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Abstract— we designed a SIMULINK vehicle blockset that corresponds to the Society of Automotive Engineers (SAE) 

benchmark as a first level of CBSE architecture. We introduced a second level of abstraction where we connect each module to a 

Simulink DDS blockset to take advantage of the QoS parameters, events generated in response to faults or exceeding of fixed 

parameters and calls to callback functions, managed within the DDS middleware itself without involving the user tasks realized by 

the modules in the application level.  

The powertrain and chassis modules are connected to FlexRay bus. We chose to use the FlexRay network for its fault-tolerant 

dual channel bus (physically independent cables), where a node can be connected to one or both of the busses. A node connected to 

both busses can send the same or different messages on the two busses. Sending the same message on both busses increases the fault-

tolerance. However FlexRay does not meet the bandwidth and scalability requirements of next-generation advanced driver 

Assistance systems, V2X and RadCom communications. Giga-Ethernet and Wireless High-speed communications are the emerging 

technologies in the automotive domain, specifically in the body and multimedia domains. In this paper we are interested to 

computations related to Ethernet and we demonstrated that the Body and Multimedia domains can be connected to it with a 

minimum latency budget. 

Keywords—GBE; FlexRay; V2V; V2I; QoS; SAE Benchmark; Vehicle Blockset; DDS 

I. INTRODUCTION 

he original SAE benchmark is limited to the 

automotive kernel model. We implemented a 

Simulink Blockset corresponding to the different blocks and 

integrated the original and the extended models studied by 

Utayba [1] and by our team [2]. The authors added to the 

original benchmark a number of nodes and messages to better 

represent the complexity of today’s vehicles and to model 

some options responsible for improving vehicle safety and 

reliability. 

The most of the vehicle nodes are until now connected by 

the CAN bus. We eliminate completely from our studies this 

bus and we replaced it by the FlexRay for the powertrain and 

chassis domains and by the Ethernet for the body and 

multimedia domains.  

Future vehicles using V2V (Vehicle-to-Vehicle) and V2I 

(Vehicle-to-Infrastrucre) technologies will move one step 

closer to reality by using MIMO radars in order to enable a 

variety of applications for safety and traffic efficiency. By 

integrating V2I technology, into all vehicles having V2V, 

systems might even reduce all target vehicle crashes up. V2I 

technology would essentially permit a car to request 

information to access to the best possible road routes to a 

particular destination [3]. Dangerous intersections would also 

be made safer through the use of V2I. Infrastructures would 

be able to warn vehicles to slow down or communicate the 

status of a traffic light from a given distance. 

It is expected that car sensors will generate up to 1 TB of 

data in a single trip, so, FlexRay does not meet the bandwidth 

and scalability requirements of next-generation advanced 

driver assistance systems. Giga-bit Ethernet and high-speed 

wireless communications will play the leading role in the near 

future. In this paper we will done some computations to 

demonstrate that Ethernet (GBE) is a serious candidate for 

vehicle communications. We compare its performances to 

FlexRay bus for some vehicle modules. We take into account 

the DDS parameters and we proved that using Ethernet 

combined with the DDS middleware is a promising 

alternative for FlexRay or CAN. 

 The paper is organized in four sections. In the second 

section we recall briefly our implementation of SAE vehicle 

and DDS blocksets.   

In the third section we done some computations related to 

Ethernet, specifically the time before the occurrence of an 

error or a collision. We showed that this time is enormously 

large comparatively to the car's life. 

In the fourth section, we calculated the worst-case 

response time based on the full scheduling model, and we 

introduced it into the DDS QoS to further prove that SAE 

benchmark can be best insured by DDS and the FlexRay 

network in powertrain and chassis domains and DDS and 

Ethernet in the other domains. We proved that the DDS 

related timing QoS are guaranteed; especially the deadline 

and the minimum separation, taking account of latencies 

induced by the FlexRay vs Ethernet buses.   

II. Design and Implementation of a Vehicle and DDS 

Simulink Blocksets 

2.1 Vehicle SIMULINK Blockset  

In order to test if the exchanged messages are valid as 

described by the standard without regarding the targets where 

the modules will be implemented, we applied the Model-

T 
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Based Design (MBD) to develop the vehicle blockset. The 

resulting architecture is composed of 15 nodes connected by 

the FlexRay/Ethernet buses. We implemented the Suspension 

model, the Wheels model, the Active-Frame-Steering model 

and Electronic-Brake-Control model. The Suspension model 

consists of three sub-blocks: Passive-Suspension block, 

Active-Suspension block and Active-Suspension-Control-

Force block. Whereas, the wheels model gathers four sub-

blocks: the Front-Left-Wheel, Front-Right-Wheel, Rear-

Left-Wheel, and Rear-Right-Wheel. The figure 1 presents the 

blocksets of the modules cited above.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Developed Vehicle SIMULINK Library 
    

2.2 DDS Middleware SIMULINK Blockset  

The most popular classes of middleware are: RPC, RMI, 

CORBA and DCOM. They offer a remote method invocation 

and are familiar with the OO programming model. They use 

synchronous invocations, have limited QoS and have 

cascading points of failure, typically built on top of TCP. 
They are best-suited to smaller and closely-coupled systems.  

As it is known, the DDS (Data Distribution Service) 

became de-facto the standard in embedded systems that 

address the challenges in data-centric real-time applications.  

The DDS is an open standard managed by the Object 

Management Group (OMG) and representing the first 

general-purpose middleware standard that addresses 

challenging real-time requirements. It has a large number of 

QoS configuration parameters that give developers complete 

control of each object in the system and maintainability of its 

state. Its Data-Centric Publish-subscribe layer (DCPS) 

consists of the following Entities: domain-Participant, 

DataWriter, DataReader, Publsiher, Subscriber and topic. 

The objective is to transmit data directly from a publisher to 

all its subscribers with no intermediate servers.  This allows 

the application to communicate by publishing the data it 

produces and to have access to the type of data it consumes.  

We argue our choice of the DDS middleware to interface 

the low-level infrastructure and to realize a SIMULINK 

blockset for it by the following reasons: 

• No single point of failure: DDS requires any “special” 

nodes, so it can be implemented with no single-points-of-

failure due to the redundancy of publishers and 

subscribers.  

• Self-healing communication: If the network is severed 

into two halves, each half will continue to work with the 

available nodes. If the network is repaired, the network, 

by the built-in discovering entities, will quickly 

rediscover the new nodes, and once again function as a 

whole.  

• Support for custom fault-tolerance: Implementations are 

free to add further fault tolerance as well like FFT [2]. The 

support of multiple network interfaces like channel-A and 

Channel-B in a FlexRay controller and redundant Data 

Writers and Data Readers on every node leads to 

completely separate networks. Even if one network fails 

completely, the system will continue operation. 

The figure 2 depicts the DDS SIMULINK library 

blocks. The topic block is for assembling some output 

signals within a structure where we can attribute an 

unique key for this topic. The DataWriter_write() or the 

DataRead_Read() or the DataRead_Take() operation 

use the instance of “Data” to send or to receive the 

actual data, in occurrence into or from queues. 
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Figure 3: DDS blockset applied to Front Left Wheel Module (chassis domains) 

 

 

III. ANALYSIS OF REAL-TIME CAPABILITIES OF THE 

ETHERNET FOR SPEEDS: 10MBPS, 100MBPS, 

1GBPS AND 10GBPS 

3.1 Algorithm for resolving the access contentions: 

the Ethernet case 

When a collision occurred, the node that detected the 

collision draws randomly a number of time slots that it 

must decline before retransmitting the same frame. This 

initial value varies between 0 and 2 (0, 1 or 2 time slots). A 

time slot for the Ethernet is set to 51.2 microseconds when 

the throughput used is 10 Mbps. The slot value is reduced 

to 5.12 microseconds when the throughput is 100 Mbps.  

let 𝑊𝑚𝑖𝑛 = 2. This value is called backoff, noted bc  

𝑏𝑐 𝜖[0, 𝑊𝑚𝑖𝑛]. If the collision happens again, the node in 

question doubles the drawing interval. The second time 

 𝜖[0, 2𝑊𝑚𝑖𝑛] . The 3rd draw 𝑏𝑐 𝜖[0, 22𝑊𝑚𝑖𝑛]and so on. 

For the nth draw bc ε draw 𝑏𝑐 𝜖[0, 2𝑛−1𝑊𝑚𝑖𝑛]. 
The "backoff" algorithm stops only when the channel is 

acquired. As CSMA/CA for WLAN networks, the 

sampling interval does not increase indefinitely but is 

limited to ten successive draws before concluding the non-

possibility to use of the medium. The maximum interval is 

[0, 29𝑊𝑚𝑖𝑛] or [0, 1024]. The sampling interval 

increases exponentially. 

For real-time systems that hard determinism is 

required, the access time should be very limited to ensure a 

very small latency before the deadline of the sending of 

periodic messages. 

Latency should always be less than the transition time 

of any system from one state to another state. As far as the 

evolution of the system is faster as far as the latency should 

be limited for this reason, the real-time critical systems are 

generally limited to physical, MAC and LLC layers 

Analysis of the possibilities of Ethernet determinism to 

is based on the calculation of the following parameters: 

 

• The calculation of the probability of collisions. When this 

probability is higher, the backoff grows exponentially and 

the latency is greater. 

 

• The penalty caused by the presence of collisions on the 

whole system, expressed in terms of the probability of 

failure for a specified period. 

For the calculation of probabilities mentioned above we 

will make the following assumptions: 

1. The packets exchanged have fixed size and short 

length. 

2. Each subnet (Powertrain, Chassis, Body and 

Multimedia) is lightly loaded. The number of 

messages sent per time unit is not high. 

The packet arrival law follows the Poisson distribution; 

i.e. the arrival process is Markovian. 

3.2 Calculating the waiting probability of the two 

nodes and its generalization to  M nodes 

We adopt for the following the following notations: 

𝑆𝑝 ∶  Packet size in bytes (or 8𝑆𝑝 in bits); 

𝜆 ∶ The arrival rate in packets per second 

(packets/sec) ; 

𝐵𝑤 ∶  The bandwidth in bits per second (link speed); 

𝑡𝑝 ∶ The mean propagation time in the network (in sec); 

𝑇𝑚𝑎𝑥 ∶ The maximum acceptable delay (in sec); 

𝑁 ∶  The number of collisions that may occur 

during 𝑇𝑚𝑎𝑥; 

𝑃𝑒𝑟𝑟: The error probability for N produced collisions; 

𝑃𝑆𝑢𝑐𝑐 ∶ The likelihood of sending packets and whose 

delay does not exceed 𝑇𝑚𝑎𝑥; 

𝑀 ∶ The number of packets sent before the occurrence 

of an error; 

𝑇𝑒𝑟𝑟 ∶  The time elapsed before to produce an error. 

𝑃𝑐𝑜𝑙 :  The collision probability 

 

The arrival law according to the Poisson process is defined 

by: 

 𝑝𝑛(𝑡) = 𝑒−𝜆𝑡 (𝜆𝑡)𝑛

𝑛!
                                (3-1);  

This function is the probability density function of the 

Poisson process. The probability distribution function of 

the Poisson distribution is defined as: 

 𝐹𝑥(𝑥) = 𝑃(𝑋 > 𝑥) = ∫ 𝑝𝑛(𝑡)𝑑𝑡
∞

𝑥
      (3-2), 
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(i.e. the probability that the random variable X exceeds the 

value x) 

In the discrete case where t is a finite time interval denoted 

T, divided into time slots ∆𝑡, the probability distribution 

function becomes: 

 

𝐹𝑥(𝑥) = 𝑒−𝑓 ∑
𝑓

𝑘!
 𝑢(𝑘 − 𝑥)∞

𝑘=0           (3-3), 

Where  𝑢(𝑘 − 𝑥) is the unitary function and  

             𝑓 = 𝜆𝑇 = 𝜆
8𝑆𝑝

𝐵𝑤
                                   (3-4);  

 
8𝑆𝑝

𝐵𝑤
  represents the size of information in bits divided by 

the speed in bits/sec (~ Bandwidth).  

If the number of nodes in a subnet is lower than or 

equal to 2; there are no collisions. Both nodes can develop 

agreements to not send at the same time just by managing 

they protocol FSMs (Finite State machine). However, 

when more nodes exist in the network, this technique 

cannot be applied and collisions may occur.  

The probability that three nodes have their packets in 

output queues according to the principle of CSMA/CD, 

outside the contention for access to the medium, is that one 

node transmits and the other two nodes wait to win the 

media access and then transmit. 

The two nodes waiting probability is represented by:      

𝑃𝑤𝑎𝑖𝑡
2 = 1 − 𝐹𝑥(2) = 1 −  𝑒−𝑓 ∑

𝑓

𝑘!
 𝑢(𝑘 − 𝑥)2

𝑘=0   

                            (3-5) 

           = 1 −  𝑒−𝑓(1 + 𝑓 +
𝑓2

2
)             (3-6) 

The probability that M nodes wait to transmit becomes:     

𝑃𝑤𝑎𝑖𝑡
𝑀 = 1 −  𝑒−𝑓(1 + 𝑓 +

𝑓2

2
+ ⋯ +

𝑓𝑀

𝑀!
)   (3-7) 

 

We note that 𝑃𝑤𝑎𝑖𝑡
𝑀 is slightly greater than 𝑃𝑤𝑎𝑖𝑡

2 . This 

remark is very important when discussing scenarios in the 

case of two nodes and then we generalize to multiple 

nodes, since the waiting time is equivalent (slightly 

higher). 

3.3 Scenario for stations in repeat collisions and 

collision probability calculation 

Consider the case where the two nodes each wants to 

win the support but they collide. 

 

First pulling 

▪ Both nodes start the backoff procedure for 

pulling bc ϵ[0, Wmin], interval of integer values; with 

avec Wmin = 2. Unfortunately they pull the same bc 

value. The probability of pulling the same value of bc 

est 
1

3
  ;a value among {0, 1, 2} 

▪ After the bc interval they return again in collision.  

 

Second pulling 

▪ Both nodes start the backoff procedure for a second 

bc draw which now belongs to the set of values 
{0, 1, 2, 3, 4} . i.e bc ϵ[0, 2Wmin]. Unfortunately 

they pull the same bc value for the second time. The 

probability of drawing the same bc value is  
1

5
  ; a 

value among {0, 1, 2, 3, 4}.  

▪ After the bc  interval they collide again.  

Third pulling 

▪ bc is among one of the values {0, 1, 2, 3, 4, 5, 6, 7, 8} 

i.e bc ϵ[0, 22Wmin] and the probability of having 

the same value  of bc is 
1

9
 . 

▪ The probability to reach the third draw is simply:  

Pcol =
1

3
 x 

1

5
 x 

1

9
=  ∏ (

1

2k−1Wmin+1
)3

k=1  (3-8)    

 

- - - - - - - - - - - - - 

Nth pulling 

▪ The probability to get to the Nth draw   

(i.e bc ϵ[0, 2N−1Wmin]) is simply: 

 

 Pcol = ∏ (
1

2k−1Wmin+1
)N

k=1 = ∏ (
1

2k+1
)N

k=1  

                                     (3-9)    

3.4 𝑇𝑚𝑎𝑥 =  2𝑁−1𝑊𝑚𝑖𝑛 x Time Slots  and the 

Collision Probability  𝑃𝑐𝑜𝑙  Computation 

The probability to reach the 10th draw is very low 

(1.2 𝑥 10−17). This is why the maximum number of 

pullings allowed is 10 and the number of slots that can be 

lost without any network node is able to connect is 1024. 

The value 𝑇𝑚𝑎𝑥 =  2𝑁−1𝑊𝑚𝑖𝑛  time slots expresses the 

maximum acceptable time there without success because 

repetitions of collisions. However, we notice that every 

time 𝑇𝑚𝑎𝑥  increases the probability of collision is very 

low. 

The table 2 below summarizes the computation of 

𝑇𝑚𝑎𝑥 =  2𝑁−1𝑊𝑚𝑖𝑛 and the probability of collision 𝑃𝑐𝑜𝑙

  

The time slot is the time required to wait for the 

medium to be free from transmissions. This time slot is 

fixed to 51.2 µs for the Ethernet when the throughput used 

is 10 Mbps; however it could be replaced by any positive 

value. Slot time is only applicable to half-duplex 

transmissions, there is no time required to wait for full-

duplex transmissions. 10 Gbit/s is a full duplex 

technology, so slot time is not applicable. Table 1 

summarizes the time slots used for Ethernet. 

  

Table 1 Ethernet Time slots  

Speed Slot time Time Interval 
10 Mbit/s 512 bit times 51.2 µs 

100 Mbit/s 512 bit times 5.12 µs 

1 Gbit/s 4096 bit times 4.096 µs 

10 Gbit/s Not applicable Not applicable 

 

𝑇𝑚𝑎𝑥 =  2𝑁−1𝑊𝑚𝑖𝑛 is the maximum acceptable delay 

before successfully transmitting a new frame. This time is 

considered the latency imposed by the access technology. 

It goes without saying that this latency should be much 

less than the deadline for transmitting a new message. For 

powertrain and chassis domains, the deadline is less than 

5 𝑚𝑠, thus Ethernet at 10 𝑀𝐵𝑃𝑆 don’t match with theses 

constraints. 
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Table 2: 𝑇𝑚𝑎𝑥 =  2𝑁−1𝑊𝑚𝑖𝑛 and 𝑃𝑐𝑜𝑙  

N number 

of 

attempts 

(pulling) 

Number of time 

slots for 

connections 

attempts

:  2N−1Wmin 

Time (msec) 

taken for speed 

=10 MBPS 

Time (msec) 

taken for speed 

=100 MBPS 

Time (msec) 

taken for speed 

=1 GBPS 
∏ (

1

2k−1Wmin + 1
)

N

k=1

 

collision probability for 

N retries 

1 2 2x51.2 µs  0.1  
msec 

2x5.12 µs = 0.01 2x4.096 µs =  3.33 x 10−1 

2 4 4x51.2 µs  0.2 0.02 4x4.096 µs 

=0.016 msec 
6.66x 10−2 

3 8 0.4 0.04 0.032 7.407 x 10−3 

4 16 0.8 0.08 0.064 4.0 x 10−4 

5 32 1.6 0.16 0.131 1.3 x 10−5 

6 64 3.2 0.32 0.256 2.0 x 10−7 

7 128 6.4 0.64 0.524 1.5 x 10−9 

8 256 12.8 1.28 1.048 6.0 x 10−12 

9 512 25.6 2.56 2.096 1.1 x 10−14 

10 1024 1024x51.2 µs =
Tmax  51.2  

msec 

= 𝐓𝐦𝐚𝐱  𝟓. 𝟏𝟐 4.194 1.2 x 10−17 

3.5 Probability of Error, Probability of Success and 

Time between Two Consecutive Errors 

Computation 

The probability of error 𝑃𝑒𝑟𝑟 is equal to the 

product of the probability of waiting connection by the 

probability of loss of connections for N attempts. 

𝑃𝑒𝑟𝑟 = 𝑃𝑤𝑎𝑖𝑡
𝑀  𝑥 ∏ (

1

2𝑘−1𝑊𝑚𝑖𝑛+1
)𝑁

𝑘=1 ≈

      𝑃𝑤𝑎𝑖𝑡
2  𝑥 ∏ (

1

2𝑘−1𝑊𝑚𝑖𝑛+1
)𝑁

𝑘=1                              (3-10) 

=[1 −  𝑒
−𝜆

8𝑆𝑝

𝐵𝑤 (1 + 𝜆
8𝑆𝑝

𝐵𝑤
+

(𝜆
8𝑆𝑝

𝐵𝑤
)

2

2
)] 𝑥 ∏ (

1

2𝑘−1𝑊𝑚𝑖𝑛+1
)𝑁

𝑘=1                        (3-11) 

The probability of success transmission is the 

probability of having no errors (1 − 𝑃𝑒𝑟𝑟) but it is 

possible to have 𝑆 successfully transmissions before 

reaching 𝑇𝑚𝑎𝑥 .  

 

 The probability of success transmission is 

then 𝑃𝑠𝑢𝑐𝑐 = (1 − 𝑃𝑒𝑟𝑟)𝑆                                 (3-12) 

𝑆 represents the number of transmissions before an 

error can occur i.e. S can be converted to time by:  

𝑇𝑒𝑟𝑟 =
𝑆

𝜆
                                                           (3-13) 

 𝑆 can be calculated from the equation 3-12 thus the 

time of successful transmission (or elapsed time 

𝑇𝑒𝑟𝑟   before the occurrence of an error) is calculated as 

follows:     

 𝑇𝑒𝑟𝑟 =
1

𝜆
 𝑥 

𝐿𝑛(𝑃𝑠𝑢𝑐𝑐)

𝐿𝑛(1−𝑃𝑒𝑟𝑟)
   (3-14) 

with   

𝑃𝑒𝑟𝑟 = [1 −  𝑒
−𝜆

8𝑆𝑝

𝐵𝑤 (1 + 𝜆
8𝑆𝑝

𝐵𝑤
+

(𝜆
8𝑆𝑝

𝐵𝑤
)

2

2
)] 𝑥 ∏ (

1

2𝑘−1𝑊𝑚𝑖𝑛+1
)𝑁

𝑘=1                                       

(3-15) 

This equation is used to calculate the probability of 

error in terms of link parameters. The values 𝑇𝑒𝑟𝑟 =
𝑆

𝜆
 will 

be calculated if we impose a value of 𝑃𝑠𝑢𝑐𝑐 . In what 

follows we impose that  𝑃𝑠𝑢𝑐𝑐 = 99%.  

 The following table 3 gives an idea of the average time 

between two errors and dependent on communications 

parameters: Flow rate, packet size, transfer rate and the 

maximum acceptable delay (deadline) for the speed 100 

Mbps which is the minimum speed to be used in 

automotive and aeronautic domains. 

 

Table 3:  Computation of  𝑇𝑒𝑟𝑟 =
1

𝜆
 𝑥 

𝐿𝑛(𝑃𝑠𝑢𝑐𝑐)

𝐿𝑛(1−𝑃𝑒𝑟𝑟)
 

Bandwidth 

𝐵𝑤 

(Mbits/sec) 

Packet 

size 

𝑆𝑝 

(bytes) 

Transmission 

rate 

𝜆 

(packets/sec) 

𝑇𝑚𝑎𝑥 =
 2𝑁−1𝑊𝑚𝑖𝑛   

 

(msec) 

mean 

time 

between 

two 

errors 

(𝑃𝑠𝑢𝑐𝑐 =
99%) 

 

100 64 1000 3.0 1000000 

years 

100 128 1000 2.0 300000 

years 

100 128 1000 1.0 1140 

years 

100  128  1000  0.5  9 années 

100  128  5000  1.5  483 

years 

100  1024  1000  2.0  604 

years 

100  1024  1000  1.0  2 years 

100  1024  2000  1.5  40 years 

100  1024  3000  1.5  8 years 

The values of 𝑇𝑒𝑟𝑟  give a good idea on the occurrence 

of collisions resulting in errors. The mean time between 

two consecutive errors is relatively high. We can say for 

certain cases there are no collisions !!.  
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We conclude from this deep study that Ethernet when 

the speed is higher than 100 Mbps and FlexRay are both 

deterministic. When the speed of Ethernet reaches 10 

Gbps, we can apply Ethernet also for powertrain and 

chassis domains without fear of the access time which is 

due to the occurrence of collisions.  

IV. VALIDITY OF DDS TIMING ON TOP OF 

ETHERNET/FLEXRAY WHEN APPLIED FOR 

VEHICLE DOMAINS. 

In this section we will use the calculated worst case 

response time to evaluate if the DDS QoS real-time 

parameters can be met in the SAE benchmark 

implemented in SIMULINK by our team. We will focus 

our interest on two real-time policies, the Deadline QoS 

policy represented by the deadline parameter 𝐷, and the 

time based filter policy represented by the parameter 

minimum_seperation period,  𝑀𝑖𝑛_𝑆𝑒𝑝           . 

4.1 Worst Case Response Time  Evaluation of DDS 

QOS in SAE application using FlexRay Network 

Based on full scheduling model 

In our previous researches [8] we were interested in 

scheduling for the Data Distribution Service (DDS) 

architecture over CAN. In this paper, we focus our interest 

on the scheduling on the FlexRay and Ethernet. We have 

proposed a new scheduling method that handles all the 

delay sources. We have used the FPS (Fixed Priority 

Scheduling) approach, which is the most widely used 

approach in the computing world. In this case, each task 

has a fixed, static, priority, which is ECU pre-run-time. 

The runnable tasks are executed in the order determined 

by their priority, knowing that in real-time systems, the 

“priority” of a task is derived from its temporal 

requirements, not its importance to the correct functioning 

of the system or its integrity. The full model was 

conceived to be used in an industrial context. In this case, 

the response time equation is rather than: 

    Ri = Ci +  ∑ ⌈
Ri

Tj
⌉ Cjj∈hp(i)                           (4-1) 

Where hp(i) is the set of tasks with priority higher than 

task i, Ci is the worst case computation time of the task i 

and Tj is the minimum time between task releases, jobs or 

task period.The new equation is: 

Ri = CS1 + Ci + Bi + ∑ ⌈
Ri

Tj
⌉j∈hp(i) (CS1 + CS2 + Cj)                                        

(42) 

 

Where the new terms CS1 and  CS2 are the cost of 

switching to the task, and the cost of switching away from 

it. The term Bi is the cost of the task worst case blocking 

time.The cost of handling interrupts is as flowing: 

            ∑ ⌈
𝑅𝑖

𝑇𝑘
⌉𝑘∈𝛤𝑠

𝐼𝐻                                   (4-3) 

Where Γs is the set of sporadic tasks And IH is the cost of 

a single interrupt (which occurs at maximum priority 

level). 

There is also a cost per clock interrupt, a cost for moving 

one task from delay to run queue and a reduced cost of 

moving groups of tasks.  CTc is the cost of a single clock 

interrupt, Γp be the set of periodic tasks, and  CTs be the 

cost of moving one task the following equation can be 

derived 

 

𝑅𝑖 = 𝐶𝑆1 + 𝐶𝑖 + 𝐵𝑖 + ∑ ⌈
𝑅𝑖

𝑇𝑗
⌉𝑗𝜖ℎ𝑝(𝑖) (𝐶𝑆1 + 𝐶𝑆2 + 𝐶𝑗) +

∑ ⌈
𝑅𝑖

𝑇𝑘
⌉ 𝐼𝐻 +  ⌈

𝑅𝑖

𝑇𝑐𝑙𝑘
⌉ 𝐶𝑇𝑐 + ∑ ⌈

𝑅𝑖

𝑇𝑔
⌉ 𝐶𝑇𝑠𝑔𝜖𝛤𝑝𝑘𝜖𝛤𝑠

          (4-4) 

 

4.2 Full model applied on the static segment tasks 

In the static segment, all communication slots have 

identical, statically and configured duration and all frames 

have identical, statically and configured length. In order to 

schedule transmissions each node maintains a slot counter 

state variable vSlotCounter for channel A and a slot counter 

state variable vSlotCounter for channel B. Both slot 

counters are initialized with 1 at the start of each 

communication cycle and incremented at the end boundary 

of each slot. In the Implementations of the FlexRay bus, the 

periodic and safety-critical data is scheduled on the static 

time-triggered segment. In the static segment tasks are 

periodic, having the same priority per communication 

cycle. Considering these facts the equation (4-4) applied on 

the static segment context becomes: 

𝑅𝑖 = 𝐶𝑆1 + 𝐶𝑖 + 𝐵𝑖 + ∑ ⌈
𝑅𝑖

𝑇𝑘
⌉ 𝐼𝐻 + ⌈

𝑅𝑖

𝑇𝑐𝑙𝑘
⌉ 𝐶𝑇𝑐 +𝑘𝜖𝛤𝑠

∑ ⌈
𝑅𝑖

𝑇𝑔
⌉ 𝐶𝑇𝑠𝑔𝜖𝛤𝑝

                     (4-5) 

4.3 Full Model applied on the dynamic segment 

tasks 

In the dynamic segment, the duration of 

communication slots vary in order to accommodate frames 

of varying length. In order to schedule transmissions each 

node continues to maintain the two slot counters - one for 

each channel - throughout the dynamic segment. The slot 

counters for channel A and B are incremented 

simultaneously within the static segment. In the 

Implementations of the FlexRay bus, the dynamic segment 

is mainly used for maintenance and diagnosis data. Tasks 

are event triggered sporadic having different priority by bus 

communication cycle. Considering these facts, the 

equation applied on the static segment context becomes : 

𝑅𝑖 = 𝐶𝑆1 + 𝐶𝑖 + 𝐵𝑖 + ∑ ⌈
𝑅𝑖

𝑇𝑗
⌉𝑗𝜖ℎ𝑝(𝑖) (𝐶𝑆1 + 𝐶𝑆2 + 𝐶𝑗) +

∑ ⌈
𝑅𝑖

𝑇𝑘
⌉ 𝐼𝐻 +  ⌈

𝑅𝑖

𝑇𝑐𝑙𝑘
⌉ 𝐶𝑇𝑐 +𝑘𝜖𝛤𝑠

∑ ⌈
𝑅𝑖

𝑇𝑔
⌉ 𝐶𝑇𝑠𝑔𝜖𝛤𝑝

                      (4-6) 

Since 𝑅𝑖 appears in both parts of the equation, we must 

solve the problem by forming a recurrence relation: 

𝑊𝑖
𝑛+1 = 𝐶𝑆1 + 𝐶𝑖 + 𝐵𝑖 + ∑ ⌈

𝑊𝑖
𝑛

𝑇𝑗

⌉

𝑗𝜖ℎ𝑝(𝑖)

(𝐶𝑆1 + 𝐶𝑆2 + 𝐶𝑗)

+ ∑ ⌈
𝑊𝑖

𝑛

𝑇𝑘

⌉ 𝐼𝐻 + ⌈
𝑊𝑖

𝑛

𝑇𝑐𝑙𝑘

⌉ 𝐶𝑇𝑐

𝑘𝜖𝛤𝑠

+ ∑ ⌈
𝑊𝑖

𝑛

𝑇𝑔

⌉ 𝐶𝑇𝑠

𝑔𝜖𝛤𝑝

 

  (4-7) 

The set of values  constitutes a non-

decreasing monotone sequence. When we have equality, 

the solution of the equation (4-7) is found. The process for 

calculating the response time is described by the following 

algorithm. 

0 1 2, , ,..., n

i i i iw w w w
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4.4 Worst Case Response Time Pseudo-Algorithm 

Computation. 

For i in1..N loop 

n := 0 

loop 

Calculate  Ci  for  periodic tasks 

n := n + 1 

end loop 

end loop 

for i in 1..N  loop 

n := 0 

Win=Ci 

loop 

calculate  new  Win+1 

 

if   Win+1= Win  then Ri= Win 

exit    value found 

endif 

if   
1n

i iW T 
   then 

exit     value   not  found 

end if 

n := n + 1 

end  loop 

 

Applying the previous algorithm with Ethernet 

bus speed = 100 M bit/s, we obtain the following results 

presented in Table II.

 
TABLE 4:  SAE BENCHMARK  RESULTS 

Vehicular module Message ID 
Size 

(bytes) 
D (ms) 

Min separation 

(ms) 
T (ms) 

Task 

priority 

WCRT 

R(ms) 

Body 

Control 

module 

1 1 5 0.0153 50 1 0.0170 

3 1 5 0.0153 5 3 0.0339 

13 1 5 0.0153 10 13 0.0509     

17 1 10 0.0153 10 17 0.0678 

18 2 10 0.0153 10 18 0.0848 

31 4 100 0.0153 100 31 0.1017 

34 3 320 0.0153 320 34 0.1187 

Engine controller module 
 

4 2 5 0.0153 5 4 0.0171 

6 2 5 0.0153 5 6 0.0340 

19 6 10 0.0153 10 19 0.0510 

20 2 10 0.0153 10 20 0.0680 

21 3 20 0.0153 20 21 0.0849 

35 1 300 0.0153 300 35 0.1019 

Front control Unit 
 

2 2 5 0.0153 5 2 0.0161 

30 1 20 0.0153 50 30 0.0804 

32 1 100 0.0153 100 32 0.0965 

5 1 5 0.0153 5 5 0.0322 

33 1 100 0.0153 100 33 0.1125 

36 1 320 0.0153 320 36 0.1286 

7 1 5 0.0153 5 7 0.0483 

29 3 10 0.0153 10 29 0.0643 

Left Wheel Unit 

9 1 5 0.0153 5 9 0.0170 

23 2 10 0.0153 10 23 0.0510 

11 1 5 0.0153 5 11 0.0340 

25 2 10 0.0153 10 25 0.0679 

Righ Wheel Unit 

10 1 5 0.0153 5 10 0.0170 

24 2 10 0.0153 10 24 0.0510 

12 1 5 0.0153 5 12 0.0340 

26 2 10 0.0153 10 24 0.0679 

Central Control Unit 

27 2 10 0.0153 10 27 0.0171 

22 2 10 0.0153 10 22 0.0341 

14 4 5 0.0153 5 14 0.0510 

8 1 5 0.0153 5 8 0.0680 

15 4 5 0.0153 5 15 0.0849 

16 4 5 0.0153 5 16 0.1019 

28 5 10 0.0153 10 28 0.1188 
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We have noticed that the deadline has been met and 

the equation below is verified.  

T D R   
         For Ethernet, we can assume that the DDS Deadline 

QoS Policy always be reached. 

         As for the Time Based Filter we have approximated 

the minimum_separation parameter to be the reception 

delay which is for Ethernet case the transmission delay C. 

Same as the DDS Deadline QoS Policy, we can assume 

that the Time Based Filter QoS Policy is verified. 

  

_R Min Sep
 

 

V. COMPARATIVE STUDY 

 

To make the comparison between FlexRay and 

Ethernet, we propose to base our evaluation on the WCRT. 

 The goal is to determine which of the two buses 

(Ethernet or FlexRay) is most suitable for real-time, and to 

know the impact of bus speed on performance of the 

system. 

Figures 2.3 and 4 present the comparison between the 

WCRT (20 Mhz) and best case response  time (BCRT, 5 

MHz) of the bus flexray [12] and the WCRT of bus 

Ethernet. This comparison is made for 3 modules: front 

Control Module, body central control Module and central 

control Module. 

  The responses obtained by the same Ethernet 

calculate scheduling.  

 

 

Figure 4: Comparison between BCRT , WRCT for 

Flexray and WCRT for Ethernet  for front Control 

Module 

 

Figure 5: Comparison between BCRT , WRCT for 

Flexray and WCRT for Ethernet  for body control 

Module 

 

Figure 6: Comparison between BCRT , WRCT for 

Flexray and WCRT for Ethernet  for central control  

Module 

   We note that in the case of central control module and 

front Control Module, the 100Mbit/s Ethernet gives better 

performance than the FlexRay because the bus speed is 

much most significant and allows a scheduling with this 

technique to route messages more quickly. 

  In the case of body control Module, we note that the 

temporal performances are penalized by the access 

technique, which handles messages according to their 

priority. However, it still remains very close and exceed 

the temporal performances of FlexRay. 

 

VI. CONCLUSION 

In this paper, we have proposed to use DDS on top of 

the real-time network Ethernet to enhance the timing QoS. 

To do so, we have tested using vehicular applications 

based on the SAE benchmark. The tests have proven that 

using Ethernet combined with the DDS middleware is 

promising alternative for FlexRay or CAN. We conclude 

that for body and multimedia domains the Ethernet at 100 

Mbps can be applied to these domains without any 

modification. In a further paper we demonstrate that the 

minimum Ethernet throughputs for powertrain and chassis 

domains is one Gbps and higher, however when the 

throughput exceeds 10 Gpbs the Ethernet becomes strictly 

deterministic without any modification (ie use of virtual 

links, etc.) 
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