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1 Introduction
The one of the interesting topics in the field control
society is stability analysis of dynamic systems with
delay since time-delay occur in many practical sys-
tems such as chemical engineering systems, biologi-
cal system, chaos system, transportation systems, eco-
nomics, neural networks, and so on [13]. The prob-
lem of various stability and stabilization for dynami-
cal systems with or without state delays and nonlin-
ear perturbations have been intensively studied in the
past years by many researchers mathematics and con-
trol communities [28, 29]. Stability criteria for dy-
namical systems with time delay are generally divided
into two classes: delay-independent one and delay-
dependent one. Delay-independent stability criteria
tend to be more conservative, especially for small size
delay, such criteria do not give any information on the
size of the delay. On the other hand, delay-dependent
stability criteria are concerned with the size of the de-
lay and usually provide a maximal delay size.

The H∞ method has been presented in control
theory to integrate controllers succeeding stabiliza-
tion with guaranteed performance. H∞ technique has
been used to minimize the effects of the external dis-
turbances. It is the objective of H∞ control to de-
sign the controllers such that the closed-loop system
is internally stable and its H∞− norm of the transfer
function between the controlled output and the dis-
turbances will not exceed a given level γ. Moreover,
the studies H∞ control systems with interval time-
varying delays have been developed so the improve-

ment of the theory of H∞ control have extend the re-
gion to study.

The problems which concerned about delay-
dependent robust H∞ for linear system with inter-
val time-varying delay and restricted the derivative of
the interval time-varying delay, that mean a fast in-
terval time-varying delay is allowed [32], [17]. For
[19] paid attention on the H∞ performance of lin-
ear system with parameter uncertainties. In other
hand, [31] showed the time derivative of the Lya-
punov Krasovskii functional produced not only the
strictly proper rational functions but also the non-
strictly proper rational functions of the time-varying
delays with first-order denominators, which was fully
handled using reciprocally convex approach.

From the many above researcher, our works con-
cern in two sections, there are investigating about sta-
bility analysis and considering H∞ performance is
continuous modified. We investigate the robust sta-
bility analysis and the problem of H∞ performance
for neutral systems with interval time-varying delay.
The parameter uncertainties are assumed to be norm-
bounded and nonlinear perturbation are bounded in
magnitude as some inequality. Base on Lyapunov-
Krasovskii theory which construct in term quadruple
integral of Lyapunov-Krasovskii functional, Leibniz-
Newton formula, Cauchy inequality, modified version
of Jensen’s inequality and linear matrix inequality
technique, then reduce conservatism stability criteria
and improve the H∞ performance criteria for neutral
system with interval time-varying delay will be ob-
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tain in term LMIs. Finally, numerical examples will
be given to show the effectiveness of the obtained re-
sults.

Notations. We introduce some notations that
will be used throughout the paper. Lebesgue space
L2+ = L2[0,∞] consists of square-integral functions
on [0,∞]. R+ denotes the set of all real non-negative
numbers; Rn denotes the n-dimensional space with
the vector norm ∥ · ∥; ∥x∥ denotes the Euclidean vec-
tor norm of x ∈ Rn; Rn×r denotes the set of n × r
real matrices; AT denotes the transpose of the ma-
trix A; A is symmetric if A = AT ; I denotes the
identity matrix; λ(A) denotes the set of all eigenval-
ues of A; λmax(A) = max{Reλ : λ ∈ λ(A)};
λmin(A) = min{Reλ : λ ∈ λ(A)}; λmax(A) =
max{λmax(Ai) : i = 1, 2, ..., N}; λmin(A) =
min{λmin(Ai) : i = 1, 2, ..., N}; C([−b, 0], Rn)
denotes the space of all continuous vector functions
mapping [−b, 0] into Rn, where b = max{h, r},
h2, r ∈ R+; ∗ represents the elements below the main
diagonal of a symmetric matrix.

2 Problem statement and prelimi-
naries

Consider the system described by the following
state equations of the form

ẋ(t) = Ax(t) +Bx(t− h(t)) + Cẋ(t− r(t))
+Eωω(t),

z(t) = A1x(t) +B1x(t− h(t)) + E1ωω(t),
x(t+ t0) = ϕ(t), ẋ(t+ t0) = ψ(t), t ∈ [−b, 0],

(1)
where x(t) ∈ Rn is the state variable, ω(t) ∈ Rm

denotes the disturbance input such that ω(t) ∈ L2+,
z(t) ∈ Rq is the performance output, ϕ(t), ψ(t) are
continuously real-valued initial functions on [−b, 0].
A,B,C,Eω, A1, B1, E1ω are known real constant
matrices with appropriate dimensions.The delay h(t)
and neutral delay r(t) are time-varying continuous
function that satisfies

0 ≤ h1 ≤ h(t) ≤ h2, (2)
0 ≤ r(t) ≤ r, ṙ(t) ≤ rd (3)

where h1, h2, r, and rd are given real constants. Con-
sider the initial functions ϕ(t), ψ(t) ∈ C([−b, 0], Rn)
with the norm ∥ϕ∥ = supt∈[−b,0] ∥ϕ(t)∥ and ∥ψ∥ =

supt∈[−b,0] ∥ψ(t)∥.

Definition 1 The system (1) is robustly exponentially
stable, if there exist positive real constants k and M

such that for each ϕ(t), ψ(t) ∈ C([−b, 0], Rn), the
solution x(t, ϕ, ψ) of the system ** satisfies

∥x(t, ϕ, ψ)∥ ≤M max{∥ϕ∥, ∥ψ∥}e−kt, ∀t ∈ R+.

Definition 2 Given a scalar γ > 0, system (1) is said
to be asymptotically stable with the H∞ performance
level γ, if it is asymptotically stable and satisfies the
H∞− norm constraint

∥z(t)∥2 < γ∥ω(t)∥2,

for all nonzero ω(t) ∈ L2[0,∞] under zero initial
condition.

Definition 3 [5] A system governed by (1) is said to
be robustly asymptotically stable with an H∞ norm
bound γ if the following conditions hold:

1) For the system with ω(t) = 0, the trivial so-
lution (equilibrium point) is globally asymptotically
stable if limt→∞ x(t) = 0; and

2) Under the assumption of zero initial condition,
the controlled output z(t) satisfies

∥z(t)∥2 ≤ γ∥ω(t)∥2 (4)

for any nonzero ω(t) ∈ L2[0,∞).

Lemma 4 [Cauchy inequality] For any constant sym-
metric positive definite matrix P ∈ Rn×n and a, b ∈
Rn, we have

±2aT b ≤ aTPa+ bTP−1b. (5)

Lemma 5 [38] The following inequality holds for
any a ∈ Rn, b ∈ Rm, N,Y ∈ Rn×m, X ∈ Rn×n,
and Z ∈ Rm×m:

−2aTNb ≤
[
a
b

]T [
X Y −N
∗ Z

] [
a
b

]
, (6)

where
[
X Y
∗ Z

]
≥ 0.

Lemma 6 [24] For any constant symmetric matrix
Q ∈ Rn×n, Q is semi-positive definite and h(t) is
discrete time-varying delays with (2), vector function
ω : [−h, 0] → Rn such that the integrations con-
cerned are well defined, then

h

∫ 0

−h
ωT (s)Qω(s)ds

≥
∫ 0

−h(t)
ωT (s)dsQ

∫ 0

−h(t)
ω(s)ds.
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Lemma 7 [K. Mukdasai] For any constant matri-
ces Q11, Q22, Q12 ∈ Rn×n, Q11 ≥ 0 Q22 ≥ 0,[
Q11 Q12

∗ Q22

]
≥ 0, h(t) is time-varying delays with

2 and vector function ẋ : [−h2, 0] → Rn such that the
following integration is well defined, then

−[h2 − h1]

∫ t−h1

t−h2

[
x(s)
ẋ(s)

]T [
Q11 Q12

∗ Q22

] [
x(s)
ẋ(s)

]
ds

≤


x(t− h1)
x(t− h(t))
x(t− h2)∫ t−h1

t−h(t) x(s)ds∫ t−h(t)
t−h2

x(s)ds


T

×


−Q22 Q22 0 −QT

12 0
∗ −Q22 −Q22 Q22 QT

12 −QT
12

∗ ∗ −Q22 0 QT
12

∗ ∗ ∗ −Q11 0
∗ ∗ ∗ ∗ −Q11



×


x(t− h1)
x(t− h(t))
x(t− h2)∫ t−h1

t−h(t) x(s)ds∫ t−h(t)
t−h2

x(s)ds

 . (7)

Lemma 8 [K. Mukdasai] For any constant matri-
ces Q11, Q22, Q12 ∈ Rn×n, Q11 ≥ 0 Q22 ≥ 0,[
Q11 Q12

∗ Q22

]
≥ 0, h(t) is time-varying delays with

2 and vector function ẋ : [−h2, 0] → Rn such that the
following integration is well defined, then

−h2
∫ t

t−h2

[
x(s)
ẋ(s)

]T [
Q11 Q12

∗ Q22

] [
x(s)
ẋ(s)

]
ds

≤


x(t)

x(t− h(t))
x(t− h2)∫ t

t−h(t) x(s)ds∫ t−h(t)
t−h2

x(s)ds


T

×


−Q22 Q22 0 −QT

12 0
∗ −Q22 −Q22 Q22 QT

12 −QT
12

∗ ∗ −Q22 0 QT
12

∗ ∗ ∗ −Q11 0
∗ ∗ ∗ ∗ −Q11



×


x(t)

x(t− h(t))
x(t− h2)∫ t

t−h(t) x(s)ds∫ t−h(t)
t−h2

x(s)ds

 .

Corollary 9 [13] For matrices A,B,C, the inequal-
ity

M =

[
A B
BT C

]
> 0 (8)

is equivalent to the following two inequalities

A > 0, (9)
C −BTA−1B > 0. (10)

Lemma 10 [9] For any constant matrix Z = ZT > 0
and scalars h, h̄, 0 < h < h̄ such that the following
integrations are well defined, then

−
∫ t

t−h
xT (s)Zx(s)ds

≤ −1

h

(∫ t

t−h
x(s)ds

)T

Z

(∫ t

t−h
x(s)ds

)
−

∫ −h

−h̄

∫ t

t+s
xT (τ)Zx(τ)dτds

≤ − 2

h̄2 − h2

(∫ −h

−h̄

∫ t

t+s
x(τ)dτds

)T

×Z
(∫ −h

−h̄

∫ t

t+s
x(τ)dτds

)
.

Lemma 11 [33] For any constant matrixX ∈ Rn×n,
X = XT > 0, a scalar function h : h(t) > 0, and a
vector-valued function ẋ(t) : [−h, 0] → Rn such that
the following integrations are well-defined, then

−h
∫ 0

−h
ẋT (t+ s)Zẋ(t+ s)ds

≤ ξT1 (t)

[
−X X
X −X

]
ξ1(t),

−h
2

2

∫ 0

−h

∫ t

t+θ
ẋT (s)Zẋ(s)dsdθ

≤ ξT2 (t)

[
−X X
X −X

]
ξ2(t),

where
ξ1(t) =

[
xT (t) xT (t− h)

]
, and ξ2(t)

=
[
hxT (t)

∫ t
t−h x

T (s)ds
]
.

Proposition 12 (Schur complement lemma, S. Boyd
et al.)[22] Given constant matrices X,Y, Z, where
Y = Y T > 0. Then X + ZTY −1Z < 0 if and only if[

X ZT

Z −Y

]
< 0.
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3 Main results

We consider in asymptotically stable and H∞ perfor-
mance of neutral system with interval time-varying
delays. Concerning the systems about the result of
system (1), the notations of several matrix variables
are defined:

Σ =

Σ11 Σ12 0 0 −QT
2 0 0 Σ18 Σ19 Σ112 Σ113 0

∗ Σ2,2 QT
6 Σ2,4 QT

2 QT
5 Σ27 0 0 0 0 0

∗ ∗ Σ3,3 0 0 −QT
5 0 0 0 0 0 0

∗ ∗ ∗ Σ4,4 0 0 Σ4,7 0 0 0 0 0
∗ ∗ ∗ ∗ −Q1 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −Q4 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Σ77 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −S1 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −S2 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ12,12 Σ12,13 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ13,13 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −R2


,

where

Σ11 = PA+ATP +NT
1 A+ATN1 +M1 +M2

+h22Q1 −Q3 −R2 + (h2 − h1)
2Q4 − h22S1

−(h2 − h1)
2S2

Σ12 = PB +NT
1 B +Q3, Σ18 = h2S1,

Σ19 = (h2 − h1)S2, Σ113 = PC +NT
1 C,

Σ112 = h22Q2 + (h2 − h1)
2Q5 +ATP −NT

1

+ATN2,

Σ22 = −Q3 −Q3 −Q6 −Q5, Σ24 = Q3 +Q6,

Σ27 = −QT
2 −QT

5 , Σ33 = −M1 −Q6,

Σ44 = −M2 −Q3 −Q6, Σ47 = QT
2 +QT

5 ,

Σ77 = −Q1 −Q4,

Σ1212 = h22Q3 + (h2 − h1)
2Q6 +

1

4
h42S1

+
1

4
(h2 − h1)

2S2 − P − P −N2 −NT
2 ,

Σ1213 = PC +NT
2 C, Σ1313 = −(1− rd)R1,

and

ξ1(t) =
[
x(t), x(t− h(t)), x(t− h1), x(t− h2),∫ t

t−h(t)
x(s)ds,

∫ t−h1

t−h(t)
x(s)ds,

∫ t−h(t)

t−h2

x(s)ds,∫ t

t−h2

x(s)ds,

∫ t−h1

t−h2

x(s)ds, ẋ(t− r(t)),∫ t

t−r(t)
x(s)ds

]
. (11)

Theorem 13 For ∥C∥ < 1 and given positive scalars
h1, h2, r, rd and and a prescribed γ > 0, if there exist
positive symmetric matrices P,Mi, Si, Ri, (i = 1, 2)

and
[
Q1 Q2

∗ Q3

]
≥ 0,

[
Q4 Q5

∗ Q6

]
≥ 0, and any ma-

trices Nj , (j = 1, 2, 3) with appropriate dimensions
that the following LMIs hold

Ω =

Σ Λ1 Λ2

∗ −γ2I E1ω

∗ ∗ −I

 < 0, (12)

where

ΛT
1 = [ET

ωP + ET
ωN1, 0, 0, 0, 0, 0, 0, 0, 0,

ET
ωN2 + ET

ωP, 0, 0],

ΛT
2 = [AT

1 , B
T
1 , 0, 0, 0, 0, 0, 0, 0, 0, C

T
1 , 0],

then the system (1) for any time-delays (2), (3) is
asymptotically stable and satisfies ∥z∥2 < γ∥ω∥2 for
all nonzero ω ∈ L2[0,∞).

Proof: Construct a Lyapunov-Krasovskii functional
as

V (t) =

5∑
i=1

Vi(t),

where

V1(t) =

 x(t)
ẋ(t)∫ t

t−h2

∫ t
s ẋ(θ)dθds

T I 0 0
0 0 0
0 0 0


×

 P 0 0
0 0 0
N1 N2 N3

 x(t)
ẋ(t)∫ t

t−h2

∫ t
s ẋ(θ)dθds

 ,
V2(t) =

∫ t

t−h1

xT (s)M1x(s)ds

+

∫ t

t−h2

xT (s)M2x(s)ds,

V3(t) = h2

∫ 0

−h2

∫ t

t+s

[
x(θ)
ẋ(θ)

]T [
Q1 Q2

∗ Q3

] [
x(θ)
ẋ(θ)

]
dθds

+(h2 − h1)

∫ −h1

−h2

∫ t

t+s

[
x(θ)
ẋ(θ)

]T
×
[
Q4 Q5

∗ Q6

] [
x(θ)
ẋ(θ)

]
dθds,

V4(t) =
h22
2

∫ 0

−h2

∫ 0

s

∫ t

t+ω
ẋT (θ)S1ẋ(θ)dθdωds

+
h22 − h21

2

∫ −h1

−h2

∫ 0

s

∫ t

t+ω
ẋT (θ)S2ẋ(θ)dθdωds,

V5(t) =

∫ t

t−r(t)
ẋT (s)R1ẋ(s)ds

+r

∫ 0

−r

∫ t

t+s
ẋT (θ)R2ẋ(θ)dθds.
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Calculating the time derivatives of Vi(t), i =
1, 2, 3, ..., 6, along the trajectory of (1) yields

V̇1(t) = 2

 x(t)
ẋ(t)∫ t

t−h2

∫ t
s ẋ(θ)dθds

T P 0 NT
1

0 0 NT
2

0 0 NT
3


×

ẋ(t)0
0

 ,
= 2xT (t)P [Ax(t) +Bx(t− h(t) + Cẋ(t− r(t))

+Eωω(t)] + 2xT (t)NT
1 [Ax(t) +Bx(t− h(t)

+Cẋ(t− r(t)) + Eωω(t)− ẋ(t)]

+2ẋT (t)NT
2 [Ax(t) +Bx(t− h(t)

+Cẋ(t− r(t)) + Eωω(t)− ẋ(t)]

+2

∫ t

t−h2

∫ t

s
ẋT (θ)dθdsNT

3 [Ax(t)

+Bx(t− h(t) + Cẋ(t− r(t)) + Eωω(t)− ẋ(t)].

V̇2(t) = xT (t)M1x(t)− xT (t− h1)M1x(t− h1)

+xT (t)M2x(t)− xT (t− h2)M2x(t− h2)

−2kV2(t).

The time derivative of V3(t) is

V̇3(t) = h22

[
x(t)
ẋ(t)

]T [
Q1 Q2

∗ Q3

] [
x(t)
ẋ(t)

]
−h2

∫ t

t−h2

[
x(s)
ẋ(s)

]T [
Q1 Q2

∗ Q3

] [
x(s)
ẋ(s)

]
ds,

+(h2 − h1)
2

[
x(t)
ẋ(t)

]T [
Q4 Q5

∗ Q6

] [
x(t)
ẋ(t)

]
−(h2 − h1)

∫ t−h1

t−h2

[
x(s)
ẋ(s)

]T [
Q4 Q5

∗ Q6

]
×
[
x(s)
ẋ(s)

]
ds,

using Lemma 7 and Lemma 8 to estimate the integral
inequality of V̇3(t), then we obtain

V̇3(t) ≤ h22

[
x(t)
ẋ(t)

]T [
Q1 Q2

∗ Q3

] [
x(t)
ẋ(t)

]
+(h2 − h1)

2

[
x(t)
ẋ(t)

]T [
Q4 Q5

∗ Q6

] [
x(t)
ẋ(t)

]

+


x(t)

x(t− h(t))
x(t− h2)∫ t

t−h(t)∫ t−h(t)
t−h2


T

×


−Q3 Q3 0 −QT

2 0
∗ −Q3 −Q3 Q3 QT

2 −QT
2

∗ ∗ −Q3 0 QT
2

∗ ∗ ∗ −Q1 0
∗ ∗ ∗ ∗ −Q1



×


x(t)

x(t− h(t))
x(t− h2)∫ t

t−h(t)∫ t−h(t)
t−h2

+


x(t− h1)
x(t− h(t))
x(t− h2)∫ t−h1

t−h(t)∫ t−h(t)
t−h2


T

×


−Q6 Q6 0 −QT

5 0
∗ −Q6 −Q6 Q6 QT

5 −QT
5

∗ ∗ −Q6 0 QT
5

∗ ∗ ∗ −Q4 0
∗ ∗ ∗ ∗ −Q4



×


x(t− h1)
x(t− h(t))
x(t− h2)∫ t−h1

t−h(t)∫ t−h(t)
t−h2

 .

For derivative of V4(t), then we get

V̇4(t) =

(
h22
2

)2

ẋT (t)S1ẋ(t)

−h
2
2

2

∫ 0

−h2

∫ t

t+s
ẋT (ω)S1ẋ(ω)dωds

+

(
h22 − h21

2

)2

ẋT (t)S2ẋ(t)

−
(
h22 − h21

2

)∫ −h1

−h2

∫ t

t+s
ẋT (ω)S2ẋ(ω)dωds

−2kV4(t),

and using Lemma (11) to estimate integral inequality,
then we obtain

V̇4(t) ≤
(
h22
2

)2

ẋT (t)S1ẋ(t)

+

(
h22 − h21

2

)2

ẋT (t)S2ẋ(t)

+

[
h2x(t)∫ t

t−h2
xT (s)ds

]T [−S1 S1
S1 −S1

]
×
[

h2x(t)∫ t
t−h2

xT (s)ds

]

+

[
(h2 − h1)x(t)∫ t−h1

t−h2
xT (s)ds

]T [
−S2 S2
S2 −S2

]
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×

[
(h2 − h1)x(t)∫ t−h1

t−h2
xT (s)ds

]
− 2kV4(t).

V̇5(t) ≤ ẋT (t)R1ẋ(t) + r2ẋT (t)R2ẋ(t)

−(1− rd)ẋ
T (t− r(t))R1ẋ(t− r(t))

−r
∫ t

t−r(t)
ẋT (s)R2ẋ(s)ds− 2kV6(t),

using Jensen’s inequality to estimate integral inequal-
ity, then

− r

∫ t

t−r(t)
ẋT (s)R2ẋ(s)ds

≤ −

(∫ t

t−r(t)
ẋT (s)ds

)
R2

(∫ t

t−r(t)
ẋ(s)ds

)
.

Hence,

V̇5(t) ≤ ẋT (t)R1ẋ(t) + r2ẋT (t)R2ẋ(t)

−(1− rd)ẋ
T (t− r(t))R1ẋ(t− r(t))

−

(∫ t

t−r(t)
ẋT (s)ds

)
R2

(∫ t

t−r(t)
ẋ(s)ds

)
−2V5(t).

From the following zero equation is for positive sym-
metric matrices P with:

2ẋT (t)P [Ax(t) +Bx(t− h(t)) + Cẋ(t− r(t))

+Eωω(t)− ẋ(t)] = 0. (13)

Using zero equation and the whole time derivative of
V (t) for all 0 ≤ h1 ≤ h(t) ≤ h2, we obtain

V̇ (t, xt) ≤
6∑

i=1

V̇ (t) + 2ẋT (t)P

×[Ax(t) +Bx(t− h(t)) + Cẋ(t− r(t))

+Eωω(t)− ẋ(t)]

+[A1x(t) +B1x(t− h(t)) + E1ωω(t)]
T

×[A1x(t) +B1x(t− h(t)) + E1ωω(t)]

−γ2ωT (t)ω(t)− zT (t)z(t) + γ2ωT (t)ω(t)

(14)

Therefore, we yield

V̇ (t) ≤
[
ξ1(t)
ω(t)

]T [
Σ Λ1

∗ −γ2I

] [
ξ1(t)
ω(t)

]
+[A1x(t) +B1x(t− h(t)) + E1ωω(t)]

T

×[A1x(t) +B1x(t− h(t)) + E1ωω(t)]

−zT (t)z(t) + γ2ωT (t)ω(t),

=

[
ξ1(t)
ω(t)

]T ([
Σ Λ1

∗ −γ2I

]
+ HTH

)[
ξ1(t)
ω(t)

]
−zT (t)z(t) + γ2ωT (t)ω(t), (15)

where

HT =
[
A1 B1 0 0 0 0 0 0 0 0 0 0 E1ω

]
,

By using Schur complement Lemma [22], therefore
(15) can define as (12).

Then, combining (12) and (15), we can show that

V̇ (t) ≤ −zT (t)z(t) + γ2ωT (t)ω(t). (16)

Integrate both sides of (16) from t0 to t, yield

V (t)− V (t0) ≤ −
∫ t

t0

zT (s)z(s)ds

+

∫ t

t0

γ2ωT (s)ω(s)ds (17)

Then, letting t → ∞ and under zero initial condition,
we have V (t0) = V (0) = 0 and V (∞) = 0, that
leads to∫ t

t0

zT (s)z(s)ds ≤
∫ t

t0

γ2ωT (s)ω(s)ds, (18)

therefore ∥z(t)∥2 ≤ γ∥ω(t)∥2 is satisfied for any non-
zero ω(t) ∈ L2[0,∞).

Next, we can prove the asymptotically stable for
system (1). When ω(t) = 0, we yield the result as

V̇ (t) ≤ ξ(t)Σξ(t)− zT (t)z(t) < 0, (19)

combining (12) and using Schur complement Lemma,
we obtain [

Σ Λ2

∗ −I

]
< 0, (20)

which guarantees V̇ < 0. Therefore, the system (1)
is asymptotic stability for any delay satisfying (2) and
(3). Thus, by Definition 3 the result is shown. This
completes the proof. �

4 Conclusion
The problem of robust H∞ performance of neu-
tral systems has presented. Based on Lyapunov-
Krasovskii functional, combination of Leibniz-
Newton formula, free weighting matrices, linear ma-
trix inequality, Cauchy inequality and modified ver-
sion of Jensen’s inequality. The delay-dependent sta-
bility and H∞ performance criteria are formulated in
terms of LMIs.
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