a
way that the dynamic of the error is asymptotically
stable. Since we don’t have prior information about
the derivative of Fext, we assume that it varies in a

manner very low and slow in comparison to the dy-
namics of the observer.

δ̇ext = 0 (12)

We can define the difference between the actual ef-
fort exerted by the patient and the disturbance esti-
mated by the Lyapunov-based nonlinear disturbance
observer as an error of observation:

e = δext − δ̂ext (13)

By combining (11) and (13), we get:

ė = δ̇ext− ˆ̇
δext = −L(q, q̇)(δext− δ̂ext) = −L(q, q̇)e

(14)
This allows us to deduce the following differential
equation:

ė+ L(q, q̇)e = 0 (15)

According to the equation (11), it’s necessary to cal-
culate the acceleration q̈ to realize the disturbance ob-
server, but in robotic applications it’s hard to measure
the acceleration. For that, we have defined a new vari-
able ψ such that:

ψ = δ̂ext − p(q̇) (16)

So;
ˆ̇
δext = ψ̇ − δp

δq̇
q̈ (17)

Replacing (16) and (17) in (11), we obtain:

ψ̇−δp
δq̇
q̈ = −L(q, q̇)(ψ+p(q̇))+L(q, q̇)(M(q)q̈+N(q, q̇)q̇+G(q)−τ)

(18)
Defining δp

δq̇ as:

δp

δq̇
= L(q, q̇)M(q) (19)

The equation (18) can be written as follows:

ψ̇ = −L(q, q̇)ψ+L(q, q̇)(N(q, q̇)q̇+G(q)−τ+p(q̇))
(20)

So:
δ̂ext = ψ + p(q̇) (21)

4.2 Stability Analysis
The design parameters L and p defined in the equation
(20) are dependent and related to each other accord-
ing to the equation (18). Also, they are chosen such
that dynamics of the observation error is asymptoti-
cally stable. Next, we propose a value for p based on
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the joint velocities to ensure the stability of the distur-
bance observer. Whether defined as:

p(q̇) = c.


q̇1 0 . . . 0

0 q̇2
. . .

...
...

. . . . . . 0
0 . . . 0 q̇7


(22)

As all the joint velocities are determined. In this case,
the asymptotical stability given by (15) will be guar-
anteed that only the choice of the parameter c. If we
drift p with respect to q̇ then we obtain as bellows:

δp

δq̇
= c.


1 0 . . . 0

0 1
. . .

...
...

. . . . . . 0
0 . . . 0 1


(23)

Whether:
C = c. ∗ I7∗7 (24)

In applying the equation (22) in the equation (18), this
leads to the following result:

L(q, q̇) =
δp

δq̇
M−1(q) = C.M−1(q) (25)

We desire to realize a disturbance observer, with its
error dynamics is described by:

ė+ C.M−1(q).e = 0 (26)

Where, C is a constant, diagonal and positive definite
matrix. Then, the Lyapunov function for this observer
can be summed up by:

V (e, q) = eT .M(q).e (27)

The time derivative of the previous function can be
written as:

δV (e, q)

δt
=
δV (e, q)

δe
ė+

δV (e, q)

δq
q̇ (28)

Using (12) and (20):


δV
δe ė = −2e

T .M(q).C.M−1(q).e

δV
δq q̇ = eT . δM(q)

δq q̇.e

Using the adaptation laws in (17) and the external
disturbance δext, the time derivative of V becomes:

δV (e, q)

δt
=
−1
2
eT .P.e (29)

Now, we have to prove that δV (e,q)
δt < 0. For this,

P must be symmetric and positive definite matrix [?].
According to the last condition of the time derivative
of V and the equations (11) and (12), we can conclude
that the looped system is stable [?].

5 Simulation and results:

This section aims to present the simulation results
achieved in Matlab/Simulink by doing a comparative
study on some exercises to identify the performance
of an observer in the control of an exoskeleton robot.
The following expression depicts the law of observa-
tion applied in the computed torque control:

ˆ̇
δext = C.(q̈d − q̈) +C.Kv.(q̇d − q̇) +C.Kp.(qd − q)

(30)

The simulations are performed for two cases, the
first is a control without disturbance observer and
the second is a control with disturbance observer.
The Fig ?? and the Fig5 depict the angular position
simulations and the angular velocity respectively
of joint 3 (internal/external rotation movement of
shoulder) and joint 4 (flexion/extension of elbow).
We note that the proposed control ensures the desired
trajectory tracking properly for both the simulation.
nevertheless, the convergence time to zero by the
control with DO is faster than that given by the
control without DO. We can see that there’s no big
difference in both cases, this is shown in the figures of
error curves Fig 5 and Fig 5 that screen the deviation
between the desired and measured trajectories for the
two cases.
These simulation results, show clearly that the pro-
posed observer provides in a finite time a asymptotic
convergence of observation errors to zero which
means a rapid convergence of real states to the
estimate states of system . Furthermore, they show
that the proposed control law ensures the desired
trajectory tracking.
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6 Conclusion and future works
An exoskeleton robot with 7Dofs has been presented
in first step. Then,the kinematic and dynamic model
of the proposed prototype has performed. After, the
nonlinear Computed Torque Control has applied. Fi-
nally, a comparative study was conducted between the
control with and without Nonlinear Disturbance Ob-
server( NDO) based Lyapunov method. This study,
shown that the performance and effectiveness of the
NDO in the proposed control. Future works will
include the experimental validation phase for these
works using the FES signals as a first step. After,
the use of other control techniques as sliding mode
control or adaptive control. Furthermore, the applica-
tion of other NDO method as Kalman Filter or sliding
mode observer.
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ė
4

Figure 9:Error velocity with and without DO.

Houda Barbouch et al.
International Journal of Control Systems and Robotics 

http://www.iaras.org/iaras/journals/ijcsr

ISSN: 2367-8917 249 Volume 2, 2017




