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Abstract: This work presents an alternative to the least squares optimization used in Dynamic Matrix Control (DMC). 
Instead of calculating future moves by minimizing the sum of the squares of the future errors (least squares), each future 
error is individually minimized.  Each minimization results in an individual recommendation for the lone future move 
and the actuated move would be an average of all the individual recommendations. The work presents an analytical 
study of the closed-loop dynamics of the method and it is used here mainly to prove the ability of the method to perform 
control as well as estimate the closed-loop time constants. The performance of the method is illustrated and compared to 
a benchmark DMC via simulation.  
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1. Introduction 

Linear Model Predictive Control (MPC) has been a pop-
ular feedback control methodology since the 1970s 
mainly in process control. In general, MPC uses the plant 
linear open-loop dynamics to solve an on-line con-
strained optimization problem of finding future control 
moves that minimize a certain cost function of predicted 
future errors (differences between the predicted plant 
output and a set-point profile). The plant dynamics are 
usually quantified by a normalized open-loop test p(t). 
The plant is excited by a step input and the normalized 
plant output p(t) is recorded. At current time t, assuming 
that the unknown controller output (future control 
moves) will be applied over a future period T c (control 
horizon), the plant output, hence the future errors, can be 
predicted over a future period T (Called prediction hori-
zon) as a function of the future control moves by invok-
ing linearity and using the open-loop test p(t).  Actual 
values of the future control moves are calculated by 
minimizing a cost function involving the future errors. 
The formulation of the cost function and the optimization 
scheme vary with different predictive control methods. 
 In Dynamic Matrix Control (DMC) [1] the cost 

function is the sum of the squares of all the future 
moves over the prediction horizon and the optimiza-
tion formulation yield an ill-conditioned Least 
Squares problem.  Different approaches were de-
rived to resolve the ill-conditioning.  The control 
horizon in DMC can involve one or more control 
moves. 

 In Simplified Predictive Control (SPC) (sin-
gle-parameter SPC [2] and two-parameter SPC [3]) a 
single future error is minimized. The control horizon 

involves a single control move and it is a 
well-conditioned method. 

In this paper a new method that utilizes all the future 
moves as in DMC but does not suffer from ill-conditioning 
as in SPC is presented. It is dubbed here “Averaged SPC”. 
In this method, every future error over the prediction hori-
zon is minimized individually in SPC fashion. Each future 
error individual minimization yields a recommended value 
for the lone control move. The actuated control move is the 
average of all the recommendations. The paper presents an 
analytical study of the performance of the new method 
based on the work published in [4].  Simulation results 
illustrating the implementation of the method are present-
ed. There is no claim here that the new method delivers a 
better performance than the long existing DMC. However, 
in the author’s humble opinion, this method provides a 
tangible analytical and algorithmic demonstration on how 
the essence and power of predictive control really resides 
in the model while the control optimization (formulations 
and algorithms) and the design of the cost functions are 
secondary and allow a very large margin for maneuvering.  
This would allow for a better understanding of MPC and 
would open the door for comparisons studies between dif-
ferent types of control ([3], [5]). Future work would pro-
vide new control formulations by collecting different sub-
sets of future errors to minimize as well as different cost 
functions, something that might prove useful in nonlinear 
problems such as in [6]. 

1.1. Formulation 

A simple first-order linear time-invariant plant is consid-
ered here without any loss of generality since the results 
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found are easily transferred to a more general case. The 
plant open-loop test ݌ሺݐሻ that satisfies ݌ሶሺݐሻ ൅ ሻݐሺ݌ ൌ 1 
ሺ0ሻ݌ ൌ 0. So 

ሻݐሺ݌ ൌ 1 െ	݁ି௧   
 

Let ∆ݐ be the sampling period for both the open-loop 
test and the closed-loop feedback control.  
Let ௞ܲ ൌ ሻݐ∆ሺ݇݌ ൌ 1 െ ݁ି௞∆௧ . Let ܰ  be the ratio of 

the prediction horizon and the sampling period:ܰ ൌ
்

∆௧
. 

The step change in the plant input that is applied between 
݊ ∗ and ሺ݊ ݐ∆ ൅ 1ሻ ∗  ௡. The measuredݑ∆ is denoted ݐ∆
output at time ݐ ൌ ݊ ∗  can be calculated as follow ݐ∆

y୫୬ ൌ 	෍ ∆u୧
୬ିଵ

୧ୀ଴
p൫ሺn െ iሻ∆t൯ ൅ noiseሺtሻ 

For the sake of simplifying the analytical study and since 
the performance of the method under noise is not in 
question here, let ݊݁ݏ݅݋ሺݐሻ ൌ 0. 
At the current time tൌ  ௜ forݑ∆ all control moves ,ݐ∆݊
0 ൑ ݅ ൑ ݊ െ 1 were applied. Thus the predicted output, 
for a future time instant ሺݐ ൅ ො௝ݕ ሻ, denoted asݐ∆݆

௡ is due 
to all previous control moves ∆ݑ௜ and is calculated in 
the following convolution formulation 

ො௝ݕ
௡ ൌ 	෍ ௜ݑ∆

௡ିଵ

௜ୀ଴
൫ሺ݊݌ െ ݅ ൅ ݆ሻ∆ݐ൯		݆ ൌ 0,1,2⋯݊ 

2. The Method of Averaged SPC 

The method calls for calculating the control move ∆ݑ௡ 
at time (ݐ ൌ  by first minimizing each future error (ݐ∆݊
݁௡௞. Each of the minimizations leads to a recommenda-
tion for the control move equal to (݁௞

௡/		 ௞ܲ). The actuated 
value of ∆ݑ௡	 is a weighted average of all the recom-
mendations as follow  

∆u୬ ൌ
1
N
෍

e୩ߛ
୬

P୩

୒

୩ୀଵ

 

where γ is a weighting parameter. Normally γ is in the 
vicinity of 1. The more γ is increased above 1 the more 
aggressive the control becomes. 
For simplicity let the set-point ݕ௦௣ ൌ 1 the error is then 

݁௞
௡ ൌ ௦௣ݕ െ ො௞ݕ

௡ ൌ 1 െ	෍ ௜ݑ∆
௡ିଵ

௜ୀ଴
൫ሺ݊݌ െ ݅ ൅ ݇ሻ∆ݐ൯ 

 

௡ݑ∆ ൌ 	
ߛ
ܰ
	෍

1െ ∑ ൫ሺ݊݌	௜ݑ∆ െ ݅ ൅ ݇ሻ∆ݐ൯௡ିଵ
௜ୀ଴

ሻݐ∆ሺ݇݌

ே

௞ୀଵ
	 

ൌ
ߛ
ܰ
	෍

1
ሻݐ∆ሺ݇݌

െ
ே

௞ୀଵ
෍

∑ ൫ሺ݊݌	௜ݑ∆ െ ݅ ൅ ݇ሻ∆ݐ൯௡ିଵ
௜ୀ଴

ሻݐ∆ሺ݇݌

ே

௞ୀଵ

 

To get the continuous form use the continuous variables 
ݐ ൌ ,ݐ∆݊ ݕ ൌ ,ݐ∆݅ ݖ ൌ ,ݐ∆݇ ܶ ൌ  ݐ∆ܰ

So ∆ݕ ൌ ݖ∆ ൌ   and Equation (6) becomes ݐ∆

 	

௡ݑ∆ ൌ 		
ߛ
ܰ
	൥෍

1
ሻݖሺ݌

்

௭ୀ∆௧

െ ෍
∑ ݐሺ݌	௜ݑ∆ ൅ ݖ െ ሻ்ି∆௧ݕ
௧ୀ଴

ሻݖሺ݌

்

௭ୀ∆௧

൩ 

Multiplying both sides by ∆ݖ and rearranging the inner 
sum  

∆u୬∆z ൌ 		
γ
N
൥෍

1
pሺzሻ

୘

୸ୀ∆୲

∆z	 െ 

෍
1

pሺzሻ
	

୘

୸ୀ∆୲

൭෍
∆u୧
∆y

୘ି∆୲

୲ୀ଴

pሺt ൅ z െ yሻ∆y൱∆z൩	 

Let∆ݐ → ݐ݀	 → 0, then∆ݕ → ݖ∆,ݕ݀	 → ௡ݑ∆ and ,ݖ݀	 →
ݕ݀ and note that ݑ݀	 ൌ ݖ݀ ൌ 	ݐ݀ → 0. And the contin-
uous form of Equation (8) is  
 
N
γ
dudz

ൌ න
1

pሺzሻ

୘

ୢ୲

dz

ᇩᇭᇭᇪᇭᇭᇫ
୅

െ න
1

pሺzሻ

୘

ୢ୲

ቌ න uሶ ሺyሻpሺt ൅ z െ yሻdy

୘ିୢ୲

଴

ቍdz

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ୈሺ୲ሻ

 

 
Let A be the constant  

ܣ ൌ න
1

pሺzሻ

୘

ୢ୲

dz ൌ 	 න
1

1 െ eି୸

୘

ୢ୲

dz ൌ 	 න
െeି୸

െeି୸ ൅ ሺeି୸ሻଶ

୘

ୢ୲

dz 

 
And it is easy to verify 

A ൌ T െ dt ൅ ln
pሺTሻ

pሺdtሻ
ൌ T െ dt ൅	ln

P୒
Pଵ

 

Let ܦሺݐሻ be 
 

ሻݐሺܦ ൌ න
1

pሺzሻ

୘

ୢ୲

ቌ න uሶ ሺyሻpሺt ൅ z െ yሻdy

୘ିୢ୲

଴

ቍdz	 

ൌ	 න
1

pሺzሻ

୘

ୢ୲

ቌ න uሶ ሺyሻ൫1 െ ݁ିሺ௧ା௭ି௬ሻ൯dy

୘ିୢ୲

଴

ቍdz 

ൌ න
1

ሻݖሺ݌
ቆන ሶݑ ሺݕሻ݀ݕ

்ିௗ௧

଴
ቇ ݖ݀

்

ௗ௧

െ	 න
1

ሻݖሺ݌
ቌ න ሶݑ ሺݕሻ݁ିሺ௧ା௭ି௬ሻ݀ݕ

்ିௗ௧

଴

ቍ݀ݖ	

்

ௗ௧

 

ൌ ሾݑሺݐሻ െ 		ሺ0ሻሿݑ න
1

ሻݖሺ݌
ݖ݀

்

ௗ௧

ᇩᇭᇭᇪᇭᇭᇫ

െ

஺
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ۏ
ێ
ێ
ێ
ۍ

න
݁ି௭

ሻݖሺ݌
ݖ݀

்

ௗ௧ᇣᇧᇧᇤᇧᇧᇥ
஻ ے

ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ۍ

න ሶݑ ሺݕሻ݁ିሺ௧ି௬ሻ
௧ିௗ௧

଴

ݕ݀
ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ

ூሺ௧ሻ ے
ۑ
ۑ
ۑ
ې

 

 

Let ݑሺ0ሻ ൌ 0, ܤ ൌ ׬
௘ష೥

௣ሺ௭ሻ

்
ௗ௧ ሻݐሺܫ and ,ݖ݀ ൌ

׬ ሶݑ ሺݕሻ݁ିሺ௧ି௬ሻ
௧ିௗ௧
଴  ሻ becomesݐሺܦ .ݕ݀
ሻݐሺܦ ൌ ܣሻݐሺݑ െ ܤ ሻ. It is easy to verify thatݐሺܫܤ ൌ
ln

௉ಿ
௉భ

 and A becomes ܶ െ ݐ݀ ൅ ݐ ,ሻݐሺܫ In .ܤ െ ݐ݀ ൎ  ݐ

thus  
 

ሻݐሺܫ ൌ ݁ି௧ නݑሶ ሺݕሻ݁௬
௧

଴

 ݕ݀

And it is easy to verify that  
ሻݐሶሺܫ ൌ െܫሺݐሻ ൅ ሶݑ ሺݐሻ 

So Equation 9 becomes  
ݖ݀ܰ
ߛ

ݑ݀ ൌ ܣ െ ሾݑሺݐሻ െ ܣሺ0ሻሿݑ ൅  ሻݐሺܫܤ

Starting the system from rest ሺݑሺ0ሻ ൌ 0ሻ and multiply-
ing and dividing by ݀ݐ the left hand side lead to  

ݐ݀ݖ݀ܰ
ߛ

ᇩᇭᇪᇭᇫ
௤

ݑ݀
ݐ݀

ൌ ܣ െ ܣሻݐሺݑ ൅  ሻݐሺܫܤ

Deriving both sides and using Equation 15 for ܫሶሺݐሻ, lead 
to the second order ordinary differential equation in u 

ሷݑݍ ൅ ሺܣ ൅ ݍ െ ሶݑሻܤ ൅ ݑܣ ൌ  ܣ
A steady-state of ݑ௦௦ሺݐሻ ൌ 1 in the last equation shows 
that the new formulation does provide control to the 
set-point. In the zone where the differential equation 
yields and overdamped solution we can approximate the 
time constants and the analytical solution. The time con-
stants are found from the quadratic characteristic equa-
tion ߛݍଶ ൅ ሺܶ െ ݐ݀ ൅ ߛሻݍ ൅ ܣ ൌ 0 whose discriminant 
is ∆ൌ ሺܶ െ ݐ݀ ൅ ሻଶݍ െ ܣݍ4 ൌ ሺܶ െ ݐ݀ ൅ ሻଶݍ െ ሺܶݍ4 െ
ݐ݀ ൅ ݐ݀ ሻ. Asܤ ≪ 1, by taking ܶ െ ݐ݀ ൅ ܤ ൎ ܶ ൅  ∆ ,ܤ
can be approximated by  

∆ൌ ܶଶሾ1 ൅
ଶݐ݀ܶ

ଶߛ
െ
ݐ2݀
ߛ
൬1 ൅

ܤ2
ܶ
൰ሿ 

As ቂ
்ௗ௧మ

ఊమ
െ

ଶௗ௧

ఊ
ሺ1 ൅

ଶ஻

்
ሻቃ ≪ 1, √∆ can be approximated 

as 

√∆ൌ ܶ ൥1 ൅
1
2
ቈ
ଶݐ݀ܶ

ଶߛ
െ
ݐ2݀
ߛ
ሺ1 ൅

ܤ2
ܶ
ሻ቉൩ 

Approximate solutions of the quadratic are 

ଵߣ ൌ
ߛ
2ܶ

െ
ݍ
4
െ
ߛ
ݐ݀
െ
ܤ
ܶ

 

ଶߣ ൌ
ߛ
2ܶ

൅
ݍ
4
െ 1 െ

ܤ
ܶ

 

This leads to two time constants one slow and one fast. 
߬௙௔௦௧ ൌ ଵ and ߬௦௟௢௪ߣ/1 ൌ -ଶ. The solution of Equaߣ/1
tion (18) is then  

ሻݐሺݑ ൌ ܿଵ݁ఒభ௧ ൅ ܿଶ݁ఒమ௧ 
Where  

ܿଵ ൌ
െݑሶ ሺ0ሻ െ ଶߣ
ଶߣ െ ଵߣ

 

ܿଶ ൌ
ሶݑ ሺ0ሻ ൅ ଵߣ
ଶߣ െ ଵߣ

 

 

And ݑሶ ሺ0ሻ can be approximated by 
∆௨బା∆௨భ

∆௧
. It is easy to 

verify that the very first control move ∆ݑ଴ ൌ
ఊ஺

்
. The 

second control move ∆ݑଵcan be approximated as follow  

ଵݑ∆ ൌ
ߛ
ܰ
෍

1െ ሺሺ݇݌଴ݑ∆ ൅ 1ሻ∆ݐሻ
ሻݐ∆ሺ݇݌

ே

௞ୀଵ

ൌ
ߛ
ܰ
෍

1
ሻݐ∆ሺ݇݌

ே

௞ୀଵ

െ
଴ݑ∆ߛ
ܰ

෍
൫ሺ݇݌ ൅ 1ሻ∆ݐ൯

ሻݐ∆ሺ݇݌

ே

௞ୀଵ

ൎ ଴ݑ∆ െ
଴ݑ∆ߛ
ܰ

෍1

ே

௞ୀଵ

ൌ ଴ሺ1ݑ∆	 െ  ሻߛ

And an approximation of ݑሶ ሺ0ሻ is then  

ሶݑ ሺ0ሻ ൌ
ሺ2 ൅ ଴ݑ∆ሻߛ

ݐ݀
 

3. Simulation Results 

The Averaged SPC control was simulated in Matlab. 
Figures (1) and (2) show the performance of the simu-
lated Avg. SPC as well as the corresponding results from 
the analytical study. Figure (3) shows the similarity in 
the performance of the Averaged SPC and the Dynamic 
Matrix Control. 

4. Conclusion. 

The Averaged SPC method was presented and proven to 
yield a control performance comparable to DMC.  An 
analytical continuous study of the dynamics of the 
method was also presented and shown to match closely 
the results from the simulation of the Averaged SPC 
control. Future work will elaborate further on the analyt-
ical study to adequately understand the influence of each 
parameter in order to provide systematic tuning of the 
control and to also draw quantifiable comparison with 
other MPC methodologies. 
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Figure 1. Plant output y and controller output u from 
the analytical study and the Avg. SPC control simula-
tion for ࢚ࢊ ൌ ૙. ૙૞ and ࢽ ൌ ૙. ૞. For these values 
the analytical study yields the time constants ࢚࢙ࢇࢌ࣎ ൌ
૙. ૙૟૚	and ࢝࢕࢒࢙࣎ ൌ ૙. ૟૜. The slow time constant of 
the plant output from the simulation appears to be 
around 0.55. 

 

 

Figure 2. Plant output y and controller output u from 
the analytical study and the Avg. SPC control simula-
tion for ࢚ࢊ ൌ ૙. ૙૞ and ࢽ ൌ ૚. For these values the 
analytical study yields the time constants ࢚࢙ࢇࢌ࣎ ൌ
૙. ૙૞	and ࢝࢕࢒࢙࣎ ൌ ૙. ૟૜૞. The slow time constant of 
the plant output from the simulation appears to be 
around 0.55. 

 

 

Figure 3. Plant output y and controller output u from 
theAvg. SPC and the DMC control simulations. dt = 
0.05, γ = 1, and the DMC move suppression is 1.01. 
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