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Abstract: This paper deals with the problem of absolute stability of neutral type Lur’e systems with time-varying
delays. By constructing new Lyapunov-Krasovskii functional, a matrix-based on quadratic convex approach com-
bining with some improved bounding techniques for integral terms such as Wirtinger-based integral inequality,
new stability condition is much less conservative and more general than some existing results. New stability cri-
teria is given in terms of linear matrix inequalities. Numerical examples are given to illustrate the effectiveness of
the results.
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1 Introduction
In many practical systems, models of system are de-
scribed by neutral differential equations, in which the
models depend on the delays of state and state deriva-
tives. Heat exchanges, distributed networks contain-
ing lossless transmission lines and population ecol-
ogy are examples of neutral systems. Because of
its wider application, several researchers have studied
neutral systems and provided sufficient conditions to
guarantee the stability of neutral time delay systems,
see [1, 8, 19] and references cited therein.

It is well know that nonlinearities may cause in-
stability and poor performance of practical systems,
[5, 8, 14, 20, 25]. Many nonlinear control systems can
be modeled as a feedback connection of a linear neu-
tral system and a nonlinear element. One of the im-
portant classes of nonlinear systems is the Lur’e sys-
tem whose nonlinear element satisfies certain sector
constraints. Absolute stability of Lur’e systems with
sector bounded nonlinearities has attracted several re-
searcher [5, 7, 9, 15].

It is well known that the existence of time delay
in a system may cause instability and oscillations. Ex-
amples of time delay systems are chemical engineer-
ing systems, biological modeling, electrical networks,
physical networks and many others, [11, 12, 17]. The
stability criteria for system with time delays can be
classified into two categories: delay-independent and
delay-dependent. Delay-independent criteria does not
employ any information on the size of the delay;

while delay-dependent criteria makes use of such in-
formation at different levels. Delay-dependent sta-
bility conditions are generally less conservative than
delay-independent ones especially when the delay is
small. In most of the existing results, the range of
time-varying delay considered varies form 0 to an up-
per bound. In practice, the range of delay may vary in
a range for which the lower bound is not restricted to
be 0, i.e., interval time-varying delay. A typical exam-
ple with interval time delay is the networked control
system, which has been widely studied in the recent
literature (see, e.g., [2, 11, 24]).

Recently, there are many research studies on the
absolute stability of a class of neutral type Lur’e dy-
namical systems with time delay, see for examples
[14, 16, 20, 22, 25]. The problems have been dealt
with delay-dependent absolute and robust stability
for time-delay Lur’e system [14]. Improved delay-
dependent robust stability criteria for a class of uncer-
tain mixed neutral and Lur’e dynamical systems with
interval time-varying delays and sector-bounded non-
linearity were studied in [22]. On delay-dependent
robust stability of a class of uncertain mixed neu-
tral and Lur’e dynamical systems with interval time-
varying delays were investigated in [25]. However,
it is worth pointing out that, even though these re-
sults were elegant, there still exist some points wait-
ing for the improvement. Firstly, most of the works
above [5, 14], the augmented Lyapunov matrix P
must be positive definite. We will remove this re-
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striction by assuming that P are only real matrices.
Secondly, By introducing new augmented Lyapunov-
Kravoskii functional which have not been considered
yet in stability analysis of Lur’e systems. Thirdly,
by taking the time derivative of

∫ t
t−h1

h1(h1 − t +

s)ẋT (s)W1ẋ(s),
∫ t
t−h1

(h1 − t+ s)2ẋT (s)W2ẋ(s)ds,∫ t−h1

t−h2
h21(h2 − t + s)ẋT (s)R1ẋ(s),

∫ t−h1

t−h2
(h2 − t +

s)2ẋT (s)R2ẋ(s)ds, it is found that the integral terms
2
∫ t−h1

t−h2
(h2 − t + s)ẋT (s)R2ẋ(s)ds, 2

∫ t
t−h1

(h1 −
t + s)ẋT (s)W2ẋ(s)ds, h21

∫ t−h1

t−h2
ẋT (s)R1ẋ(s)ds,

−h1
∫ t
t−h1

ẋT (s)W1ẋ(s)ds, appear. For estimat-
ing these terms, techniques in [21, 27] are applied
in this paper, called matrix-based quadradic con-
vex optimization approach combined with some im-
proved bounding techniques for integral terms such as
Wirtinger-based integral inequality; as a result we ob-
tain inequality encompassing the Jensen one and also
goes to tractable LMI criteria to futher reduce the con-
servatism over the existing results [14, 16, 20, 22, 25].
Fourthly, most of the previous works did not con-
sider the lower bound of the time-varying delay and its
time-derivative. Factually, the lower bound can play
an important role in reducing the conservatism when
it can be available and fully tackled in [16,20,22,25].

Based on the above discussions, we consider
the problem of delay-dependent absolute stability of
Lur’e systems of neutral type with time-varying de-
lays, matrix-based quadratic convex approach will be
used. The time delay is a continuous function be-
longing to a given interval, which means that the
lower and upper bounds for the time varying delay
are available. Based on the construction of improved
Lyapunov-Krasovskii functionals combined with a
quadratic convex approach, some new cross terms will
be introduced which enhance the feasible stability cri-
terion. New delay-dependent sufficient conditions for
the neutral type Lur’e dynamical systems are estab-
lished in terms of LMIs. The new stability condition
is much less conservative and more general than some
existing results. Numerical examples are given to il-
lustrate the effectiveness of our theoretical results.

2 Problem statements and prelimi-
naries

The following notation will be used in this paper:
R+ denotes the set of all real non-negative numbers;
Rn denotes the n−dimensional space and the vector
norm ∥ . ∥; Mn×r denotes the space of all matri-
ces of (n × r)−dimensions. AT denotes the trans-
pose of matrix A; A is symmetric if A = AT ; I
denotes the identity matrix; λ(A) denotes the set of

all eigenvalues of A; λmax(A) = max{Reλ;λ ∈
λ(A)}. xt := {x(t + s) : s ∈ [−h, 0]}, ∥ xt ∥=
sups∈[−h,0] ∥ x(t + s) ∥; C([0, t],Rn) denotes the
set of all Rn−valued continuous functions on [0, t];
Matrix A is called semi-positive definite (A ≥ 0) if
xTAx ≥ 0, for all x ∈ Rn;A is positive definite
(A > 0) if xTAx > 0 for all x ≠ 0;A > B means
A − B > 0; diag(c1, c2, ..., cm) denotes block diago-
nal matrix with diagonal elements ci, i = 1, 2, ...,m.
The symmetric term in a matrix is denoted by ∗.

Consider the following Lur’e system of neutral
type with interval time-varying delay:

ẋ(t) = A1ẋ(t− τ(t)) +Ax(t) (1)

+Bx(t− h(t)) + Cf(ω(t)) +Dh(σ(t)),

ω(t) = Ex(t) = [E1 E2 ... Ek1 ]
Tx(t),

∀t ≥ 0, (2)

σ(t) = Fx(t− h(t)) = [F1 F2 ... Fk2 ]
T

× x(t− h(t)), ∀t ≥ 0, (3)

x(t+ s) = ϕ(t+ s), ẋ(t+ s) = φ(t+ s),

s ∈ [−m, 0], m = max{h2, τ2},

where x(t) ∈ Rn, ω(t) ∈ Rk1 and σ(t) ∈ Rk2 de-
note the state vector and output ones of the system,
respectively; A ∈ Rn×n, B ∈ Rn×n, C ∈ Rn×k1 ,
A1 ∈ Rn×n, D ∈ Rn×k2 are constant known ma-
trices; f(Ex(·)) = [f1(E

T
1 x(·)), ..., fk1(ET

k1
x(·))]T ,

h(Fx(·)) = [h1(F
T
1 x(·)), ..., hk2(F T

k2
x(·))]T are the

nonlinear elements.

Assumption 1. The delays τ(t) and h(t) are time-
varying continuous functions that satisfying

0 ≤ h1 ≤ h(t) ≤ h2, µ1 ≤ ḣ(t) ≤ µ2, (4)
0 ≤ τ(t) ≤ τ2, τ̇(t) ≤ δ < 1, (5)

in which h1, h2, τ2, µ1, µ2 and δ are constants.

Assumption 2. For any ϵ1, ϵ2 ∈ R, the nonlinear
function fi(·) and hj(·) satisfy fi(0) = hj(0) = 0,
and

σ−
i ≤ fi(ϵ1)− fi(ϵ2)

ϵ1 − ϵ2
≤ σ+

i ,

δ−j ≤ hj(ϵ1)− hj(ϵ2)

ϵ1 − ϵ2
≤ δ+j ,

ϵ1 ̸= ϵ2, i = 1, ..., k1; j = 1, ..., k2,

where σ+
i , σ

−
i , δ

+
j , and δ−j are given constants. Here,
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we give

Υ1 = diag(σ+
1 σ

−
1 , ..., σ

+
k1
σ−
k1
),

Υ2 = diag(
σ+
1 + σ−

1

2
, ...,

σ+
k1

+ σ−
k1

2
),

Υ3 = diag(δ+1 δ
−
1 , ..., δ

+
k2
δ−k2),

Υ4 = diag(
δ+1 + δ−1

2
, ...,

δ+k2 + δ−k2
2

),

Υ1 = diag(σ+
1 , ..., σ

+
k1
),

Υ2 = diag(σ−
1 , ..., σ

−
k1
),

Υ3 = diag(δ+1 , ..., δ
+
k2
),

Υ4 = diag(δ−1 , ..., δ
−
k2
). (6)

Assumption 3. All the eigenvalues of matrix A1 are
inside the unit circle.

We introduce the following technical well-known
propositions and Definition, which will be used in the
proof of our results.

Lemma 4. [21] For a given matrix R > 0, the fol-
lowing inequality holds for all continuously differen-
tiable function ω in [a, b]→ Rn:∫ b

a
ω̇T (u)Rω̇(u)du ≥ 1

b− a
(ω(b)− ω(a))TR

×(ω(b)− ω(a)) (7)

+
3

b− a
Ω̃TRΩ̃

where Ω̃ = ω(b) + ω(a)− 2
b−a

∫ b
a ω(u)du.

Remark 5. Clearly, the inequality (7) contains a
tighter lower bound for

∫ b
a ω̇T (u)Rω̇(u)du than

Jensen’s inequality, are applied in this paper that this
resulting inequality encompasses the Jensen one and
also goes to tractable LMI criteria to futher reduce
the conservatism over the existing results [14, 16, 20,
22, 25].

Lemma 6. [27] Let h(t) be a continuous function
satisfying 0 ≤ h1 ≤ h(t) ≤ h2. For any n × n real
matrix R1 > 0 and a vector ẋ : [−h2, 0] → Rn such
that the integration concerned below is well defined,
the following inequality holds for any 2n × 2n real

matrices S1 satisfying
[

R̃1 S1

ST
1 R̃1

]
≥ 0

− (h2 − h1)

∫ t−h1

t−h2

ẋT (s)R1ẋ(s)ds

=2φT
11Sφ21 − φT

11R̃1φ11 − φT
21R̃1φ21, (8)

where R̃1 , diag{R1, 3R1} and

φ11 ,
[

x(t− h(t))− x(t− h2)
x(t− h(t)) + x(t− h2)− 2ω1(t)

]
,

φ21 ,
[

x(t− h1)− x(t− h(t))
x(t− h1) + x(t− h(t))− 2ω2(t)

]
,

where

ω1 , 1

h2 − h(t)

∫ t−h(t)

t−h2

x(s)ds,

ω2 , 1

h(t)− h1

∫ t−h1

t−h(t)
x(s)ds. (9)

Lemma 7. [27] Let h(t) be a continuous function
satisfying 0 ≤ h1 ≤ h(t) ≤ h2. For any n × n
real matrix R2 > 0 and a vector ẋ : [−h2, 0] → Rn

such that the integration concerned below is well de-
fined, the following inequality holds for any ϕi1 ∈ Rq

and real matrices Zi ∈ Rq×q, Ni ∈ Rq×n satisfying[
Zi Ni

NT
i R2

]
≥ 0 (i = 1, 2)

−
∫ t−h1

t−h2

(h2 − t+ s)ẋT (s)R2ẋ(s)ds

≤1

2
(h2 − h(t))2ϕT

11Z1ϕ11 + 2(h2 − h(t))ϕT
11N1ϕ12

+
1

2
[(h2 − h1)

2 − (h2 − h(t))2]ϕT
21Z2ϕ21

+ 2ϕT
21N2[(h2 − h(t))ϕ22 + (h(t)− h1)ϕ23],

where

ϕ12 , x(t− h(t))− ω1(t),

ϕ22 , x(t− h1)− x(t− h(t)),

ϕ23 , x(t− h1)− ω2(t).

Lemma 8. [27] Let ξ0, ξ1 and ξ2 be m×m real sym-
metric matrices and a continuous function h satisfy
h1 ≤ h ≤ h2, where h1 and h2 are constants satisfy-
ing 0 ≤ h1 ≤ h2. If ξ0 ≥ 0, then

h2ξ0 + hξ1 + ξ2 < 0(≤ 0), ∀h ∈ [h1, h2],

↔ h2i ξ0 + hiξ1 + ξ2 < 0(≤ 0), (i = 1, 2), (10)

or

h2ξ0 + hξ1 + ξ2 > 0(≥ 0), ∀h ∈ [h1, h2],

↔ h2i ξ0 + hiξ1 + ξ2 > 0(≥ 0), (i = 1, 2). (11)
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3 Main results

Now we present a Lyapunov-Krasovskii functional
for the Lur’e system (1) satisfying the conditions (2),
(3) with interval time-varying delay

V (t, xt, ẋt) =

4∑
i=1

Vi(t), (12)

where

V1(t) , ηT (t)Pη(t) +

∫ t

t−h1

ẋT (s)Q0ẋ(s)ds

+

∫ t

t−τ(t)
ẋT (s)Jẋ(s)ds

V2(t) ,
∫ t

t−h1

[xT (t) xT (s)]Q1[x
T (t) xT (s)]Tds

+

∫ t−h1

t−h(t)
[xT (t) xT (s)]Q2[x

T (t) xT (s)]Tds

+

∫ t−h(t)

t−h2

[xT (t) xT (s)]Q3[x
T (t) xT (s)]Tds

V3(t) ,
∫ t

t−h1

{
h1(h1 − t+ s)ẋT (s)W1ẋ(s)

+(h1 − t+ s)2ẋT (s)W2ẋ(s)
}
ds

+

∫ t−h1

t−h2

{
h21(h2 − t+ s)ẋT (s)R1ẋ(s)

+(h2 − t+ s)2ẋT (s)R2ẋ(s)
}
ds

V4(t) , 2
n∑

i=1

∫ ET
i x

0
[ki[fi(s)− σ−

i (s)]

+li[σ
+
i (s)− fi(s)]]ds

2
n∑

i=1

∫ FT
i x

0
[gi[hi(s)− δ−i (s)]

+ti[δ
+
i (s)− hi(s)]]ds (13)

where P are real matrices, Q0 > 0, Qj > 0,Wq >
0, Rq > 0, J > 0(j = 1, 2, 3; q = 1, 2), K =
diag(k1, ..., kn) > 0, L = diag(l1, ..., ln) > 0, G =
diag(g1, ..., gn) > 0, T = diag(t1, ..., tn) > 0; and
h21 , h2 − h1,
η(t) , col{x(t), x(t − h1),

∫ t−h(t)
t−h2

x(s)ds,∫ t−h1

t−h(t) x(s)ds,∫ t
t−h1

x(s)ds }.

Remark 9. • This of [14] previous work only focused
on the augment vector η(t) = [x(t),

∫ t
t−τ0

x(s)ds] but

our paper includes not only on x(t),
∫ t
t−τ0

x(s)ds but

also x(t),
∫ t−h(t)
t−h2

x(s)ds, x(t − h1),
∫ t−h1

t−h(t) x(s)ds.
We can see that the adoption of new augmented vari-
ables, cross terms of variables and more multiple in-
tegral terms may reduce the conservatism.
• Those of [5,14] previous works, the augmented Lya-
punov matrix P still need P > 0, but for our paper
does not need to be positive defiite, which can be seen
in Lemma 10..

For simplicity of presentation, we set in the fol-
lowing
ω1, ω2 are defined in (9) and ω3 = 1

h1

∫ t
t−h1

x(s)ds.
Denote by ẽi(i = 1, . . . , 5) the block-row vectors of
the 5n×5n identity matrix. Then we have the follow-
ing result.

Lemma 10. [27] For the LKF (13), there exist
scalars ϵ1 > 0 and ϵ2 > 0 such that

ϵ1∥x∥2 ≤ V (t, xt, ẋt) ≤ ϵ2∥xt∥2W (14)

if the following LMIs are satisfied

ẽ1P ẽT1 > 0, P0 ≥ 0, Λ1(h1) + Λ2(h1) ≥ 0,

Λ1(h2) + Λ2(h2) ≥ 0, (15)

where

Λ1(h(t)) ,


∆, h1 = 0

∆+ 1
h1
ΓT
2 diag{Q0, 3Q0}Γ2,

h1 ≠ 0

(16)

Λ2(h(t)) , h1[ẽ
T
1 ẽT5 ]Q1[ẽ

T
1 ẽT5 ]

T + (h(t)− h1)

×[ẽT1 ẽT4 ]Q2[ẽ
T
1 ẽT4 ]

T + (h2 − h(t))

×[ẽT1 ẽT3 ]Q3[ẽ
T
1 ẽT3 ]

T (17)

where

Γ1 = col{ẽ1, ẽ2, (h2 − h(t))ẽ3, (h(t)− h1)ẽ4, h1ẽ5},
Γ2 = col{ẽ1 − ẽ2, ẽ1 + ẽ2 − 2ẽ5},
P0 = (ẽT4 ẽ4 − ẽT3 ẽ3)P (ẽT4 ẽ4 − ẽT3 ẽ3),

∆ = ΓT
1 PΓ1 − ẽT1 ẽ1P ẽT1 ẽ1.

Theorem 11. The system (1) satisfying the sector
condition (2), (3), for given scalars h1, h2, µ1, µ2

and δ is absolutely stable if there exist P are real
matrices to be determined, symmetric positive definite
matrices Q0 > 0, Qj > 0,Wq > 0, Rq > 0, J >
0(j = 1, 2, 3; q = 1, 2), and n× n diagonal matrices
K > 0, L > 0, G > 0, T > 0, U > 0, V > 0 such
that (15) and the following LMI holds:
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4∑
i=1,h(t)=h1,µ(t)=µ1

Σi < 0,

4∑
i=1,h(t)=h1,µ(t)=µ2

Σi < 0,

4∑
i=1,h(t)=h2,µ(t)=µ1

Σi < 0,

4∑
i=1,h(t)=h2,µ(t)=µ2

Σi < 0,

(18)

[
Zi Ni

NT
i R2

]
≥ 0, (i = 1, 2)

[
Z3 N2

NT
3 W2

]
≥ 0, (19)

[
R̃1 S1

ST
1 R̃1

]
≥ 0, Z1 ≥ Z2, (20)

where R̃1 = diag{R1, 3R1};and

Σ1(h(t), ḣ(t)) , ∆T
1 P∆2 +∆T

2 P∆1 +∆T
0 Q0∆0

− eT8 Q0e8 +∆T
0 J∆0

− (1− τ̇(t))eT11Je11

Σ2(h(t), ḣ(t)) , Ψ20 + [h(t)− h1]Ψ21 + [h2 − d(t)]Ψ22

Σ3(h(t)) , φ̃T
1 S1φ̃2 + φ̃T

2 S
T
1 φ̃1 − φ̃T

1 R̃1φ̃1

+ (h2 − h(t))2(Z1 − Z2)

+ (h2 − h(t))Ψ31 + (h(t)− h1)Ψ32

+ h221Z2 − φ̃T
2 R̃1φ̃2

Σ4 , −φ̃T
3 W̃1φ̃3 +∆T

0 (h
2
1W1 + h21W2)∆0

+ 2h1N3(e1 − e7) + eT8 (h
2
21R1

+ h221R2)e8 + 2h1(e1 − e7)
TNT

3 + h21Z3

+ eT10[K − L]E∆0 +∆T
0 E

T [K − L]T e10

+ eT1 E
T [Ῡ1L− Ῡ2K]E∆0

+∆T
0 E

T [Ῡ1L− Ῡ2K]TEe1

+ eT9 [G− T ]F∆0 +∆T
0 F

T [G− T ]T e9

+ eT1 F
T [Ῡ3G− Ῡ4T ]F∆0

+∆T
0 F

T [Ῡ3G− Ῡ4T ]
TFe1

− [eT1 E
TUΥ1Ee1 − 2eT1 E

TUΥ2e10

+ eT10Ue10]− [eT1 F
TVΥ3Fe1

− 2eT1 F
TVΥ4e9 + eT9 V e9] (21)

with ei(i = 1, 2, . . . , 11) denoting the i-th row-
block vector of the 11n × 11n identity matrix W̃1 =
diag{W1, 3W1}; and

Ψ20 , [eT1 eT3 ](Q2 −Q1)[e
T
1 eT3 ]

T

+ h1[∆
T
0 0]Q1[e

T
1 eT7 ]

T + h1[e
T
1 eT7 ]Q1[∆

T
0 0]T

− (1− ḣ(t))[eT1 eT2 ](Q2 −Q3)[e
T
1 eT2 ]

T

− [eT1 eT4 ]Q3[e
T
1 eT4 ]

T + [eT1 eT1 ]Q1[e
T
1 eT1 ]

T

Ψ21 , [eT1 eT6 ]Q2[∆
T
0 0]T + [∆T

0 0]Q2[e
T
1 eT6 ]

T

Ψ22 , [eT1 eT5 ]Q3[∆
T
0 0]T + [∆T

0 0]Q3[e
T
1 eT5 ]

T

Ψ31 , 2N1(e2 − e5) + 2N2(e3 − e2)

+ 2(e3 − e2)
TNT

2 + 2(e2 − e5)
TNT

1

Ψ32 , 2N2(e3 − e6) + 2(e3 − e6)
TNT

2

φ̃1 , col{e2 − e4, e2 + e4 − 2e5}
φ̃2 , col{e3 − e2, e3 + e2 − 2e6}
φ̃3 , col{e1 − e3, e1 + e3 − 2e7}
∆1 , col{e1, e3, (h2 − h(t))e5, (h(t)− h1)e6, h1e7}
∆2 , col{∆0, e8, (1− ḣ(t))e2 − e4, e3

− (1− ḣ(t))e2, e1 − e3}.

For simplicity of presentation, we denote
Θ , col{x(t), x(t − h(t)), x(t −
h1), x(t − h2), ω1(t), ω2(t), ω3(t), ẋ(t −
h1), h(σ(t)), f(ω(t)), ẋ(t− τ(t))},
ẋ(t) = ∆0Θ(t),∆0 , A1e11+Ae1+Be2+Ce10+
De9.

Proof. Taking the derivative of V along the solution
of system(1), we can be obtains as

V̇1(t) =2ηT (t)P η̇(t) + ẋT (t)Q0ẋ(t)− ẋT (t− h1)Q0

× ẋ(t− h1) + ẋT (t)Jẋ(t)

− (1− τ̇(t))ẋT (t− τ(t))Jẋ(t− τ(t))

V̇2(t) =[xT (t) xT (t)]Q1[x
T (t) xT (t)]T

− [xT (t) xT (t− h1)]Q1[x
T (t) xT (t− h1)]

T

+ 2

∫ t

t−h1

[xT (t) xT (s)]Q1[ẋ(t)
T 0]Tds

+ [xT (t) xT (t− h1)]Q2[x
T (t) xT (t− h1)]

T

− (1− ḣ(t))[xT (t) xT (t− h(t))]Q2[x
T (t)

xT (t− h(t))]T + 2

∫ t−h1

t−h(t)
[xT (t) xT (s)]Q2

× [ẋT (t) 0]Tds+ [xT (t) xT (t− h2)]

×Q3[x
T (t) xT (t− h2)]

T

− (1− ḣ(t))[xT (t) xT (t− h(t))]Q3

× [xT (t) xT (t− h(t))]T

+ 2

∫ t−h(t)

t−h2

[xT (t) xT (s)]Q3[ẋ
T (t) 0]Tds
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V̇3(t) =ΘT (t)(h21∆
T
0 W1∆0 + h21∆

T
0 W2∆0)Θ(t)

− h1

∫ t

t−h1

ẋT (s)W1ẋ(s)ds

− 2

∫ t

t−h1

(h1 − t+ s)ẋT (s)W2ẋ(s)ds

+ h221ẋ
T (t− h1)R1ẋ(t− h1)

+ h221ẋ
T (t− h1)R2ẋ(t− h1)

− h21

∫ t−h1

t−h2

ẋT (s)R1ẋ(s)ds

− 2

∫ t−h1

t−h2

(h2 − t+ s)ẋT (s)R2ẋ(s)ds.

V̇4(t) =2fT (Ex(t))[K − L]Eẋ(t) + 2xT (t)ET [Ῡ1L

− Ῡ2K]Eẋ+ 2hT (Fx(t))[G− T ]Fẋ(t)

+ 2xT (t)F T [Ῡ3G− Ῡ4T ]Fẋ(t). (22)

On the condition (6) and diagonal matrices U >
0, V > 0, then we have

−[xT (t)ETUΥ1Ex(t)− 2xT (t)ETUΥ2f(Ex(t))

+fT (Ex(t))Uf(Ex(t))]− [xT (t)F TVΥ3Fx(t)

−2xT (t)F TVΥ4h(Fx(t)) + hT (Fx(t))V h(Fx(t))]

≥ 0.

With the consideration of some term of V̇2(t), V̇3(t),
we obtained the following equality and inequality:∫ t

t−h1

[xT (t) xT (s)]Q1[ẋ(t)
T 0]Tds

= [

∫ t

t−h1

xT (t)ds

∫ t

t−h1

xT (s)ds]Q1[ẋ
T (t) 0]T

= h1[x
T (t) ωT

3 ]Q1[ẋ
T (t) 0]T , (23)

∫ t−h1

t−h(t)
[xT (t) xT (s)]Q2[ẋ(t)

T 0]Tds

= [

∫ t−h1

t−h(t)
xT (t)ds

∫ t−h1

t−h(t)
xT (s)ds]Q2[ẋ

T (t) 0]T

= (h(t)− h1)[x
T (t) ωT

2 ]Q2[ẋ
T (t) 0]T , (24)

and ∫ t−h(t)

t−h2

[xT (t) xT (s)]Q3[ẋ(t)
T 0]Tds

= [

∫ t−h(t)

t−h2

xT (t)ds

∫ t−h(t)

t−h2

xT (s)ds]Q3[ẋ
T (t) 0]T

= (h2 − h(t))[xT (t) ωT
1 ]Q3[ẋ

T (t) 0]T . (25)

By utilizing Lemma4, we can be estimated

−
∫ t

t−h1

ẋT (s)h1W1ẋ(s)ds

≤ −[x(t)− x(t− h1)]
TW1[x(t)− x(t− h1)]

−3Ω̃1
T
W1Ω̃1, (26)

where

Ω̃1 = x(t) + x(t− h1)− 2ω3.

And applying [27], we obtained the following

− 2

∫ t

t−h1

(h1 − t+ s)ẋT (s)W2ẋ(s)ds

≤ h21Θ
T (t)Z3Θ(t) + 2h1Θ

T (t)N3[x(t)− ω3]

+ 2h1[x(t)− ω3]
TNT

3 Θ(t), (27)

−
∫ t−h1

t−h2

ẋT (s)h21R1ẋ(s)ds

≤ 2φT
11S1φ21 − φT

11R̃1φ11 − φT
21R̃1φ21 (28)

and

− 2

∫ t−h1

t−h2

(h2 − t+ s)ẋT (s)R2ẋ(s)ds

≤ (h2 − h(t))2ΘT (t)Z1Θ(t)

+ 4(h2 − h(t))ΘT (t)N1[x(t− h(t))− ω1]

+ [(h2 − h1)
2 − (h2 − h(t))2]ΘT (t)Z2Θ(t)

+ 4ΘT (t)N2[(h2 − h(t))[x(t− h1)− x(t− h(t))]

+ (h(t)− h1)[x(t− h1)− ω2(t)]]. (29)

Hence, according to (22)-(29) we get

V̇ (t, xt, ẋt) ≤ 2ηT (t)P η̇(t) + ẋT (t)Q0ẋ(t)

− ẋT (t− h1)Q0ẋ(t− h1) + ẋT (t)Jẋ(t)

− (1− δ)ẋT (t− τ(t))Jẋ(t− τ(t))

+ [xT (t) xT (t)]Q1[x
T (t) xT (t)]T

− [xT (t) xT (t− h1)]Q1[x
T (t) xT (t− h1)]

T

+ 2h1[x
T (t) ωT

3 ]Q1[ẋ
T (t) 0]T

+ [xT (t) xT (t− h1)]Q2[x
T (t) xT (t− h1)]

T

− (1− ḣ(t))[xT (t) xT (t− h(t))]Q2[x
T (t)

xT (t− h(t))]T + 2(h(t)− h1)[x
T (t) ωT

2 ]

×Q2[ẋ
T (t) 0]T + [xT (t) xT (t− h2)]

×Q3[x
T (t) xT (t− h2)]

T

− (1− ḣ(t))[xT (t) xT (t− h(t))]Q3
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× [xT (t) xT (t− h(t))]T

+ 2(h2 − h(t))[xT (t) ωT
1 ]Q3[ẋ

T (t) 0]T

+ΘT (t)(h21∆
T
0 W1∆0 + h21∆

T
0 W2∆0)Θ(t)

− [x(t)− x(t− h1)]
TW1[x(t)− x(t− h1)]

− 3Ω̃1
T
W1Ω̃1 + h21Θ

T (t)Z3Θ(t)

+ 2h1Θ
T (t)N3[x(t)− ω3] + 2h1[x(t)− ω3]

T

×NT
3 Θ(t) + h221ẋ

T (t− h1)R1ẋ(t− h1)

+ h221ẋ
T (t− h1)R2ẋ(t− h1)

+ 2φT
11S1φ21 − φT

11R̃1φ11 − φT
21R̃1φ21

+ (h2 − h(t))2ΘT (t)Z1Θ(t)

+ 4(h2 − h(t))ΘT (t)N1[x(t− h(t))− ω1]

+ [(h2 − h1)
2 − (h2 − h(t))2]ΘT (t)Z2Θ(t)

+ 4ΘT (t)N2[(h2 − h(t))[x(t− h1)− x(t− h(t))]

+ (h(t)− h1)[x(t− h1)− ω2(t)]]

+ 2fT (Ex(t))[K − L]Eẋ(t) + 2xT (t)ET

× [Ῡ1L− Ῡ2K]Eẋ+ 2hT (Fx(t))[G− T ]Fẋ(t)

+ 2xT (t)F T [Ῡ3G− Ῡ4T ]Fẋ(t)

− [xT (t)ETUΥ1Ex(t)− 2xT (t)ETUΥ2f(Ex(t))

+ fT (Ex(t))Uf(Ex(t))]− [xT (t)F TVΥ3Fx(t)

− 2xT (t)F TVΥ4h(Fx(t))

+ hT (Fx(t))V h(Fx(t))]

V̇ (t, xt, ẋt) ≤ ΘT (t)Σ(h(t), ḣ(t))Θ(t) (30)

where Σ(h(t), ḣ(t)) ,
∑4

i=1Σi. Clearly,
Σ(h(t), ḣ(t)) can be rewritten as Σ(h(t), ḣ(t)) =
h2(t)Π0 + h(t)Π1 +Π2 where Π = Z1 − Z2 and Π1

and Π2 are h(t)− independent real metrices. Now
together with (8) and if Z1 − Z2 ≥ 0 and the inequal-
ities in (18) hold, then Σ(h(t), ḣ(t)) < 0, ∀h(t) ∈
[h1, h2], ∀ḣ(t) ∈ [µ1, µ2]. Then V̇ (t, xt) ≤ −λ∥x(t)∥
for some λ > 0, ∀x(t) ̸= 0. Thus the system (1)
satisfy conditions (2),(3) is absolutely stable.

4 Numerical Example

In this section, we provide numerical examples to
show the effectiveness of our theoretical results.
Example 4.1 Consider the following neutral system
with time-varying delays which is studied in [16]:

ẋ(t) = A1ẋ(t− τ(t)) +Ax(t) +Bx(t− h(t))

with the following parameters:

A1 =

[
−0.2 0
0.2 −0.1

]
, A =

[
−2 0
0 −0.9

]
,

B =

[
−1 0
−1 −1

]
.

By applying our proposed Theorem 11 to the above
system, one can obtain maximum delay bounds as
listed in Table II. It can be found that the maximum
upper bounds on the allowable sizes to be h(t) =
τ(t) = 4.2365, which is larger than in [16]. This
means that the proposed ideas in theorem 11 is effec-
tive in reducing the conservatism of stability criterion.

Table II: Upper bounds of interval time-varying
delays with h1 = 0 and τ(t) = h(t) for Example 4.2.

Methods h2[τ(t) = h(t)]

[16] 0.985
Theorem 11 4.2365

5 Conclusion
In this paper, we have investigated new delay-
dependent absolute stability of Lur’ e systems for
neutral type with time-varying delays. Based
on Lyapunov-krasovskii theory combined with a
quadratic convex approach. New delay-dependent
sufficient conditions for absolute stability have been
derived in terms of LMIs. Numerical examples are
given to illustrate the effectiveness of the theoretic re-
sults which show that our results are much less con-
servative than some existing results in the literature.
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