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Abstract:  This paper focuses on Robust Fractional Predictive Control (RFPC) for fractional order dynamic 

systems with real parametric uncertainties to take into account the uncertain behavior of physical process. 

Based on worst case strategy, the control law is obtained by resolution of a non convex min-max 

optimization problem which takes into account the uncertainties on the fractional order model parameters. 

The performance of the proposed predictive controller are illustrated with practical results of a thermal 

system and compared to the Fractional Predictive Control (FPC) with fixed parameters. 
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1. Introduction  

 
The Model Predictive Control (MPC) algorithms is 

become a mature control strategy for many years 

because it can handle a large class of dynamic systems 

such as non-minimum phase systems, open loop 

unstable systems, delayed and multivariable systems 

[1]. Consequently, the strategy of MPC is widely 

encountered in the industrial processes [2]. The MPC 

is a control technique that optimizes a performance 

criterion and uses a model to predict the process output 

future behavior. Hence, the presence of the model is 

necessary for the predictive control development, but 

in reality, models are determined with uncertain 

parameters, which can provide poor closed loop 

performances [1]. To improve closed loop 

performances, one can use the robust model predictive 

control (RMPC). The control law is determined by 

solving a min-max optimization problem where a 

quadratic criterion is minimized with respect to its 

worst-case in order to take into account the set of all 

possible plant uncertainties [3].  

Recently, fractional calculus has been attached the 

attention of many researchers in engineering science 

from an application point of view [4]. Many physical 

systems have shown a dynamic behavior of fractional 

order. The first fractional dynamic system to be widely 

recognized is the thermal system. Some other 

fractional systems can be found in the electromagnetic 

waves systems, electrode-electrolyte polarization, 

viscoelastic, etc. [5]. Firstly, the idea of designing a 

non-integer controller was proposed by Oustaloup in 

1988   [6-7]. In 1994, the fractional order PID 

controller proposed by Podlubny [1]. Since then, there 

are many different fractional-order controller strategies 

[8-10]. In recent years, the robustness of fractional 

order systems has been utilized in order to take into 

account the parametric variations of uncertain 

fractional order systems [11-13]. 

In [14], the authors proposed an application of the 

fractional predictive controller a fixed-parameter 

system model. The purpose of our work is to develop 

the robust predictive control of uncertain fractional 

order systems. The output deviation approach is used 

to design the j-step ahead output predictor, and the 

corresponding control law is obtained by the resolution 

of a min-max optimization problem which takes into 

account the uncertainties of the fractional order model 

parameters.  

The outline of this paper is organized as follows. In 

section 2, a problem formulation and some definitions 

of fractional order systems are introduced. The needed 

steps to find the optimal control law of RFPC for 
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fractional order systems are introduced in section 3. 

The experimental results on a thermal system are 

exhibited in section 4 to illustrate the effectiveness of 

the proposed approach. Finally, conclusion is given in 

last section. 
 

2. Preliminary and problem formulation   
 

Fractional calculus, known also as non-integer 

calculus, is a generalization of integration and 

derivation to fractional order fundamental operators 

0t tD where R , 0  and  t t  are the limitation. In the 

development of fractional calculus, there are several 

definitions of fractional order differentiations and 

integrations [15]. The Grünwald-Letnikov’s (G-L) 

definition is the most known definition for fractional 

control and its application [16-17], it has defined as: 
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Expression (1) may be used to numerically evaluate 

the integral or the derivative of fractional order using 

some suitably chosen value of sampling rate as follows 

[18]. 
 0

0

/

0

1
( ) ( 1) ( )

t t h
i

t t
i

D f t f t ih
ih









 
    

 
                   (2) 

The series are contrasted with a number of terms 

which increases when h decreases.  For real 

implementation, by using the short memory principle 

[1], expression (2) can be rewritten using only the 

recent past values of ( )f t as: 
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where N  is an integer. 
Generally, a fractional model can be described by a 

fractional differential equation characterized by the 

following form: 
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where    2 2, ,  and ,l m al bma b R R   
 

In reality this equation is described with uncertain 

parameters, which means that the parameters  and l ma b

are bounded and uncertain: 

 ,   and b  ,  ml l ml ma a a b b      
 

,  ,   and mll ma a b b  are respectively, the low and high 

values of   and bl ma . 

The use of the numerical approximation (3), allows 

rewriting equation (4) as follows [19].  
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But the presence of uncertainties in the fractional order 

system model can lead the controller to be unstable or 

to have poor closed loop performances. In order to 

robustify the controller against the uncertainty model 

parameters and to handle a large class of systems, we 

will propose the FRPC that is based on the use of an 

uncertain fractional order model which is obtained by 

using the G-L definition given by equation (5).  
 

 

3. Fractional robust predictive control 
 

In this section, we provide the needed steps to find the 

optimal control law using the new proposed RFPC 

approach of uncertain descriptor fractional systems. 

Therefore, the G-L method depicted in section 2 will 

be used to obtain the fractional order model and we 

will be based on the output deviation method to 

compute the j-step ahead output predictor value as well 

as the cost function. For obvious reasons and without 

loss of generality, we will express ( )y k  in terms of

( 1)u k  , and depending on the input deviation. By 

considering a noise sequence with zero mean and finite 

variance, the expression (5) becomes: 
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(6) 

  
11 q   , is an integral action introduced in order to 

obtain, in closed loop, a nil steady state error. 

By using the relation (6), we obtain the predicted 

output of the system in 1k  : 

              1
ˆ( 1/ ) ( 1) ( )ly k k y k u k                          (7) 
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and ( 1)ly k  is the free response of the system: 
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The 2-step ahead predictor is given by: 
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If we replace ˆ( 1/ )y k k  by its expression (7), we 

obtain: 
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Consequently, the expression of the j-step ahead 

predictor ˆ( / )y k j k is as follows: 
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Predictive control involves the optimization of a cost 

function which indicates how well the process output 

follows the desired trajectory. This function may be 

expressed by the future errors between setpoint, and 

output signal and the future incremental control signal. 

The objective function is given by: 
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where 1N , 2N and  denote the control horizon, the 

prediction horizon and the weighting factor, 

respectively, and ˆ( / )y k j k  is given by the relation 

(13) and ( )yc k j  denotes the set point at time k j . 

The set   represents the set of uncertain parameters. 
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The output sequence on the prediction horizon 2N  
is 

written as follows: 
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The G matrix is illustrated as follows: 
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The cost function of equation (14) is expressed as: 

( , ) ( ) ( )  (16)T T
l c l cJ G U Y Y G U Y Y U U           

In the case of a fractional model with fixed-parameter, 

the optimal control of the Fractional Predictive 

Controller (FPC) is obtained by minimizing the cost 

function given by (16). So, this optimal control is 

given by the following expression: 
1[ ] [ ]T T

c lU G G I G Y Y             (17) 

For the fractional order model with real uncertain 

parameters the RFPC is founded using the worst case 

strategy. The control sequence represents the best 

solution to the worst case of all possible models 

opposite the uncertainties. Consequently, the optimal 

control law can be obtained by the resolution of the 

following min-max problem [20]: 

   ( ,  )maxmin
U

J U
 

                                          (18) 

The min-max problem is resolved in two steps. The 

first step consists to calculate the maximum of the 
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performance criterion ( , )J U   compared to the 

uncertainties parameters of the set  . Starting with an 

initial solution, we search the solution of following 

function in taking into account constraints on the 

parameters model.   
* ( ) max ( , )J U J U


             (19)

  
The second step concerns the minimization of the 

criterion *( , )J U   in taking into account the solution 

found in (19) and the control sequence constraints: 
*

2 min ( )
U

J J U


                                                        (20) 

In this case, the j-step ahead predictor ˆ( / )y k j k  is 

evaluated using the parameters model *  obtained in 

the first step. 

The optimization problem can be solved using the 

standard optimization technique. In this paper, we 

have exploited the ’fmincon’ function defined in 

MATLAB. 
 

4. Experiment results 

 
In order to illustrate the robustness of the new 

approach developed in this paper, we have considered 

a thermal system depicted in figure 1. The thermal 

system is composed by an aluminum rod of 41 cm 

length and 2 cm section. The rod is submitted to a 

heating resistor and thermally isolated to insure a 

unidirectional transfer of the heat flux. The input 

signal of this system is a thermal flux which is 

generated by a heating resistor. It is fixed in one of the 

cylinder’s extremities and controlled by a computer 

with USB data acquisition module. The power 

interface separating the controller from the heating 

resistance is a PWM converter with an input voltage 

varying from 0 to 5V. The output signal of the system 

is the cylinder temperature measured with a distance 

‘d’ from the heated surface by an LM35DZ sensor. 

The sensor signal is amplified and conditioned in a 

stage realized to these purposes to obtain an output 

voltage varying from 0 to 5v. The thermal system is 

considered as a semi-infinite dimension because its 

length is more important compared to its section.  

In order to demonstrate the non integer behavior of 

this thermal system, the rod is modeled with the 

following assumptions: 

 The aluminum rod is perfectly isolated. 

 The aluminum rod is considered as a semi-

infinite dimension. 

 At rest, the rod is at ambient temperature. 

 Losses on the surface where the thermal flux 

is applied are neglected. 

Indeed, the thermal flux throughout a metallic rod can 

be defined with fractional order model [21-22]. In 

literature, several approaches have been proposed to 

model the phenomenon of a thermal system. Cois [23] 

was shown that the model of this phenomenon is of 

fractional order medium which has a commensurable 

order of 0.5. 
 

 
 

Fig. 1. Thermal system 

 

4.1. Identification 

 

The uncertain model of this system is established by 

an interpolation of several local models obtained for 

different temperature sensor positions. Hence, the goal 

here is to control the temperature at two points

1 2(  and )P P of the rod, measured at distances of 

1 26  and 15 d cm d cm   from one of the ends. 

To determine the thermal system model, we have 

applied to the heating resistor a Pseudo Random 

Binary Sequence (PRBS) and we have saved the 

temperature values captured at the points P1 and P2. 

The evolution of the input and the two outputs are 

depicted in figure 2. For displaying reasons, we have 

multiplied the input sequence by 10. We note that for 

identification procedure the sample time is equal to 10 

seconds.  

Furthermore, we have used the Simplified Refined 

Instrumental Variable for Continuous-time Fractional 

models (SRIVCF) method to estimate a fractional 

order model [24]. Based on saved data represented on 

figure 2, we have determined the system transfer 

functions H1(s) and H2(s) corresponding to P1 and P2 

respectively, which are given by: 
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In order to test the performance of both fractional 

models, we perform another input excitation sequence 

and we measure the corresponding temperature at P1 

and P2. As represented in the validation data of figure 

3, the identified models give satisfactory results. 
 

 
Fig. 2. Identification data. 

 

 
Fig. 3. Validation data. 

 

From the obtained transfer functions we have 

determined the nominal model (average transfer 

function) of the system which is given by: 

40

1.5 0.5

1.61
( )

126.915 139.46 7.135 1

s
nG s e

s s s


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          (23) 

 

4.2. Controller design 

 
The goal here is to control the temperature of the 

metallic rod in spite the system dynamic modification 

due to the sensor position changement from P1 to P2 at 

the sample time 300. For a better comparison, two 

types of controllers are tested: a Fractional Predictive 

Controller (FPC) and the proposed Robust Fractional 

Predictive Controller (RFPC). In all experiences, the 

sample time is equal to 20 seconds and the designed 

predictive controller parameters are fixed as follows:  

1 21, N 15 and =1N    
The FPC controller is designed based on the average 

transfer function given in equation (23). 

This function is expressed by equation (5), where: 

0
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In this case, the optimal control of the FPC is obtained 

by equation (18).  

The synthesis of the RFPC controller requires taking 

into account the variation range of model parameters 

uncertainties. From the two founded models given by 

(21) and (22), and by using the maximum delay, we 

have determined the uncertain transfer function of the 

thermal system which is given by: 

0

1.5 0.5
3 2 1

55

1
( )

p s

p s p s p s
G s e

  
                                 (24) 

where: 

 
   
   

0 1

2 3

1.4,  1.82 ;  3.08,  11.19

90.5,  188.42 ;  37.14,  216.69

p p

p p

 

   

By considering this uncertain transfer function, we 

proceed the design of the controller by exploiting the 

new approach exposed in section 3. Thus, the relation 

(24) can be expressed by equation (4) with the 

following parameters: 
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Consequently, the j-step ahead predictor can be 

computed as described in section 3 with a sample time 

h that is equal to 0.1. In this case, the optimal control 

is obtained by the resolution of the min-max problem, 

exposed previously. 

The evolutions of the set point, the thermal flux 

(control signal) and the temperature measured (output 

signal), obtained with FPC controller are represented 

in figure 5. From these practical results, we note that 

the temperature fluctuates around the set point and the 

control presented many fluctuations as well as peaks. 

The evolutions of the set point, the temperature 

measured and the control signal, obtained with RFPC 

controller are shown in figure 6. Based in these results, 
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we notice that the measured temperature meets the 

desired requirements despite the change of the 

dynamic of the system due to the change of the sensor 

position. We remark also that the control signal 

obtained with the RFPC controller provides a smooth 

control signal than the one obtained by a FPC with 

fixed parameters model. 
 

 

 
Fig. 5. Closed-loop results obtained with FPC 

 

 

 
Fig. 6. Closed-loop results obtained with RFPC 

 

 

 

 

5. Conclusion 
 

This paper has presented a Robust Fractional 

Predictive Control (RFPC) based on an uncertain 

fractional order model. The proposed controller 

consists in taking in to account parameters 

uncertainties during the design of the control law. 

Therefore, the control law is determined by the 

resolution of a min–max optimization problem which 

gives the best solution for the worst case of all possible 

models. Experimental results on a thermal system 

show that the RFPC using a fractional order model 

with parametric uncertainty exhibits good performance 

compared to the FPC for fixed parameters system. 
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