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Abstract: - This paper investigates the performance of an optimized fuzzy control structure developed for the 

stabilization of a naturally unstable mechatronic system. The mechatronic system is a so-called mobile wheeled 

pendulum consisting of two actuated coaxial wheels and an inner body which oscillates (as a pendulum) around 

the wheel axis during planar motion. This motion is controlled in closed loop ensuring both the stabilization of 

the inner body as well as the planar motion of the wheels. The control structure comprises three fuzzy logic 

controllers whose input-output ranges and membership functions had been defined heuristically in an earlier 

study. This paper analyzes the achievable control performance through the formulation of a complex 

performance index and application of the particle swam optimization on the parameters of the control structure. 

The complex performance index took into account the reference tracking errors and the extent of inner body 

oscillation. The optimized fuzzy logic controllers showed a remarkable 29% overall performance improvement 

in the closed loop dynamics compared to the performance of the initial fuzzy control parameters. The 

simulation results proved that the optimized closed loop behavior protects more the electro-mechanical 

structure of the plant since the fast reference tracking performance was achieved along with effectively limited 

inner body oscillations. 
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1 Introduction 
Fuzzy logic provides an easy, expert oriented way to 

establish control structures through the definition of 

heuristic IF-THEN rules based on the observations 

collected of the system dynamics [1]. This 

approximate reasoning covers model imprecision as 

well as uncertainties, and through the broadly 

defined fuzzy sets robust and smooth control action 

is achieved which in many cases provides superior 

control performance compared to the linear 

solutions [2]-[6]. Although, the heuristically defined 

inference machine roughly meets the design 

requirements it usually provides a suboptimal 

control performance. This suboptimal control 

performance can be further improved by trial and 

error tuning, however, the engineering intuition 

based iterative tuning becomes rather difficult if 

complex nonlinear systems with high order 

dynamics are controlled, moreover, this way the 

best control performance cannot be guaranteed. The 

tuning procedure can be realized with numerical 

optimization as well, which replaces the designer's 

tedious, iterative task and optimizes the control 

parameters by locating the minimum of the 

formulated fitness function.).  

This paper describes the results related to the 

optimization of a fuzzy control structure developed 

with empirical rules and trial and error tuned 

membership functions for the stabilization of a 

naturally unstable mechatronic system, a so-called 

mobile wheeled pendulum (MWP) [7], [8]. This 

mechatronic system composed of two coaxial 

wheels (no additional caster), and an inner body 

(hereinafter IB) that forms a pendulum between the 

wheels, as illustrated in Fig. 1. Since the system has 

only two contact points with the supporting surface, 

the IB tends to oscillate when the wheels are 

actuated. This motion leads to a control challenging 

problem, which is the simultaneous stabilization of 

the IB and the predefined control of the planar 

motion of the wheels.  
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Linear controllers had been elaborated and 

analyzed for this type of systems in [9]-[11], 

however the design of the controllers was based on 

trial and error procedures and the achievable control 

performance has not been investigated, which 

motivated this study.  

The electro-mechanical properties of the system 

along with its mathematical model was described in 

[12] in detail. A fuzzy logic based anti-sway speed 

control structure was elaborated in [13], where 

simulation and implementation results showed that 

the proposed controllers successfully ensured both 

the planar motion and the stabilization of the IB. 

This fuzzy inference machine was characterized by 

heuristically defined membership functions and IF-

THEN rules collected from observations of the 

system dynamics. Moreover, the control 

performance achieved with the preceding fuzzy 

control structure was analyzed by evaluating the 

overall control performance as well as different 

transient responses. The study in [2] compared the 

fuzzy anti-sway speed control structure with a 

linear-quadratic-Gaussian (LQG) controller 

elaborated in [3]. The measurement results of the 

real system dynamics showed that the proposed 

fuzzy control structure provided better overall 

control performance, however, the LQG control 

strategy showed faster system dynamics for 

transient events. A video demonstration of the 

system dynamics is available on the website [14].  

In order to enhance the control performance and 

find the most suited control parameters this paper 

proposes an objective (or fitness) function for 

control quality evaluation and utilizes the particle 

swarm optimization (PSO) on the parameters 

(related to the ranges and shape of membership 

functions) of the fuzzy inference machine. The 

fitness function was formulated such a way to make 

the optimized fuzzy control structure provide fast 

system dynamics as well as reduce the IB 

oscillations and jerks in the mechanics. The goal of 

this paper is to investigate and measure the 

achievable control performance based on the 

application of numerical optimization, moreover, to 

provide the interested reader an example of how to 

elaborate an optimization procedure of control 

structures developed for mechatronic systems.).  

The rest of this paper is organized as follows. 

Section 2 introduces the mechatronic system and its 

nonlinear mathematical model. In section 3 the 

fuzzy anti-sway speed control structure and its 

initial properties are discussed. Section 4 introduces 

the optimization method, formulates a complex 

fitness function and discusses the optimization 

results. Finally, section 5 contains the conclusions 

and the future work recommendations. 

 

 

2 Mechatronic system 
 

 

2.1 Electro-mechanical properties 
The mechanical structure of the MWP consists of 

two coaxial wheels and a steel IB. As it can be seen 

in Fig. 1, no caster wheel is attached to the body, 

therefore the MWP has only two contact points with 

the supporting surface. The wheels are actuated 

through DC motors that form the connection 

between the electrical and mechanical sides. The 

motors are attached to-, while the embedded 

electronic parts are placed around the IB. The torque 

produced by the motors is transferred to the wheels 

through rolling bearings [12].  

The embedded electronics is built around two 

16-bit ultra-low-power Texas Instruments 

microcontrollers. The system dynamics is measured 

with three-dimensional MEMS accelerometers and 

gyroscopes as well as incremental encoders are 

attached to the shafts of the motors. The DC motors 

are driven through H-bridges with pulse width 

modulation (PWM) signals. The embedded 

electronics also contains a wireless module that 

enables the recording of the measurement results 

[3]. 

 

 

2.2 Mathematical model 
The simulation environment consists of the 

mathematical model of the plant and the control 

structure forming together the closed loop. The 

mathematical model had been derived earlier in 

[12], the main parameters are depicted in Fig. 2. The 

 

Fig. 1.   Photograph of the mobile pendulum system. 
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angular position of the wheels are denoted with 𝜃1 
and 𝜃2, while 𝜃3 indicates the oscillation angle of 

the IB. The distance between the center of mass of 

the IB and the wheel axis is marked with 𝑙, 
moreover, the radius of the wheels and the distance 

between them are denoted with 𝑟 and 𝑑, 

respectively.  

The nonlinear state-space representation 𝑥̇(𝑡) =
ℎ(𝑥, 𝑢) of the MWP dynamics is described as [12]: 

 

𝑥̇(𝑡) =

[
 
 
 
 

𝑞̇

𝑀(𝑞)−1 (𝜏𝑎 − 𝜏𝑓 − 𝑉(𝑞, 𝑞̇))

1

𝐿
(𝑢 − 𝑘𝐸𝑘 [

1 0 −1
0 1 −1

] 𝑞̇ − 𝑅𝐼)]
 
 
 
 

, 

𝑦(𝑡) = 𝐶𝑥(𝑡), 

(1) 

where 𝑥8×1 = (𝑞, 𝑞̇, 𝐼)
𝑇 is the state vector, 𝑞3×1 =

(𝜃1, 𝜃2, 𝜃3)
𝑇 contains the configuration variables, 

𝐼2×1 = (𝐼1, 𝐼2)
𝑇 and 𝑢2×1 = (𝑢1, 𝑢2)

𝑇 denote the 

currents and voltages of the motors, respectively. 

Moreover, 𝑀(𝑞) is the 3-by 3 inertia matrix and 

𝑉 (𝑞, 𝑞̇) is the 3-dimensional vector term including 

the Coriolis, centrifugal and potential force terms, 

while 𝜏𝑎 and 𝜏𝑓 indicate the torques transmitted to 

the wheels and the effect of friction. The applied DC 

motors are characterized by the rotor resistance 𝑅 

and inductance 𝐿, the back-EMF constant 𝑘𝐸, and 

the gear ratio of the gearbox 𝑘 as well. The output 

matrix 𝐶 of the state space equation is selected such 

a way to produce the 𝑦5×1 = (𝜈, 𝜃3, 𝜔3, 𝜉, 𝐼𝑎𝑣𝑔) 

output, where 𝜈 = 𝑟(𝜃1 + 𝜃2)/2 is the linear speed 

of the plant, 𝜔3  = 𝜃̇3 is the oscillation rate of the 

IB, while 𝜉 = 𝑟(𝜃̇2 − 𝜃̇1)/𝑑 and 𝐼𝑎𝑣𝑔 =

 (𝐼1 + 𝐼2)/2 denote the yaw rate and the average 

current consumption, respectively. 

 

 

3 Fuzzy control structure 
The objective of the control structure is to 

simultaneously ensure the planar motion of the 

MWP and suppress the resulting IB oscillations. The 

fuzzy control structure elaborated in [2], [13] in 

detail is a so-called anti-sway speed control 

structure that ensures the following control 

objectives:  
- lim

𝑡→∞
𝜈(𝑡) = 𝜈𝑑 for the linear speed, 

- lim
𝑡→∞
𝜉(𝑡) = 𝜉𝑑 for the yaw rate,  

- lim
𝑡→∞
𝜔3(𝑡) = 0 for the IB stabilization, 

where 𝜈𝑑 and 𝜉𝑑 denote the desired linear speed and 
yaw rate values. 

The control structure depicted in Fig. 3a consists 

of three cascade connected fuzzy logic controllers 

(FLC), where FLC1 and FLC3 are P-type 

controllers and are responsible for the control of 

linear speed and yaw rate of the plant, respectively, 

while a PD-type FLC2 is applied for the suppression 

of the IB oscillations. Fig. 3b shows the membership 

functions of each controller, and the corresponding 

rule bases are well detailed in [2]. The input 

(antecedent of each rule) of FLC1 is the speed error 

𝑒𝜈(𝑖) = 𝜈𝑑(𝑖) − 𝜈(𝑖), while its output (or 

consequent) is the control voltage 𝑢𝜈(𝑖). Similarly, 

𝑒𝜉(𝑖) = 𝜉𝑑(𝑖) − 𝜉(𝑖) yaw rate error forms the input, 

while the 𝑢𝜉(𝑖) control action is the output of FLC2. 

Regarding FLC3, its inputs are the oscillation error 

𝑒𝜃3(𝑖) and its time derivative 𝑒𝜔3(𝑖), while the 

output of the controller is denoted with 𝑢𝜃3(𝑖).  

The simulation of the closed loop behavior was 

performed in MATLAB/Simulink environment. The 

state space equation (1) was implemented using an 

S-function block, while the FLCs were designed 

with the Fuzzy Logic Toolbox of MATLAB. In the 

simulation the 𝑇𝑠 = 0.01 sec sampling time was also 

taken into account, which equals to the sampling 

time of the sensors on the MWP. 

 

Fig. 2.   Plane and side view of the MWP and its spatial 

coordinates. 
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4 Tuning of the controllers 
The control structure introduced in the previous 

section along with the membership functions 

fulfilled the control objectives, however, the 

parameters of the controllers were selected based on 

trial-end-error method. The trial-and-error 

procedure does not guarantee the best control 

performance, rather a compromise solution. This 

section describes the application of numerical 

optimization on the FLC parameters in order to 

enhance the control performance. The optimization 

algorithm results the best possible FLC parameters 

by locating the minimum of the formulated fitness 

function.  

 

 

4.1 FLC parameters 
The main parameters that determine the fuzzy 

inference are related to the shapes and ranges of the 

applied membership functions. Varying the shape, 

position and range of these functions different 

control performance is achieved. The triangular 

membership functions and the singleton 

consequents depicted in Fig. 3b are characterized by 

three parameters and a gain, respectively, 

summarized in the third column of Table 1. These 

parameters were selected to be tuned by means of 

numerical optimization whose initial values are 

given in the fourth column based on Fig. 3b.  

 

 

4.2 Fitness function 
The control performance is measured with the 

fitness function. In [2] different formulas were 

recommended for the quality measurement of 

reference tracking and suppression of IB 

oscillations. Among these error integrals, the 

combination of three mean absolute errors (MEA) 

was chosen for the fitness function that qualifies the 

overall control performance. Therefore, both the 

quality of reference tracking (by evaluating the 

errors 𝑒𝜈 = 𝜈𝑑  − 𝜈 and 𝑒𝜉 = 𝜉𝑑 − 𝜉) and the 

quality of IB oscillation suppression (by evaluating 

the error 𝑒𝜔3 = 0 − 𝜔3) was implemented in a 

complex fitness function: 

𝐹 = √(
∑|𝑒𝜈,𝑗|

𝑁
)

𝛼

(
∑|𝑒𝜔3,𝑗|

𝑁
)

𝛽

(
∑|𝑒𝜉,𝑗|

𝑁
)

𝛾
3

, (2) 

where 𝑗 = 1. . . 𝑁, 𝑁 denotes the length of the 

measurement, while 𝛼 = 1.5, 𝛽 = 0.5 and 𝛾 = 0.85 
weights represent the preferences between the three 

control objectives. The aim of the optimization 

problem is to find the control parameters (𝑝𝑖 , 𝑑𝑖 in 

Table 1) that correspond to the minimum fitness 

function value. 

 

 

4.3  Particle swarm optimization 
The simulation environment was considered as a 

black box object, its inputs and outputs are the 

desired speeds (𝜈𝑑 , 𝜉𝑑) and reference tracking errors 

(𝑒𝜈, 𝑒𝜔3 , 𝑒𝜉), respectively, moreover, it is 

characterized by the FLC parameters (𝑝𝑖 , 𝑑𝑖). The 

particle swarm optimization (PSO) was applied for 

the tuning of the control parameters, since it is a 

robust heuristic method that has already proven its 

fast convergence property [4]. 

 

Fig. 3.   (a) Block diagram of the control structure and (b) fuzzy 

parameters. 
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The PSO uses an effective mechanism that 

mimics the swarm behavior of birds flocking and 

fish schooling in order to guide the particles 

searching for the global optimal solution in the 

search space. Let 𝜒𝑖 and 𝛿𝑖 denote the 𝑛-

dimensional position and velocity vector of the 𝑖th 

particle in the swarm, while 𝜌𝑖 and 𝜆𝑖 indicate the 

personal best position (which gives the best fitness 

value so far) of the 𝑖th particle and the 

neighborhood best position, respectively. The 

velocity and position vectors are modified in every 

generation based on the following equations [15]:  

𝛿𝑖𝑑 = 𝑤𝑖𝛿𝑖𝑑 + 𝑐1𝑟1(𝜌𝑖𝑑 − 𝜒𝑖𝑑) + 𝑐2𝑟2(𝜆𝑖𝑑 − 𝜒𝑖𝑑), 

𝜒𝑖𝑑 = 𝜒𝑖𝑑 + 𝛿𝑖𝑑 , 
(3) 

where 𝑖 denotes the 𝑖th particle, 𝑑 ∈ [1, 𝑛] is the 

dimension, 𝑐1 and 𝑐2 are positive constants, 𝑟1, 𝑟2 ∈
[0,1] are random values, and 𝑤 is the inertia weight. 

The parameters were selected as 𝑤 = 0.9, 𝑐1 = 0.5 

and 𝑐2 = 1.5 based on previously gained 

experiences [4]. In the simulation environment the 

Particle swarm toolbox for MATLAB [16] was 

utilized, while for the number of generations and 

populations 𝑛𝑔𝑒𝑛 = 150 and 𝑛𝑝𝑜𝑝 = 150 were 

chosen, since the optimization problem is 

characterized by many variables. 

 

 

4.4 Results 
The optimization results are depicted in Fig. 4, 

while the optimized FLC parameters are 

summarized in the fifth column of Table 1. The 

closed loop behavior was simulated with the 

following reference (desired) signals:   
- 𝜈𝑑 = {0.4,0,−0.2,0} m/sec linear speeds, 

- 𝜉𝑑 = { 0,0,−70,0} deg/sec yaw rate values. 

The fitness function value significantly improved 

after the optimization procedure, from 𝐹 =  0.4 04 
(related to the initial 𝑝𝑖, 𝑑𝑖 parameters in the fourth 

column of Table 1) to 𝐹 =  0. 052 providing 29% 

better overall control performance (the smaller the 

value the better control performance is achieved). 

Based on the simulation results it can be observed, 

that the optimized FLC parameters ensured faster 

closed loop behavior (the reference values were 

achieved in less than 1 sec), moreover the 

oscillation of the IB was limited and quickly 

suppressed (similarly, in less than 1 sec). The 

optimization resulted an efficient control structure 

that remarkably enhanced the system behavior (fast 

and effective reference tracking), moreover, the 

electro-mechanical parts of the MWP are protected 

as well, since high peaks and jerks related to inner 

body oscillation are limited. Regarding the partial 

fitness function results, it can be remarked that the 

reference tracking performance was enhanced by 

 5% and 41% for the linear speed and yaw rate 

Table 1.   Notation of the FLC parameters: initial and optimized values. 
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control, respectively, while the performance of the 

suppression of the IB oscillation was enhanced by 

 % with the optimized fuzzy control structure. 

The simulation results showed that both the 

flexibility fuzzy logic provides and the application 

of the effective PSO algorithm allowed to enhance 

the overall control performance. This performance 

can be further improved with more sophisticated 

fuzzy logic controllers that are characterized by 

bigger rule bases and more linguistic values (e.g., 

the inputs and outputs of the FLCs could be 

decomposed into five membership functions in 

order to define finer and more advanced fuzzy 

inference machines). The investigation of more 

advanced FLCs and their implementation on the real 

mechatronic system are left for another paper.  

 

 

5 Conclusion 
This paper described the application of particle 

swarm optimization on FLCs in order to enhance the 

overall control performance of a mechatronic 

system. The control structure and the FLCs were 

designed in an earlier paper, these design properties 

formed the initial closed loop performance. A 

complex performance index was formulated that 

took into account the reference tracking errors with 

certain preferences. This performance index was 

minimized in the optimization procedure which 

resulted significantly better FLC parameters. The 

simulation results proved that the optimized fuzzy 

control structure enhanced the overall control 

performance by 29% and provided both faster 

system dynamics and less inner body oscillations 

therefore protecting more the electro-mechanical 

structure of the MWP. Future work will involve the 

implementation of the optimized control structure in 

the embedded system of the MWP as well as the 

analyzes and validation of the control performances. 
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