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Abstract: - This paper describes the development of nontraditional attitude determination system that can rely 
on vector  measurements. Vectors coming from the selected sensor data and developed models can be placed in 
Wahba’s problem. The system uses Singular Value Decomposition (SVD) method to minimize the Wahba’s 
loss function and determine the attitude of the satellite. In order to obtain the attitude of the satellite with 
desired accuracy an extended Kalman filter (EKF) for satellite’s angular motion parameter estimation is 
designed. Different algorithms with or w/o gyro bias estimation are considered and compared in order to 
achieve better accuracy on the attitude angles and angular rates. Also, a rate gyro is added to the algorithm in 
addition to the vector measurements and their biases can be estimated. 
      The SVD and EKF algorithms are combined to estimate the attitude angles and angular velocities.  Besides, 
the proposed algorithm and traditional approach using nonlinear measurements are compared and concluded 
that SVD/EKF gives more accurate results for most of the time intervals. The algorithm can be used for low-
cost small satellites where using high power consuming, expensive, and fragile gyroscopes for determining 
spacecraft attitude are not reasonable.  
Key-Words: - Satellite attitude estimation, magnetometer, sun sensor, extended Kalman filter, angular velocity, 
nontraditional approach 
 
1 Introduction 
Sun sensors and magnetometers are common 
attitude sensors for small satellites missions; they 
are cheap, simple, light and available as commercial 
of-the-shelf equipment. However the overall 
achievable attitude determination accuracy is 
limited with these sensors mainly as a result of their 
inherent limitations and unavailability of the sun 
sensor data when the satellite is in eclipse. Vectors 
coming from the selected sensor data and developed 
models can be placed in Wahba’s problem [1, 2]. 
Coordinate systems used as reference frame and 
body frame can be transformed to each other with 
necessary input parameters. The system uses 
Singular Value Decomposition (SVD) method to 
minimize the Wahba’s loss function and determine 
the attitude of the satellite. As a reference direction, 
the unit vectors toward the Sun, and the Earth’s 
magnetic field are used. Cooperating magnetometer 
sun sensor and rate gyro utilization in small satellite 
missions is a common method for achieving 
accurate attitude information. By the use of a 
Kalman filter algorithm measurement inputs of 
these sensors can be easily integrated in order to 
estimate the attitude parameters of the satellite 
precisely. At this stage, the methods of dynamic 
filtration (for example Kalman filters) may be 

useful. In general, two types of Kalman filter 
algorithms will be taken into consideration:  
a) Kalman filter based on linear measurements 
(nontraditional approach)  
b) Kalman filter based on nonlinear 
measurements 

In first case (approach based on linear 
measurements) attitude angles are found by vector 
measurements based attitude determination methods 
at each step. Then these are directly used as 
measurement input for Kalman filter. Hence 
measurement model is linear in this case, since the 
states are measured directly. On the other hand, in 
the second case, measurement models are based on 
nonlinear models of reference directions. Therefore 
there is a nonlinear relation between the 
measurements the states. 

The traditional approaches to design of Kalman 
filter for satellite attitude and rate estimation use the 
nonlinear measurements of reference directions 
(Earth magnetic field, Sun, etc.) [3-5].  

Integration of single-frame satellite attitude 
determination methods with Kalman filter is 
presented by [6, 7], in which the algebraic method 
and EKF algorithms are combined to estimate the 
attitude angles and angular velocities respectively. 
Attitude determination system use algebraic method 
(2-vector algorithm). This method is based on the 
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computing any two analytical vectors in the 
reference frame and measuring these vectors in the 
body coordinated system [8]. As measuring devices 
magnetometers, Sun sensors, and horizon 
scanners/sensors are used. Three different 
algorithms based on Earth’s magnetic field, Sun 
vector, and nadir vector are used. In order to obtain 
the attitude of the satellite with desired accuracy an 
EKF for satellite’s angular motion parameter 
estimation is designed.  

After, single frame methods aided KF approach 
is studied in [9-17]. 

In this study SVD-aided EKF attitude 
determination system is presented, in which the 
SVD and EKF algorithms are combined to estimate 
the attitude angles. Besides, angular velocities and 
gyro biases is estimated using presented algorithm. 
Here, coarse attitude information besides the 
covariance data coming from SVD is processed in 
the EKF to estimate much more accurate attitude 
angles. Also, the robust Kalman filter is compared 
in the sense of measurement faults with the 
SVD/EKF algorithm which is also a robust adaptive 
method naturally. 
 
 
2 Mathematical Models for Vector 
Measurements 
 
 
2.1 Magnetic Field Direction Vector 
IGRF model defines the series in nT seen below 
which depends on 4 input variables ( , , ,r tθ φ ), 
using numerical Gauss coefficients (g, h) - the 
global variables in the algorithm [18].  
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    Here,  r is the distance between center of the 
Earth and satellite (km), a=6371.2 km (magnetic 
reference spherical radius), θ  colatitude (deg), φ  
longitude (deg).  The inputs are coming from the 
LEO satellite which has an orbit propagation 
algorithm only regarding to J2 effects for the 
selected time period. Major axis of the Earth 
accepted as 6378.137 km. IGRF 11 model makes 
the calculations at N=13th degree for 5-year 
intervals. Thus, coefficients of the model are 
updated at the years of the multiples of five (2010, 
2015, etc.). The time dependence of the Gauss 
coefficients can be denoted as: 

 0 0 0( ) ( ) ( )( )m m m
n n ng t g T g T t T= + −&  (2) 

0 0 0( ) ( ) ( )( )m m m
n n nh t h T h T t T= + −&

 (3) 
     
Here, 0T  is the epoch times multiple of five 
proceeding t and t is in the units of years for the 
selected time. IGRF-11 model uses predictive 
secular variation coefficients for 2010-2015 and 
main field coefficients for 1900-2010.  
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Equation (4) shows the direction cosines for 
magnetic field model changing between -1 and +1, 
which only aim to determine the direction of the 
vector. 
   Three onboard magnetometers of the satellite 
measure the components of the magnetic field 
vector in the body frame. Therefore, for the 
measurement model, which characterizes the 
measurements in the body frame, gained magnetic 
field terms must be transformed by the use of 
direction cosine matrix, A . Overall measurement 
model may be given as; 
 

( ) ( )B ( ) ( )m o HB k A k k v k= + ,            (5) 

where ( )mB k  is the measured Earth magnetic field 
vector as the direction cosines  in body frame, ( )Hv k
is the magnetometer measurement noise. 

 

 2.2 Sun Direction Vector 
To determine Sun direction vector in ECI (Earth 
Centered Inertial) frame, Julian Day ( TDBT ) should 
be defined from the satellite’s initial data and 
reference epoch. The first constant is the mean 
anomaly of the Sun ( SunM ) at epoch and the second 
constant is the change of the mean anomaly during 
Julian Day that generates. After the calculations, the 
ecliptic longitude of the Sun ( eclipticλ ) and the 
obliquity     of    the ecliptic ( ε ) can be determined 
by only the input of date in years, months, days and 
time in hours, minutes, seconds [19]. 

0357.5277233 35999.05034Sun TDBM T= +  (6) 
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023.439291 0.0130042 TDBTε = −  (8) 
 
Finally, the unit Sun vector ( ECIS ) can be found in 
the inertial frame. 
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The Sun direction vector measurements can be 
expressed in the following form:  
 

( ) ( ) ( ) ( )m o SS k A k S k v k= + ,             (10) 
 
where ( )mS k  is the measured Sun direction vector as 
the direction cosines   in body frame,  ( )0S k

represent the Sun direction vector  in the orbit frame 
as a function of time and orbit parameters, ( )Sv k is 
the sun sensor measurement noise. 
 
2.3 Mathematical Model of the Satellite’s 
Rotational Motion 
If the kinematics of the small satellite is derived in 
the base of Euler angles, then the mathematical 
model can be expressed with a 6 dimensional 
system vector which is made of attitude Euler angles 
(ϕ  is the roll angle about x  axis; θ  is the pitch 
angle about y axis; ψ  is the yaw angle about z
axis) vector and the body angular rate vector with 
respect to the inertial axis frame,  

T

x y zx ϕ θ ψ ω ω ω⎡ ⎤= ⎣ ⎦  .          (11) 
      
Also for consistency with the further 

explanations, the body angular rate vector with 
respect to the inertial axis frame should be stated 
separately as;   

                     ,
T

BI x y zω ω ω ω⎡ ⎤= ⎣ ⎦                (12)   

where BIω  is the angular velocity vector of the body 
frame with respect to the inertial frame. Besides, 
dynamic equations of the satellite can be derived by 
the use of the angular momentum conservation law;  

( ) ,x
x x y z y z

d
J N J J

dt
ω

ω ω= + −        (13) 

( ) ,y
y y z x z x

d
J N J J

dt
ω

ω ω= + −        (14) 

( ) ,z
z z x y x y

dJ N J J
dt
ω

ω ω= + −          (15) 

where xJ , yJ  and zJ  are the principal moments of 

inertia and xN , yN  and zN   are the terms of the 
external moment affecting the satellite.  For a Low 
Earth Orbit (LEO) small satellite as in case, gravity 
gradient  torque should be taken into consideration   
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 .        (16)    

Here μ is the gravitational constant, 0r  is the 
distance between the center of mass of the satellite 
and the Earth and ijA  represents the corresponding 
element of the direction cosine matrix.  
     Kinematic equations of motion of the 
picosatellite with the Euler angles can be given as, 

( ) ( ) ( ) ( )
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    (17) 

 Here ( )t ⋅ stands for tangent function and p , q and 

r are the components of BRω  vector which indicates 
the angular velocity of the body frame with respect 
to the reference frame. BIω  and BRω can be related 
via, 

0

0

0
BR BI Aω ω ω

⎡ ⎤
⎢ ⎥= + −⎢ ⎥
⎢ ⎥⎣ ⎦

                      (18)                   

where 0ω  denotes the angular velocity of the orbit 
with respect to the inertial frame, found as

( )1/23
0 0/ .rω μ=  

 
 
3 EKF for Satellite Attitude 
Estimation Based on Nonlinear 
Measurements-Traditional Approach 
Consider  the  nonlinear mathematical model of the 
satellite’s rotational motion about its mass center 
driven  by  white  noise  with  white noise-corrupted  
measurements  defined  by 
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             [ ]( 1) ( ), ( )x k x k k w kϕ+ = +             (19)                     

[ ]( ) ( ), ( )z k h x k k v k= +                   (20)                                               

where 
( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

T

x y zx k k k k k k kϕ θ ψ ω ω ω⎡ ⎤+ = + + + + + +⎣ ⎦

is  the  state  vector, 
( ) ( ) ( ) ( ) ( ) ( ) ( )

T

mx my mz mx my mzz k H k H k H k S k S k S k⎡ ⎤= ⎣ ⎦
is  the  measurement  at  time  k, ( )w k   is  the  
system  noise, 

( ) ( ) ( ) ( ) ( ) ( ) ( )
T

Hx Hy Hz Sx Sy Szv k v k v k v k v k v k v k⎡ ⎤= ⎣ ⎦  

is  the  measurement  noise, [ ]( ),φ x k k  is  the  
nonlinear  state  transition  function mapping  the  
previous  state  to  the  current  state, [ ]( ),h x k k  is  a  
nonlinear  measurement  model  mapping  current  
state  to  measurements. 

It  is  assumed  that  both  noise  vectors ( )v k    
and  ( )w k are  linearly additive  Gaussian, 
temporally  uncorrelated  with  zero  mean, which  
means 

[ ] [ ]( ) ( ) 0,E w k E v k= = k∀ ,          (21)                                  
with the corresponding  covariances:  

( ) ( ) ( ) ( ),TE w i w j Q i δ ij⎡ ⎤ =⎢ ⎥⎣ ⎦   
( ) ( ) ( ) ( ),TE v i v j R i ijδ⎡ ⎤ =⎣ ⎦             (22) 

where ( )ijδ is the Kronecker symbol. 
     It  is  assumed  that  process  and  measurement  
noises  are  uncorrelated, i.e.,                   

( ) ( ) 0,TE w i v j⎡ ⎤ =⎢ ⎥⎣ ⎦ ,i j∀ .            (23)                                             
We will consider a real-time linear Taylor 

approximation of the system function at the 
previous state estimate and that of the observation 
function at the corresponding predicted position. 
The Kalman Filter so obtained will be called the 
Extended Kalman Filter (EKF). Filter algorithm in 
this case as is given below [20]. 

      Equation of the estimation value, 

[ ]{ }ˆ ˆ ˆ( 1) ( 1 / ) ( 1) ( 1) ( 1 / ), 1x k x k k K k z k h x k k k+ = + + + × + − + +                                    
(24a)              

Equation of   the extrapolation value, 
[ ]ˆ ˆ( 1/ ) ( ),x k k φ x k k+ =                 (24b)                                                          

Filter-gain of EKF 

1

( 1) ( 1/ ) ( 1)

( 1) ( 1/ ) ( 1) ( )

T

T

K k P k k H k

H k P k k H k R k
−

+ = + + ×

⎡ ⎤+ + + +⎣ ⎦
   (25)                    

where ˆ[ ( 1/ ), 1]( 1)
ˆ( 1/ )

h x k k kH k
x k k

∂ + +
+ =

∂ +
 is the  

measurement matrix constituted of partial 
derivatives.                               

The covariance matrix of the extrapolation error 
is,   

ˆ ˆ[ ( ), ] [ ( ), ]( 1/ ) ( / ) ( )
ˆ ˆ( ) ( )

Tx k k x k kP k k P k k Q k
x k x k

ϕ ϕ∂ ∂
+ = × +

∂ ∂

                                                             (26)                   
The covariance matrix of the filtering error is, 

[ ]( 1/ 1) ( 1) ( 1) ( 1/ )P k k I K k H k P k k+ + = − + + +   (27)  

  The filter expressed by the formulas (24)-(27) is 
called the EKF based on traditional approach. 
 
 
4 SVD Method 
After Wahba’s optimization problem definition, two 
or more vectors can be used in statistical methods to 
minimize the loss [1]. The loss is the difference 
between the models and the measurements which 
are found in unit vectors.  

 21( ) | b Ar |
2 i i i

i

L A a= −∑
 

(28)

 T
i i iB a b r= ∑  (29)

 0( ) (AB )TL A trλ= −  (30)

where ib (set of unit vectors in body frame) and ir
(set of unit vectors in reference frame) with their ia  
(non-negative weight) are the loss function variables 
obtained for instant time intervals and 0λ  is the sum 
of non-negative weights. Also, ‘B’ matrix is defined 
to reduce the loss function into the equation (3). 
Here, maximizing the trace ( (AB )Ttr ) means 
minimizing the loss function (L). In this study, 
Singular Value Decomposition (SVD) Method is 
chosen to minimize the loss function [21]. 

 B=USVT=Udiag|S11 S22 S33|VT (31)

 [1 1 det( )det( )] T
optA Udiag U V V=  (32)

     The matrices U and V are orthogonal left and 
right matrices respectively and the primary singular 
values (S11, S22, S33) can be calculated in the 
algorithm. To find the rotation angles of the 
satellite, transformation matrix should be found in 
the equation (32) first with the determinant of one. 
"diag” operator returns a square diagonal matrix 
with elements of the vector on the main diagonal. 
     Rotation angle error covariance matrix (P) is 
necessary for determining the instant times which 
gives higher error results than desired.  
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1 1 1
2 3 3 1 1 2[(s s ) (s s ) (s s ) ] T

SVDP Udiag U− − −= + + +
 

(33) 

where s1 = S11, s2 = S22, s3 = det(U)det(V) S33.  
     The satellite only has two sensors (e.g. sun and 
magnetic field sensor), thus the SVD-method fails 
when the satellite is in eclipse period and when the 
two observations are parallel. 
 
5 SVD Aided EKF for Satellite 
Attitude Estimation Based on Linear 
Measurements - Nontraditional 
Approach  
In this study, SVD has been used as the observation 
model in the EKF framework. The SVD and EKF 
algorithms are combined to estimate the attitude 
angles and angular velocities. 
 
 
5.1  Problem Formulation 
In case of EKF design based on linear Euler angle 
measurements, determination model of the angles 
that characterizes satellite’s attitude, can be given as 
[7], 

( ) ( ) v ( )z k k kϕ ϕϕ= + , 
 ( ) ( ) v ( )z k k kθ θθ= + ,                (34) 

( ) ( ) v ( )z k k kψ ψψ= +  
where ( )kϕ , ( )kθ and ( )kψ  are the attitude angles 
determined by SVD method, ( )v ( )k⋅ is the 

measurement noise of the attitude angles. The 
mathematical expectations and variances of the 
measurement noises are 

( )
v ( ) 0E k

⋅

⎡ ⎤ =⎣ ⎦
, ( )2v ( ) v ( )E k Var kϕ ϕ⎡ ⎤ =⎣ ⎦ , 

( )2v ( ) v ( )E k Var kθ θ⎡ ⎤ =⎣ ⎦  and ( )2v ( ) v ( )E k Var kψ ψ⎡ ⎤ =⎣ ⎦ . 

It  is  assumed  that  both  measurement and 
system noise  vectors v(k)= v ( ) v ( ) v ( )

T
k k kϕ θ ψ⎡ ⎤⎣ ⎦  

and  ( )w k  are  linearly additive  Gaussian, 
temporally  uncorrelated  with  zero  mean and  the  
corresponding  covariances:  

               ( ) ( ) ( ) ( ),TE w i w j Q i δ ij⎡ ⎤ =⎢ ⎥⎣ ⎦            
              v( )v ( ) ( ) ( ),TE i j R i ijδ⎡ ⎤ =⎣ ⎦                 (35) 

 It  is  assumed  that  process  and  measurement  
noises  are  uncorrelated, i.e.,                   

( )v ( ) 0,TE w i j⎡ ⎤ =⎢ ⎥⎣ ⎦ ,i j∀ .              (36)    

It is required to design EKF for satellite attitude 
and rate estimation. 

 
 

5.2  EKF Based on Linear Euler Angle 
Measurements 
The mathematical model of the LEO satellite’s 
rotational motion about its center of mass, is 
linearized using quasi-linearization method. We will 
consider a real-time linear Taylor approximation of 
the system function at the previous state estimate. 
The Kalman Filter which is obtained will be called 
the Extended Kalman Filter (EKF). Filter algorithm, 
in this case as, is given below [16]: 

Equation of the estimation value, 

{ }ˆ ˆ ˆ( 1) ( 1/ ) ( 1) ( 1) ( 1/ )x k x k k K k z k Hx k k+ = + + + × + − +                   
(37)       

Here    ( 1) ( 1) ( ) ( )z k z k z k z kϕ θ ψ⎡ ⎤+ = +⎣ ⎦   is the 
measurement vector, H is the measurement matrix. 
In the investigated case the measurement matrix can 
be written as  

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

H
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 Equation of   the extrapolation value, 

[ ]ˆ ˆ( 1/ ) ( ),x k k f x k k+ =                (38)                   

 Filter-gain of EKF 

1

( 1) ( 1/ ) ( 1)

( 1) ( 1/ ) ( 1) ( )

T

T

K k P k k H k

H k P k k H k R k
−

+ = + + ×

⎡ ⎤+ + + +⎣ ⎦
      (39)  

The covariance matrix of the extrapolation error 
is, 

  

ˆ ˆ[ ( ), ] [ ( ), ]( 1/ ) ( / ) ( )
ˆ ˆ( ) ( )

Tf x k k f x k kP k k P k k Q k
x k x k

∂ ∂
+ = +

∂ ∂                   
(40)                   

The covariance matrix of the filtering error is, 

[ ]( 1/ 1) ( 1) ( 1) ( 1/ )P k k I K k H k P k k+ + = − + + +      (41)                   

where R( k ) is the covariance matrix of 
measurement noise, which has diagonal elements 
built of the variances of angle and angle rate 
measurement noises and ( )Q k  is the covariance 
matrix of the system noises.    

 Equations given as (37)-(41) represent the EKF, 
which fulfils recursive estimation of the satellite’s 
rotational motion parameters about its mass centre 
on the linear attitude measurements. 
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5.3 Simulation Results 
Simulations are realized with a sampling time of 

1sec.sT =  As an experimental platform a cube-sat 
model is used. Nonetheless the orbit of the satellite 
is a circular orbit with an altitude of 550r km= . The 
time interval 2000-4000s correspond to the eclipse. 
For the magnetometer measurements, the sensor 
noise is characterized by zero mean Gaussian white 
noise with a standard deviation of 300m  nTσ = . The 
standard deviation for the sun sensor noise is taken 
as 0 002s .σ = (for unit vector measurements). Portion 
of simulation results are given in Figs.1-4. Absolute 
errors and variance changes of attitude angles when 
SVD and SVD+EKF are used are given in Figs.1-3. 
Here, SVD/EKF attitude estimation results are 
superior at outside of the eclipse because of the 
coming covariance knowledge as an adaptation to 
the filter from SVD method. Measurement model is 
linear in this case, since the states are measured 
directly in SVD.  

 
Fig.1. Absolute errors and variance changes of 

roll angle 

 
Fig.2. Absolute errors and variance changes of 

pitch angle 

 
Fig.3. Absolute errors and variance changes of 

yaw angle 

 
Fig.4. X-axis angular rate estimation results 

 
The X-axes angular rate estimation results are 

shown in Fig. 4. The angular rates are estimated 
accurately. The SVD method fails in eclipse since 
there are no observations coming from the Sun. In 
this period the EKF gain decreases to very low 
values, the state update term of the EKF becomes 
insignificant and the predicted states contribute 
more to the estimations. In the figures, integrated 
SVD/EKF attitude estimation error increases 
through the eclipse. This situation is natural because 
EKF prediction errors are accumulated in time and 
after a while, they can get larger errors. In this case, 
another method can be used for attitude estimation 
e.g. EKF based on only magnetometer 
measurements or magnetometer and rate gyro 
measurements. 
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6 Nontraditional EKF Approach 
Based on Gyro and Vector 
Measurements 
 
 
6.1 Rate Gyro Measurement Model 
Three rate gyros are aligned through three axes, 
orthogonally to each other and they supply directly 
the angular rates of the body frame with respect to 
the inertial frame. Hence the model for rate gyros 
can be given as; 

, 2BI meas BI gbω ω η= + + .                 (42)                                                  

where, ,BI measω  is the measured angular rates of the 
satellite, gb  is the gyro bias vector as 

x y z

T

g g g gb b b b⎡ ⎤= ⎣ ⎦  and 2η  is the zero mean 

Gaussian white noise with the characteristic of 
2

2 2 3 3( ) ( ) ( )T
x gE k j I kjη η σ δ⎡ ⎤ =⎣ ⎦ ,            (43) 

Here, gσ is the standard deviation of each rate gyro 
random error. Nevertheless, characteristic of gyro 
bias is given as,  

3
gdb

dt
η=  ,                        (44a) 

where 3η is also the zero mean Gaussian white noise 
with the characteristic of 

 2
3 3 3 3( ) ( ) ( )T

x gbE k j I kjη η σ δ⎡ ⎤ =⎣ ⎦ ,            (44b)                                            

Here, gbσ  is the standard deviation of gyro biases. 
 
 
6.2 EKF Design 
The angular velocities  , ,x y zω ω ω  of satellite are 
measured through the rate gyroscopes.  If the state 
vector  

 ,
x y z

T
T

x y z g g gU b b bϕ θ ψ ω ω ω⎡ ⎤= ⎣ ⎦  (45)                       

is arranged and the mathematical model of the LEO  
satellite’s rotational motion about its center of mass,  
is linearized using quasi-linearization method, 

( ) ( )
( )
ˆ ˆ( ) ( 1), ( 1) ( 1) ( 1) ( 1

( 1) ( 1) ( 1)

o U

comp
o o o

U k f U k k F k U k U k

F k k k

ω

ω ω

= − − + − − − −

+ − − − −

(46)             
where ( )ˆ ( 1), ( 1)of U k kω− −  is the right hand side of 

the LEO satellite’s rotational motion mathematical 
model based on estimated values; ( 1)o kω − is the 

satellite’s orbital velocity (system input); ( 1)comp
o kω −

is the computational value of the satellite’s orbital 
velocity; Fo is the coefficient matrix of the system 
input;   

ˆ ( 1), ( 1)

  ( 1)
 

o

U
U k k

fF k
U ω

∂
∂ − −

⎡ ⎤− = ⎢ ⎥⎣ ⎦
,             

ˆ ( 1), ( 1)

  ( 1)
 

o

o
o U k k

fF k
ω

∂
∂ ω

− −

⎡ ⎤
− = ⎢ ⎥

⎣ ⎦
                                 (47) 

Minimum of the error’s standard deviation was 
selected as an optimum criterion. The recursive 
algorithm  for  the satellite’s attitude  estimation  is 
obtained using Bayes’ method as bellow, 

( )
( )

ˆ( ) ( 1), ( 1)

ˆ( ) ( ) ( 1), ( 1)

o

o

U k f U k k

K k z k Hf U k k

ω

ω

= − −

⎡ ⎤+ − − −⎣ ⎦

)

       (49)                   

 1

( ) ( ) ( )

( ) ( )

T

T

P k M k M k H

R HM k H HM k
−

= −

⎡ ⎤× +⎣ ⎦
                     (50)        

                 1( ) ( ) TK k P k H R−=                                (51)                   

                 ( ) ( 1) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1)

T
U U

T
o o o

M k F k P k F k

F k D k F k Q k

= − − −

+ − − − + −
  (52)                

where ( ) ( ), ( ), ( ), ( ), ( ), ( )
x y z

Tz k z k z k z k z k z k z kϕ θ ψ ω ω ω
⎡ ⎤= ⎣ ⎦  

is the measurement vector; ( )M k is  the  covariance  
matrix of the extrapolation  error, ( )P k  is  the  
covariance  matrix of the estimation  error, ( )K k  is 
the gain matrix of Kalman filter, ( 1)oD k − is the 
variance which characterizes uncertainty of the 
calculated values of satellite’s orbital velocity, R  is 
the covariance matrix of measurement noise, which 
is diagonal matrix with diagonal elements built of 
the variances of angle and angle rate measurement 
noises and ( 1)Q k − is the covariance matrix of the 
system noises.    

Equations given as (49)-(52) represent the EKF, 
which fulfils recursive estimation of the satellite’s 
rotational motion parameters about its mass center 
and rate gyros biases. 
 
 
6.3 Simulation Results 
In Table 1, RMS Error results can be seen for 
different time intervals of the satellite’s trajectory 
(including eclipse).  
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 Table 1. RMS Errors for Different Time 
Intervals in Case of Different Attitude 
Determination Algorithms (Error1: 0-2000 sec, 
Error2: 2000-4000 sec, Error3: 4000-6000 sec) 

RMS 
Errors 

Gyro Bias 
for Each 
Direction 
(rad/sec) 

Error 1 
(deg) 

Error 2 
(Eclipse) 

(deg) 

Error 3 
(deg) 

Only 
SVD - 32 123 16 

EKF w/o 
bias 

estimation 
0 0.08 0.13 0.50 

EKF with 
bias 

estimation 
0 1.12 6.17 0.55 

EKF w/o 
bias 

estimation 
0.005 1.64 17.31 0.97 

EKF with 
bias 

estimation 
0.005 1.01 4.83 0.53 

 
As seen from Table 1, at the beginning, the 

algorithm using the SVD method only, gives the 
RMS errors as a coarse attitude of the satellite. 
Especially in eclipse period, error reaches a very 
large value because no data from sun for SVD 
which is depending on the vector measurements 
only (magnetometer and sun sensor for this case). 
The rows from 2 to 5 show the SVD aided EKF 
algorithm with and w/o gyro bias or gyro bias 
estimation. If gyro biases exist, then the gyro bias 
estimation in the filter works well even in the 
eclipse period. If the measurements do not include 
any gyro biases, bias estimation has a negative 
effect on the results. 

Portion of simulation results are given in Figs.5-
10. Absolute errors of attitude angles when SVD 
and SVD+EKF are used are given in Fig.5. As seen, 
SVD +EKF attitude estimation results are superior.  

 
Fig.5. Absolute errors of attitude angles 

 

In Fig.6 the estimated values of Euler angles by 
SVD and SVD+EKF and the actual values of the 
angles are shown. As seen from the obtained results, 
SVD+EKF estimation values are very close to the 
actual values outside of the eclipse and sufficiently 
better then the only SVD results even in the eclipse 
period.  

 
Fig.6. Attitude angles estimation results 

 
In the first panels of Figs.7-10 gray lines indicate 

the estimation results and black lines actual values 
of parameters.  

In Figs.7-9 the estimated values of biases, the 
error between the actual values of the biases and 
their estimated values and variances of the 
estimation errors in x,y, and z axes respectively are 
shown. The results show that the gyro biases are 
estimated accurately and the values of the 
estimation errors approach to zero for all three 
cases. The values of estimation error variances 
decrease with time; therefore variance results 
support the convergence of the filter. 

 

 
Fig.7. Rate gyro bias estimation results in the X-axis  
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Fig.8. Rate gyro bias estimation results in the Y-axis  
 

 
Fig.9. Rate gyro bias estimation results in the Z-axis  
 

 
            Fig.10. X-axis angular rate estimation results  

 
Fig. 10 characterize the X-axes angular rate 

estimation results. For outside of the eclipse, the 
presented filter gives sufficiently good angular 
velocity estimation results. Also, the estimation 
results are not deteriorated during the eclipse. 
 
 

8 Conclusion 
In this study the SVD and EKF algorithms are 
combined as a two-phased estimation algorithm to 
estimate the attitude angles and gyro biases of small 
satellite. In the first phase, Wahba’s problem, a 
well-known approach for single frame attitude 
estimation with vector sun sensor and magnetometer 
measurements, is solved by the SVD method and 
Euler angles estimations are obtained for the 
satellite’s attitude. Obtained Euler angles 
estimations are used as measurement inputs, which 
forms the second phase of the algorithm and then 
rate gyros are considered in the filter for EKF. The 
covariance estimation of the SVD, is used as the 
part of the measurement noise covariance matrix of 
the EKF; this is how the filter is tuned specifically 
in the eclipse period. The EKF provides improved 
attitude knowledge.  The whole algorithm runs 
recursively. 
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