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Abstract: -In this investigation, kinematic parameters variations of a proposed four-bar mechanism are analysed 
using a proposed recurrent artificial neural network predictor. The proposed neural predictor has three layers, 
which are input layer, output layer and hidden layer. The hidden layer consisted of recurrent structure to keep 
dynamic memory for later use. The mechanism is an extended version of a four-bar mechanism. Two elements, 
spring and viscous, are employed to overcome big force problem on the mechanism.  Based on the results 
presented, the force analysis problem for four-bar mechanism is completely solvable by using artificial neural 
networks. The effectiveness of the proposed scheme is demonstrated by simulation results in high speed repetitive 
motion tracking and load change conditions. No prior knowledge of system dynamics is required for this scheme. 
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1  Introduction 
Kinematics is an important field in which 
mechanical engineers study motion in order to 
design mechanism to perform useful tasks. 

Recently, an experimental investigation an active 
control of the elastodynamic response of a four-bar 
(4R) mechanism has been presented by Sannah and 
Smaili [1]. In their research, an experimental 4R 
mechanism is made such that its coupler link is 
flexible, its follower link is slightly less flexible and 
its crank is relatively rigid, two thin plate-type 
piezoceramic S/A pairs were bonded to the flanks of 
the coupler link at the high strain locations 
corresponding to the first and second vibration 
modes. The results of the experimental investigation 
prove that in order to prevent high mode excitations, 
the controller design should be based on the modes 
representing vibrations of all components 
comprising the mechanism system rather than the 
modes  
corresponding to the link to which the S/A pairs 
were bonded.  

A method for stability analysis of a closed-loop 
flexible mechanism by using modal coordinates has 
been investigated [2]. In their paper, mode shapes of 
a flexible four-bar mechanism are defined as those 

of individual links (single-link modes). Based on 
these single-link modes, the flexible four-bar 
mechanism has time-invariant mode shapes and its 
governing equations of motion become decoupled, 
regardless of mode-crossing. Therefore the stability 
of the flexible mechanism can be analysed 
efficiently for each mode. Floquet theory is 
employed to check the stability of the mechanism. 
The experimental study of a flexible four-bar 
mechanism is also presented to verify the proposed 
method. The experimentally determined bending 
strains and critical speeds are compared with 
numerical results obtained from the proposed 
method. The experimental and analytical results 
show a fairly good agreement.  
 

A study has been carried out to model, simulate 
and control a four-bar mechanism driven by a 
brushless servo motor [3]. A mathematical model 
for the servo motor-mechanism system was 
developed and solved by using numerical methods. 
An experimental set-up based on a four-bar 
mechanism was built and different crank motion 
profiles are implemented. Simulation and 
experimental results were then presented, compared 
and discussed. An analytical formulation for 
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computing kinematic sensitivity of the spatial four-
bar mechanism has been described in [4]. An 
experimental code developed was used to compute 
an assembled configuration for the mechanism that 
accounts for the effect of a design variation. A 
mechanism was modelled using graph theory, in 
which a body was defined as a node and a kinematic 
joint is defined as an edge. The spherical joint was 
cut to convert the model into a tree structure by 
cutting an edge and introducing constraints. The 
effect of variation in mechanism design using 
concepts of virtual displacement and rotation was 
introduced. The variation of the spherical constraint 
was computed, maintaining joint-attachment vectors 
and orientation matrices as variables. A neural 
network based application has been employed to 
predict vertical vibration parameters of vehicles [7, 
10,11,12]. The method was used to predict random 
vibration theory results. In their investigation, the 
results have demonstrated the applicability and 
adaptability of the neural network for analysis of the 
vehicles vibrations.  
 

 

2  Four-Bar Mechanisms 
Four-bar mechanism is a glass of mechanical 
linkage in which four links are pinned together to 
form a closed loop in order to perform some useful 
motion. Because the shapes of paths created by 
coupler are so diverse and useful. Four-bar 
mechanism used in industry numerous applications 
that require generation of simple repetitive 
movements. 
 

2.1  The Mechanism 
The mechanism, which operates in a vertical plane, 
is shown schematically in Fig. 1. The system can be 
used  as a five-bar mechanism with a rotary input at 
OA used an oscillatory input at CD, or, as in this 
case, as a four-bar linkage with the link CD fixed. 
The crank, OA, is driven by a variable speed motor 
and a spring of stiffness 671 N/m is attached to the 
rocker link, BC, at the point E, to provide additional 
loading to the mechanism. A test bearing at B has a 
radial clearance of 100 µm and consists of a steel 
pin with an oil-impregnated sintered bronze bush, of 
nominal diameter 25 mm and 35 mm long. Two 
small shock accelerometers are attached to the test 
bearing to record the impact accelerations at B along 
and perpendicular to the direction AB. 

The crank speed is a periodic function of the 
crank angle, due to the cyclic variation of the 
gravitational and dynamic forces on the mechanism, 
and the crank motion can be expressed either as an 
average crank speed or as an instantaneous speed 
relative to a specified crank angle. All crank speeds 
quoted in this paper are instantaneous values at 
θ2=900 crank angle. 
 

 
 

Fig.1. Representation of the modified mechanism 
system 

 
The average crank speed is used in the range 200-
400 r/min and the outputs from the shock 
accelerometers are monitored.  

In the combined massless-link-spring-damper 
model the clearance joint , B, is presented by a 
masless link BC of length equal to radial clearance, 
r4. BC has radial stiffness, Kc, and a radial damping 
µc. 

The equation of motion for the model, are give in 
Appendix A. There are six kinematic equations and 
six dynamic equations. The equations are coupled, 
non-linear and, having no analytical solution, need 
to be integrated numerically. The numerical values 
for the model parameters used in the computations 
are given in Appendix B. 
 

3  Neural Networks 
Neural networks (NNs) are typically organised in 
layers. Layers are made up of a number of 
interconnected 'nodes' which contain an 'activation 
function'. Patterns are presented to the network via 
the 'input layer', which communicates to one or 
more 'hidden layers' where the actual processing is 
done via a system of weighted 'connections'. The 
hidden layers then link to an 'output layer' where the 
answer is output. Most NNs contain some form of 
'learning rule' which modifies the weights of the 
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connections according to the input patterns that it is 
presented with. In a sense, NNs learn by example, as 
do their biological counterparts; a child learns to 
recognise dogs from examples of dogs. Although 
there are many different kinds of learning rules used 
by neural networks, this demonstration is concerned 
only with one; the delta rule. The delta rule is often 
utilised by the most common class of NNs called 
'backpropagational neural networks' (BPNNs). BP is 
an abbreviation for the backwards propagation of 
error. With the delta rule, as with other types of BP, 
'learning' is a supervised process that occurs with 
each cycle or 'epoch' (i.e. each time the network is 
presented with a new input pattern) through a 
forward activation flow of outputs, and the 
backwards error propagation of weight adjustments. 
More simply, when a neural network is initially 
presented with a pattern it makes a random 'guess' as 
to what it might be. It then sees how far its answer 
was from the actual one and makes an appropriate 
adjustment to its connection weights. 
Backpropagation performs a gradient descent within 
the solution's vector space towards a 'global 
minimum' along the steepest vector of the error 
surface. The global minimum is that theoretical 
solution with the lowest possible error. The error 
surface itself is a hyperparaboloid but is seldom 
'smooth' as is depicted in the graphic below. Indeed, 
in most problems, the solution space is quite 
irregular with numerous 'pits' and 'hills' which may 
cause the network to settle down in a 'local 
minimum' which is not the best overall solution. 
Since the nature of the error space can not be known 
a priori, neural network analysis often requires a 
large number of individual runs to determine the 
best solution. Most learning rules have built-in 
mathematical terms to assist in this process which 
control the 'speed' (Beta-coefficient) and the 
'momentum' of the learning. The speed of learning is 
actually the rate of convergence between the current 
solution and the global minimum. Momentum helps 
the network to overcome obstacles (local minima) in 
the error surface and settle down at or near the 
global minimum.  
 
Depending on the nature of the application and the 
strength of the internal data patterns you can 
generally expect a network to train quite well. This 
applies to problems where the relationships may be 
quite dynamic or non-linear. NNs provide an 
analytical alternative to conventional techniques 

which are often limited by strict assumptions of 
normality, linearity, variable independence etc. 
Because a NN can capture many kinds of 
relationships it allows the user to quickly and 
relatively easily model phenomena which otherwise 
may have been very difficult or impossible to 
explain otherwise. 
 

3.1  Proposed Neural Network 
The neural networks employed in this work were of 
the recurrent type. Recurrent networks have the 
advantage of being able to model dynamics systems 
accurately and in a compact form. A recurrent 
network can be represented in a general 
diagrammatic form as illustrated in Fig. 4. This 
diagram depicts the hybrid hidden layer as 
comprising a linear part and a non-linear part and 
shows that, in addition to the usual feedforward 
connections, the networks also have feedback 
connections from the output layer to the hidden 
layer and self-feedback connections in the hidden 
layer. The reason for adopting a hybrid linear/non-
linear structure for the hidden layer will be evident 
later [5-9]. 

At a given discrete time t, let u(t) be the input to 
a recurrent hybrid network, y(t), the output of the 
network, x1(t) the output of the linear part of the 
hidden layer and x2(t) the output of the non-linear 
part of the hidden layer.  
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Fig.2. Block diagram of proposed recurrent 

hybrid network [5,6] 
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The operation of the network is summarised by the 
following equations (see also Figure 4): 
 

x1(t+1)=W
I1 u(t+1)+β x1(t)+αJ1y(t)   (1) 

x2(t+1)=F{W
I2 u(t+1)+β x2(t)+αJ2y(t)}  (2) 

y(t+1)=W
H1 x1(t+1) + WH2 x2(t+1)             (3) 

where W
I1 is the matrix of weights of connections 

between the input layer and the linear hidden layer, 
W

I2 is the matrix of weights of connections between 
the input layer and the non-linear hidden layer, WH1 
is the matrix of weights of connections between the 
linear hidden layer and the output layer, WH2 is the 
matrix of weights of connections between the non-
linear hidden layer and the output layer, F{}is the 
activation function of neurons in the non-linear 
hidden layer and α and β are the weights of the self-
feedback and output feedback connections. J1 and J2 
are respectively nH1×nO and nH2×nO matrices with all 
elements equal to 1, where nH1 and nH2 are the 
numbers of linear and non-linear hidden neurons, 
and nO, the number of output neurons. 

If only linear activation is adopted for the hidden 
neurons, the above equations simplify to: 
 

y(t+1)= WH1
 x(t+1)                              (4) 

 
x(t+1)= WI1

 u(t+1)+βx(t)+αJ1 y(t)  (5) 
 
Replacing y(t) by WH1 x(t) in equation (5) gives 
 
x(t+1)= (β I+α J1 W

H1)x(t)+W
I1

 u(t+1)    (6) 
 
where I is a nH1×nH1 identity matrix  
 
Equation (6) is of the form 
 
x(t+1)= A x(t)+B u(t+1)                (7) 
 

where A= βI+αJW
H1 and B= W

I1 Equation (7) 
represents the state equation of a linear system of 
which x is the state vector. The elements of A and B 
can be adjusted through training so that any 
arbitrary linear system of order nH1 can be modelled 
by the given network. When non-linear neurons are 

adopted, this gives the network the ability to 
perform non-linear dynamics mapping and thus 
model non-linear dynamic systems. The existence in 
the recurrent network of a hidden layer with both 
linear and non-linear neurons facilitates the 
modelling of practical non-linear systems 
comprising linear and non-linear parts. 

 

4  Simulation Results 
In this section,  simulations of the modified four-bar 
mechanism for force analysis  using the proposed 
neural network predictor are performed for finding . 
The training parameters of the network are given in 
Table 1.  Firstly, the network was randomly trained 
between the force values of the mechanism’s joints. 
Training numbers of the network are also given in 
Table 1. Performances of the proposed method are 
executed. 

The performance of the proposed neural 
predictor was tested on the system for different 
forces of the joints such as joints 5, 6 and 7. The 
actual forces of the system’s joint 4 superimposed 
on the specified forces are plotted in Fig. 5. Neural 
predictor possesses a much faster response 
characteristic and therefore has better performance. 
 

In Fig. 6, the neural network predictor exactly 
follows the desired results of the system for joint 4.  
 
 

 
 

Fig. 3. Schematic representation of the extended 
mechanism 
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Fig.4. Representation of the proposed mechanism 
during working 

 
 
There is also another analysis for joint 5 as depicted 
in Fig. 7. There is good stability between two 
approaches. 

From the results obtained, it can be seen that the 
proposed neural predictor produced the best 
performance. The advantages of the proposed 
predictor is faster learning and small tracking errors. 
A reason for the strong performance of the proposed 
network was the inclusion of both linear and non-
linear neurons in the network.  
 
 

Appendix: 

 

Equation of motion for the model mechanism 

 

Kinematic Equations 

 

01 2 2 3 3 4 4 5 5r r Cos r Cos r Cos r Cos r Cos
c c

θ θ θ θ θ− + + + + + =  (8) 

 
02 2 3 3 4 4 5 5r Sin r Sin r Sin r Sin r Sin

c c
θ θ θ θ θ+ + + + =          (9) 

 

02 2 2 3 3 3 4 4 4Sin r Sin r Sin r Sin r Cos
c c c c c

r θ θ θ θ θ θ θ θ θ+ + + − =ɺ ɺ ɺ ɺ ɺ         (10) 

 
02 2 2 3 3 3 4 4 4r Cos r Cos r Cos r Cos r Sinc c c c cθ θ θ θ θ θ θ θ θ+ + + + =ɺ ɺ ɺ ɺ ɺ

 (11) 
 

2 2
2 2 2 3 3 3 4 4 4 2 2 2 3 3 3

2 2
2 04 4 4

r Sin r Sin r Sin r Sin r Cos r Cos r Cosc c c c c

r Cos r Cos r Sinc c c c c c

θ θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

+ + + − + +

+ + + =

ɺɺ ɺɺ ɺɺ ɺɺ ɺ ɺɺɺ

ɺ ɺ ɺɺ

                                                                       (12) 
2 2

2 2 2 3 3 3 4 4 4 2 2 2 3 3 3

2 2

4 4 4 2 0

c c c c c

c c c c c c

r Cos r Cos r Cos r Cos r Sin r Sin r Sin

r Sin r Sin r Cos

θ θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

+ + + + − −

− − + =

ɺɺ ɺɺ ɺɺ ɺɺ ɺ ɺɺɺ

ɺ ɺ ɺɺ

                                                                       (13) 
 

Dynamic Equations 
 
For link 2: 

2( )32 2 2 32 2 2 2 2 2 2 2 2 2X r Sin Y r C os m gs C os I m sθ θ θ θ− + = − + ɺɺ  

                                                                   (14) 
 

2 2
32 43 3 2 2 2 3 3 3 3 3 2 2 2 3 3 3 3X X m r Sin m s Sin m r Cos m s Cosθ θ θ θ θ θ θ θ− = + + +ɺɺ ɺɺ ɺ ɺ  

                                                                    (15) 
 

( ) ( )32 3 3 32 3 3 43 3 3 3 43 3 3 3 3 3X s Sin Y s Cos X r s Sin Y r s Cos Iθ θ θ θ θ− + − − − =− ɺɺ        

(16) 
 
For clearance link: 

 

04343 =− cccc CosrYSinrX θθ                  (17) 

 

ccccccc rrrKSinYCosX ɺµθθ +−=+ )( 04343  (18) 

 
For link 4: 

2( ( ) [ ( ) ]43 4 4 43 4 4 4 4 4 4 4 4 4 4 4Y r Cos X r Sin m g g r s Cos I m r sθ θ θ θ− − − =− + − ɺɺ (19) 
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Fig. 5.  Force variations of Joint 3 for both approach 

on the X and Y directions 
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Table 1. Kinamatic Parameters 

of the mechanism 
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Fig. 6.  Force variations of Joint 4 for both approach 

on the X and Y directions 
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Fig. 7.  Force variations of Joint 5 for both approach 

on the X and Y directions 
 
 

5  Conclusion 
This paper has presented a neural network 
predictor for analysing forces of joints of a 
modified four-bar mechanism. In this new 
approach, a well-trained network supplies good 
prediction on kinematic parameters of the 
mechanism. The results presented were given 
superior performance to predict kinematic 
parameters of the proposed mechanism. Finally, 
it can be said that the neural networks would be 
useful algorithm for analysing such as 
mechanisms in experimental works. 
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