
Performance Evaluation of Ethernet for Supporting the Vehicle

Body and the Multimedia Domains ant its comparison to

FlexRay Bus

Azer Hasnaoui, Ikbel Mejri, Manel Takrouni, Tahar Ezzeddine, Salem HASNAOUI

University of Tunis El-Manar

National Engineering School of Tunis - ENIT

Communication Systems Research Laboratory SYSCOM - LR-99-ES21, Tunis-Belvédère, BP 1002, Tunisia
Hasnaoui.Azer@gmail.com, ikbel.mejri@gmail.com, manel_takrouni@yahoo.fr, Tahar.Ezzeddine@enit.rnu.tn,

Salem.Hasnaoui@enit.rnu.tn

Abstract— we designed a SIMULINK vehicle blockset that corresponds to the Society of Automotive Engineers (SAE)

benchmark as a first level of CBSE architecture. We introduced a second level of abstraction where we connect each module to a

Simulink DDS blockset to take advantage of the QoS parameters, events generated in response to faults or exceeding of fixed

parameters and calls to callback functions, managed within the DDS middleware itself without involving the user tasks realized by

the modules in the application level.

The powertrain and chassis modules are connected to FlexRay bus. We chose to use the FlexRay network for its fault-tolerant

dual channel bus (physically independent cables), where a node can be connected to one or both of the busses. A node connected to

both busses can send the same or different messages on the two busses. Sending the same message on both busses increases the fault-

tolerance. However FlexRay does not meet the bandwidth and scalability requirements of next-generation advanced driver

Assistance systems, V2X and RadCom communications. Giga-Ethernet and Wireless High-speed communications are the emerging

technologies in the automotive domain, specifically in the body and multimedia domains. In this paper we are interested to

computations related to Ethernet and we demonstrated that the Body and Multimedia domains can be connected to it with a

minimum latency budget.

Keywords—GBE; FlexRay; V2V; V2I; QoS; SAE Benchmark; Vehicle Blockset; DDS

I. INTRODUCTION

he original SAE benchmark is limited to the

automotive kernel model. We implemented a

Simulink Blockset corresponding to the different blocks and

integrated the original and the extended models studied by

Utayba [1] and by our team [2]. The authors added to the

original benchmark a number of nodes and messages to better

represent the complexity of today’s vehicles and to model

some options responsible for improving vehicle safety and

reliability.

The most of the vehicle nodes are until now connected by

the CAN bus. We eliminate completely from our studies this

bus and we replaced it by the FlexRay for the powertrain and

chassis domains and by the Ethernet for the body and

multimedia domains.

Future vehicles using V2V (Vehicle-to-Vehicle) and V2I

(Vehicle-to-Infrastrucre) technologies will move one step

closer to reality by using MIMO radars in order to enable a

variety of applications for safety and traffic efficiency. By

integrating V2I technology, into all vehicles having V2V,

systems might even reduce all target vehicle crashes up. V2I

technology would essentially permit a car to request

information to access to the best possible road routes to a

particular destination [3]. Dangerous intersections would also

be made safer through the use of V2I. Infrastructures would

be able to warn vehicles to slow down or communicate the

status of a traffic light from a given distance.

It is expected that car sensors will generate up to 1 TB of

data in a single trip, so, FlexRay does not meet the bandwidth

and scalability requirements of next-generation advanced

driver assistance systems. Giga-bit Ethernet and high-speed

wireless communications will play the leading role in the near

future. In this paper we will done some computations to

demonstrate that Ethernet (GBE) is a serious candidate for

vehicle communications. We compare its performances to

FlexRay bus for some vehicle modules. We take into account

the DDS parameters and we proved that using Ethernet

combined with the DDS middleware is a promising

alternative for FlexRay or CAN.

 The paper is organized in four sections. In the second

section we recall briefly our implementation of SAE vehicle

and DDS blocksets.

In the third section we done some computations related to

Ethernet, specifically the time before the occurrence of an

error or a collision. We showed that this time is enormously

large comparatively to the car's life.

In the fourth section, we calculated the worst-case

response time based on the full scheduling model, and we

introduced it into the DDS QoS to further prove that SAE

benchmark can be best insured by DDS and the FlexRay

network in powertrain and chassis domains and DDS and

Ethernet in the other domains. We proved that the DDS

related timing QoS are guaranteed; especially the deadline

and the minimum separation, taking account of latencies

induced by the FlexRay vs Ethernet buses.

II. Design and Implementation of a Vehicle and DDS

Simulink Blocksets

2.1 Vehicle SIMULINK Blockset

In order to test if the exchanged messages are valid as

described by the standard without regarding the targets where

the modules will be implemented, we applied the Model-

T

Azer Hasnaoui et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 56 Volume 5, 2020

mailto:Hasnaoui.Azer@gmail.com
mailto:ikbel.mejri@gmail.com
mailto:manel_takrouni@yahoo.fr
mailto:Tahar.Ezzeddine@enit.rnu.tn
mailto:Salem.Hasnaoui@enit.rnu.tn

Based Design (MBD) to develop the vehicle blockset. The

resulting architecture is composed of 15 nodes connected by

the FlexRay/Ethernet buses. We implemented the Suspension

model, the Wheels model, the Active-Frame-Steering model

and Electronic-Brake-Control model. The Suspension model

consists of three sub-blocks: Passive-Suspension block,

Active-Suspension block and Active-Suspension-Control-

Force block. Whereas, the wheels model gathers four sub-

blocks: the Front-Left-Wheel, Front-Right-Wheel, Rear-

Left-Wheel, and Rear-Right-Wheel. The figure 1 presents the

blocksets of the modules cited above.

Figure 2: Developed Vehicle SIMULINK Library

2.2 DDS Middleware SIMULINK Blockset

The most popular classes of middleware are: RPC, RMI,

CORBA and DCOM. They offer a remote method invocation

and are familiar with the OO programming model. They use

synchronous invocations, have limited QoS and have

cascading points of failure, typically built on top of TCP.
They are best-suited to smaller and closely-coupled systems.

As it is known, the DDS (Data Distribution Service)

became de-facto the standard in embedded systems that

address the challenges in data-centric real-time applications.

The DDS is an open standard managed by the Object

Management Group (OMG) and representing the first

general-purpose middleware standard that addresses

challenging real-time requirements. It has a large number of

QoS configuration parameters that give developers complete

control of each object in the system and maintainability of its

state. Its Data-Centric Publish-subscribe layer (DCPS)

consists of the following Entities: domain-Participant,

DataWriter, DataReader, Publsiher, Subscriber and topic.

The objective is to transmit data directly from a publisher to

all its subscribers with no intermediate servers. This allows

the application to communicate by publishing the data it

produces and to have access to the type of data it consumes.

We argue our choice of the DDS middleware to interface

the low-level infrastructure and to realize a SIMULINK

blockset for it by the following reasons:

• No single point of failure: DDS requires any “special”

nodes, so it can be implemented with no single-points-of-

failure due to the redundancy of publishers and

subscribers.

• Self-healing communication: If the network is severed

into two halves, each half will continue to work with the

available nodes. If the network is repaired, the network,

by the built-in discovering entities, will quickly

rediscover the new nodes, and once again function as a

whole.

• Support for custom fault-tolerance: Implementations are

free to add further fault tolerance as well like FFT [2]. The

support of multiple network interfaces like channel-A and

Channel-B in a FlexRay controller and redundant Data

Writers and Data Readers on every node leads to

completely separate networks. Even if one network fails

completely, the system will continue operation.

The figure 2 depicts the DDS SIMULINK library

blocks. The topic block is for assembling some output

signals within a structure where we can attribute an

unique key for this topic. The DataWriter_write() or the

DataRead_Read() or the DataRead_Take() operation

use the instance of “Data” to send or to receive the

actual data, in occurrence into or from queues.

Azer Hasnaoui et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 57 Volume 5, 2020

Figure 3: DDS blockset applied to Front Left Wheel Module (chassis domains)

III. ANALYSIS OF REAL-TIME CAPABILITIES OF THE

ETHERNET FOR SPEEDS: 10MBPS, 100MBPS,

1GBPS AND 10GBPS

3.1 Algorithm for resolving the access contentions:

the Ethernet case

When a collision occurred, the node that detected the

collision draws randomly a number of time slots that it

must decline before retransmitting the same frame. This

initial value varies between 0 and 2 (0, 1 or 2 time slots). A

time slot for the Ethernet is set to 51.2 microseconds when

the throughput used is 10 Mbps. The slot value is reduced

to 5.12 microseconds when the throughput is 100 Mbps.

let 𝑊𝑚𝑖𝑛 = 2. This value is called backoff, noted bc

𝑏𝑐 𝜖[0, 𝑊𝑚𝑖𝑛]. If the collision happens again, the node in

question doubles the drawing interval. The second time

 𝜖[0, 2𝑊𝑚𝑖𝑛] . The 3rd draw 𝑏𝑐 𝜖[0, 22𝑊𝑚𝑖𝑛]and so on.

For the nth draw bc ε draw 𝑏𝑐 𝜖[0, 2𝑛−1𝑊𝑚𝑖𝑛].
The "backoff" algorithm stops only when the channel is

acquired. As CSMA/CA for WLAN networks, the

sampling interval does not increase indefinitely but is

limited to ten successive draws before concluding the non-

possibility to use of the medium. The maximum interval is

[0, 29𝑊𝑚𝑖𝑛] or [0, 1024]. The sampling interval

increases exponentially.

For real-time systems that hard determinism is

required, the access time should be very limited to ensure a

very small latency before the deadline of the sending of

periodic messages.

Latency should always be less than the transition time

of any system from one state to another state. As far as the

evolution of the system is faster as far as the latency should

be limited for this reason, the real-time critical systems are

generally limited to physical, MAC and LLC layers

Analysis of the possibilities of Ethernet determinism to

is based on the calculation of the following parameters:

• The calculation of the probability of collisions. When this

probability is higher, the backoff grows exponentially and

the latency is greater.

• The penalty caused by the presence of collisions on the

whole system, expressed in terms of the probability of

failure for a specified period.

For the calculation of probabilities mentioned above we

will make the following assumptions:

1. The packets exchanged have fixed size and short

length.

2. Each subnet (Powertrain, Chassis, Body and

Multimedia) is lightly loaded. The number of

messages sent per time unit is not high.

The packet arrival law follows the Poisson distribution;

i.e. the arrival process is Markovian.

3.2 Calculating the waiting probability of the two

nodes and its generalization to M nodes

We adopt for the following the following notations:

𝑆𝑝 ∶ Packet size in bytes (or 8𝑆𝑝 in bits);

𝜆 ∶ The arrival rate in packets per second

(packets/sec) ;

𝐵𝑤 ∶ The bandwidth in bits per second (link speed);

𝑡𝑝 ∶ The mean propagation time in the network (in sec);

𝑇𝑚𝑎𝑥 ∶ The maximum acceptable delay (in sec);

𝑁 ∶ The number of collisions that may occur

during 𝑇𝑚𝑎𝑥;

𝑃𝑒𝑟𝑟: The error probability for N produced collisions;

𝑃𝑆𝑢𝑐𝑐 ∶ The likelihood of sending packets and whose

delay does not exceed 𝑇𝑚𝑎𝑥;

𝑀 ∶ The number of packets sent before the occurrence

of an error;

𝑇𝑒𝑟𝑟 ∶ The time elapsed before to produce an error.

𝑃𝑐𝑜𝑙 : The collision probability

The arrival law according to the Poisson process is defined

by:

 𝑝𝑛(𝑡) = 𝑒−𝜆𝑡 (𝜆𝑡)𝑛

𝑛!
 (3-1);

This function is the probability density function of the

Poisson process. The probability distribution function of

the Poisson distribution is defined as:

 𝐹𝑥(𝑥) = 𝑃(𝑋 > 𝑥) = ∫ 𝑝𝑛(𝑡)𝑑𝑡
∞

𝑥
 (3-2),

Azer Hasnaoui et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 58 Volume 5, 2020

(i.e. the probability that the random variable X exceeds the

value x)

In the discrete case where t is a finite time interval denoted

T, divided into time slots ∆𝑡, the probability distribution

function becomes:

𝐹𝑥(𝑥) = 𝑒−𝑓 ∑
𝑓

𝑘!
 𝑢(𝑘 − 𝑥)∞

𝑘=0 (3-3),

Where 𝑢(𝑘 − 𝑥) is the unitary function and

 𝑓 = 𝜆𝑇 = 𝜆
8𝑆𝑝

𝐵𝑤
 (3-4);

8𝑆𝑝

𝐵𝑤
 represents the size of information in bits divided by

the speed in bits/sec (~ Bandwidth).

If the number of nodes in a subnet is lower than or

equal to 2; there are no collisions. Both nodes can develop

agreements to not send at the same time just by managing

they protocol FSMs (Finite State machine). However,

when more nodes exist in the network, this technique

cannot be applied and collisions may occur.

The probability that three nodes have their packets in

output queues according to the principle of CSMA/CD,

outside the contention for access to the medium, is that one

node transmits and the other two nodes wait to win the

media access and then transmit.

The two nodes waiting probability is represented by:

𝑃𝑤𝑎𝑖𝑡
2 = 1 − 𝐹𝑥(2) = 1 − 𝑒−𝑓 ∑

𝑓

𝑘!
 𝑢(𝑘 − 𝑥)2

𝑘=0

 (3-5)

 = 1 − 𝑒−𝑓(1 + 𝑓 +
𝑓2

2
) (3-6)

The probability that M nodes wait to transmit becomes:

𝑃𝑤𝑎𝑖𝑡
𝑀 = 1 − 𝑒−𝑓(1 + 𝑓 +

𝑓2

2
+ ⋯ +

𝑓𝑀

𝑀!
) (3-7)

We note that 𝑃𝑤𝑎𝑖𝑡
𝑀 is slightly greater than 𝑃𝑤𝑎𝑖𝑡

2 . This

remark is very important when discussing scenarios in the

case of two nodes and then we generalize to multiple

nodes, since the waiting time is equivalent (slightly

higher).

3.3 Scenario for stations in repeat collisions and

collision probability calculation

Consider the case where the two nodes each wants to

win the support but they collide.

First pulling

▪ Both nodes start the backoff procedure for

pulling bc ϵ[0, Wmin], interval of integer values; with

avec Wmin = 2. Unfortunately they pull the same bc

value. The probability of pulling the same value of bc

est
1

3
 ;a value among {0, 1, 2}

▪ After the bc interval they return again in collision.

Second pulling

▪ Both nodes start the backoff procedure for a second

bc draw which now belongs to the set of values
{0, 1, 2, 3, 4} . i.e bc ϵ[0, 2Wmin]. Unfortunately

they pull the same bc value for the second time. The

probability of drawing the same bc value is
1

5
 ; a

value among {0, 1, 2, 3, 4}.

▪ After the bc interval they collide again.

Third pulling

▪ bc is among one of the values {0, 1, 2, 3, 4, 5, 6, 7, 8}

i.e bc ϵ[0, 22Wmin] and the probability of having

the same value of bc is
1

9
 .

▪ The probability to reach the third draw is simply:

Pcol =
1

3
 x

1

5
 x

1

9
= ∏ (

1

2k−1Wmin+1
)3

k=1 (3-8)

- - - - - - - - - - - - -

Nth pulling

▪ The probability to get to the Nth draw

(i.e bc ϵ[0, 2N−1Wmin]) is simply:

 Pcol = ∏ (
1

2k−1Wmin+1
)N

k=1 = ∏ (
1

2k+1
)N

k=1

 (3-9)

3.4 𝑇𝑚𝑎𝑥 = 2𝑁−1𝑊𝑚𝑖𝑛 x Time Slots and the

Collision Probability 𝑃𝑐𝑜𝑙 Computation

The probability to reach the 10th draw is very low

(1.2 𝑥 10−17). This is why the maximum number of

pullings allowed is 10 and the number of slots that can be

lost without any network node is able to connect is 1024.

The value 𝑇𝑚𝑎𝑥 = 2𝑁−1𝑊𝑚𝑖𝑛 time slots expresses the

maximum acceptable time there without success because

repetitions of collisions. However, we notice that every

time 𝑇𝑚𝑎𝑥 increases the probability of collision is very

low.

The table 2 below summarizes the computation of

𝑇𝑚𝑎𝑥 = 2𝑁−1𝑊𝑚𝑖𝑛 and the probability of collision 𝑃𝑐𝑜𝑙

The time slot is the time required to wait for the

medium to be free from transmissions. This time slot is

fixed to 51.2 µs for the Ethernet when the throughput used

is 10 Mbps; however it could be replaced by any positive

value. Slot time is only applicable to half-duplex

transmissions, there is no time required to wait for full-

duplex transmissions. 10 Gbit/s is a full duplex

technology, so slot time is not applicable. Table 1

summarizes the time slots used for Ethernet.

Table 1 Ethernet Time slots

Speed Slot time Time Interval
10 Mbit/s 512 bit times 51.2 µs

100 Mbit/s 512 bit times 5.12 µs

1 Gbit/s 4096 bit times 4.096 µs

10 Gbit/s Not applicable Not applicable

𝑇𝑚𝑎𝑥 = 2𝑁−1𝑊𝑚𝑖𝑛 is the maximum acceptable delay

before successfully transmitting a new frame. This time is

considered the latency imposed by the access technology.

It goes without saying that this latency should be much

less than the deadline for transmitting a new message. For

powertrain and chassis domains, the deadline is less than

5 𝑚𝑠, thus Ethernet at 10 𝑀𝐵𝑃𝑆 don’t match with theses

constraints.

Azer Hasnaoui et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 59 Volume 5, 2020

Table 2: 𝑇𝑚𝑎𝑥 = 2𝑁−1𝑊𝑚𝑖𝑛 and 𝑃𝑐𝑜𝑙

N number

of

attempts

(pulling)

Number of time

slots for

connections

attempts

: 2N−1Wmin

Time (msec)

taken for speed

=10 MBPS

Time (msec)

taken for speed

=100 MBPS

Time (msec)

taken for speed

=1 GBPS
∏ (

1

2k−1Wmin + 1
)

N

k=1

collision probability for

N retries

1 2 2x51.2 µs  0.1
msec

2x5.12 µs = 0.01 2x4.096 µs = 3.33 x 10−1

2 4 4x51.2 µs  0.2 0.02 4x4.096 µs

=0.016 msec
6.66x 10−2

3 8 0.4 0.04 0.032 7.407 x 10−3

4 16 0.8 0.08 0.064 4.0 x 10−4

5 32 1.6 0.16 0.131 1.3 x 10−5

6 64 3.2 0.32 0.256 2.0 x 10−7

7 128 6.4 0.64 0.524 1.5 x 10−9

8 256 12.8 1.28 1.048 6.0 x 10−12

9 512 25.6 2.56 2.096 1.1 x 10−14

10 1024 1024x51.2 µs =
Tmax 51.2

msec

= 𝐓𝐦𝐚𝐱 𝟓. 𝟏𝟐 4.194 1.2 x 10−17

3.5 Probability of Error, Probability of Success and

Time between Two Consecutive Errors

Computation

The probability of error 𝑃𝑒𝑟𝑟 is equal to the

product of the probability of waiting connection by the

probability of loss of connections for N attempts.

𝑃𝑒𝑟𝑟 = 𝑃𝑤𝑎𝑖𝑡
𝑀 𝑥 ∏ (

1

2𝑘−1𝑊𝑚𝑖𝑛+1
)𝑁

𝑘=1 ≈

 𝑃𝑤𝑎𝑖𝑡
2 𝑥 ∏ (

1

2𝑘−1𝑊𝑚𝑖𝑛+1
)𝑁

𝑘=1 (3-10)

=[1 − 𝑒
−𝜆

8𝑆𝑝

𝐵𝑤 (1 + 𝜆
8𝑆𝑝

𝐵𝑤
+

(𝜆
8𝑆𝑝

𝐵𝑤
)

2

2
)] 𝑥 ∏ (

1

2𝑘−1𝑊𝑚𝑖𝑛+1
)𝑁

𝑘=1 (3-11)

The probability of success transmission is the

probability of having no errors (1 − 𝑃𝑒𝑟𝑟) but it is

possible to have 𝑆 successfully transmissions before

reaching 𝑇𝑚𝑎𝑥 .

 The probability of success transmission is

then 𝑃𝑠𝑢𝑐𝑐 = (1 − 𝑃𝑒𝑟𝑟)𝑆 (3-12)

𝑆 represents the number of transmissions before an

error can occur i.e. S can be converted to time by:

𝑇𝑒𝑟𝑟 =
𝑆

𝜆
 (3-13)

 𝑆 can be calculated from the equation 3-12 thus the

time of successful transmission (or elapsed time

𝑇𝑒𝑟𝑟 before the occurrence of an error) is calculated as

follows:

 𝑇𝑒𝑟𝑟 =
1

𝜆
 𝑥

𝐿𝑛(𝑃𝑠𝑢𝑐𝑐)

𝐿𝑛(1−𝑃𝑒𝑟𝑟)
 (3-14)

with

𝑃𝑒𝑟𝑟 = [1 − 𝑒
−𝜆

8𝑆𝑝

𝐵𝑤 (1 + 𝜆
8𝑆𝑝

𝐵𝑤
+

(𝜆
8𝑆𝑝

𝐵𝑤
)

2

2
)] 𝑥 ∏ (

1

2𝑘−1𝑊𝑚𝑖𝑛+1
)𝑁

𝑘=1

(3-15)

This equation is used to calculate the probability of

error in terms of link parameters. The values 𝑇𝑒𝑟𝑟 =
𝑆

𝜆
 will

be calculated if we impose a value of 𝑃𝑠𝑢𝑐𝑐 . In what

follows we impose that 𝑃𝑠𝑢𝑐𝑐 = 99%.

 The following table 3 gives an idea of the average time

between two errors and dependent on communications

parameters: Flow rate, packet size, transfer rate and the

maximum acceptable delay (deadline) for the speed 100

Mbps which is the minimum speed to be used in

automotive and aeronautic domains.

Table 3: Computation of 𝑇𝑒𝑟𝑟 =
1

𝜆
 𝑥

𝐿𝑛(𝑃𝑠𝑢𝑐𝑐)

𝐿𝑛(1−𝑃𝑒𝑟𝑟)

Bandwidth

𝐵𝑤

(Mbits/sec)

Packet

size

𝑆𝑝

(bytes)

Transmission

rate

𝜆

(packets/sec)

𝑇𝑚𝑎𝑥 =
 2𝑁−1𝑊𝑚𝑖𝑛

(msec)

mean

time

between

two

errors

(𝑃𝑠𝑢𝑐𝑐 =
99%)

100 64 1000 3.0 1000000

years

100 128 1000 2.0 300000

years

100 128 1000 1.0 1140

years

100 128 1000 0.5 9 années

100 128 5000 1.5 483

years

100 1024 1000 2.0 604

years

100 1024 1000 1.0 2 years

100 1024 2000 1.5 40 years

100 1024 3000 1.5 8 years

The values of 𝑇𝑒𝑟𝑟 give a good idea on the occurrence

of collisions resulting in errors. The mean time between

two consecutive errors is relatively high. We can say for

certain cases there are no collisions !!.

Azer Hasnaoui et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 60 Volume 5, 2020

We conclude from this deep study that Ethernet when

the speed is higher than 100 Mbps and FlexRay are both

deterministic. When the speed of Ethernet reaches 10

Gbps, we can apply Ethernet also for powertrain and

chassis domains without fear of the access time which is

due to the occurrence of collisions.

IV. VALIDITY OF DDS TIMING ON TOP OF

ETHERNET/FLEXRAY WHEN APPLIED FOR

VEHICLE DOMAINS.

In this section we will use the calculated worst case

response time to evaluate if the DDS QoS real-time

parameters can be met in the SAE benchmark

implemented in SIMULINK by our team. We will focus

our interest on two real-time policies, the Deadline QoS

policy represented by the deadline parameter 𝐷, and the

time based filter policy represented by the parameter

minimum_seperation period, 𝑀𝑖𝑛_𝑆𝑒𝑝 .

4.1 Worst Case Response Time Evaluation of DDS

QOS in SAE application using FlexRay Network

Based on full scheduling model

In our previous researches [8] we were interested in

scheduling for the Data Distribution Service (DDS)

architecture over CAN. In this paper, we focus our interest

on the scheduling on the FlexRay and Ethernet. We have

proposed a new scheduling method that handles all the

delay sources. We have used the FPS (Fixed Priority

Scheduling) approach, which is the most widely used

approach in the computing world. In this case, each task

has a fixed, static, priority, which is ECU pre-run-time.

The runnable tasks are executed in the order determined

by their priority, knowing that in real-time systems, the

“priority” of a task is derived from its temporal

requirements, not its importance to the correct functioning

of the system or its integrity. The full model was

conceived to be used in an industrial context. In this case,

the response time equation is rather than:

 Ri = Ci + ∑ ⌈
Ri

Tj
⌉ Cjj∈hp(i) (4-1)

Where hp(i) is the set of tasks with priority higher than

task i, Ci is the worst case computation time of the task i

and Tj is the minimum time between task releases, jobs or

task period.The new equation is:

Ri = CS1 + Ci + Bi + ∑ ⌈
Ri

Tj
⌉j∈hp(i) (CS1 + CS2 + Cj)

(42)

Where the new terms CS1 and CS2 are the cost of

switching to the task, and the cost of switching away from

it. The term Bi is the cost of the task worst case blocking

time.The cost of handling interrupts is as flowing:

 ∑ ⌈
𝑅𝑖

𝑇𝑘
⌉𝑘∈𝛤𝑠

𝐼𝐻 (4-3)

Where Γs is the set of sporadic tasks And IH is the cost of

a single interrupt (which occurs at maximum priority

level).

There is also a cost per clock interrupt, a cost for moving

one task from delay to run queue and a reduced cost of

moving groups of tasks. CTc is the cost of a single clock

interrupt, Γp be the set of periodic tasks, and CTs be the

cost of moving one task the following equation can be

derived

𝑅𝑖 = 𝐶𝑆1 + 𝐶𝑖 + 𝐵𝑖 + ∑ ⌈
𝑅𝑖

𝑇𝑗
⌉𝑗𝜖ℎ𝑝(𝑖) (𝐶𝑆1 + 𝐶𝑆2 + 𝐶𝑗) +

∑ ⌈
𝑅𝑖

𝑇𝑘
⌉ 𝐼𝐻 + ⌈

𝑅𝑖

𝑇𝑐𝑙𝑘
⌉ 𝐶𝑇𝑐 + ∑ ⌈

𝑅𝑖

𝑇𝑔
⌉ 𝐶𝑇𝑠𝑔𝜖𝛤𝑝𝑘𝜖𝛤𝑠

 (4-4)

4.2 Full model applied on the static segment tasks

In the static segment, all communication slots have

identical, statically and configured duration and all frames

have identical, statically and configured length. In order to

schedule transmissions each node maintains a slot counter

state variable vSlotCounter for channel A and a slot counter

state variable vSlotCounter for channel B. Both slot

counters are initialized with 1 at the start of each

communication cycle and incremented at the end boundary

of each slot. In the Implementations of the FlexRay bus, the

periodic and safety-critical data is scheduled on the static

time-triggered segment. In the static segment tasks are

periodic, having the same priority per communication

cycle. Considering these facts the equation (4-4) applied on

the static segment context becomes:

𝑅𝑖 = 𝐶𝑆1 + 𝐶𝑖 + 𝐵𝑖 + ∑ ⌈
𝑅𝑖

𝑇𝑘
⌉ 𝐼𝐻 + ⌈

𝑅𝑖

𝑇𝑐𝑙𝑘
⌉ 𝐶𝑇𝑐 +𝑘𝜖𝛤𝑠

∑ ⌈
𝑅𝑖

𝑇𝑔
⌉ 𝐶𝑇𝑠𝑔𝜖𝛤𝑝

 (4-5)

4.3 Full Model applied on the dynamic segment

tasks

In the dynamic segment, the duration of

communication slots vary in order to accommodate frames

of varying length. In order to schedule transmissions each

node continues to maintain the two slot counters - one for

each channel - throughout the dynamic segment. The slot

counters for channel A and B are incremented

simultaneously within the static segment. In the

Implementations of the FlexRay bus, the dynamic segment

is mainly used for maintenance and diagnosis data. Tasks

are event triggered sporadic having different priority by bus

communication cycle. Considering these facts, the

equation applied on the static segment context becomes :

𝑅𝑖 = 𝐶𝑆1 + 𝐶𝑖 + 𝐵𝑖 + ∑ ⌈
𝑅𝑖

𝑇𝑗
⌉𝑗𝜖ℎ𝑝(𝑖) (𝐶𝑆1 + 𝐶𝑆2 + 𝐶𝑗) +

∑ ⌈
𝑅𝑖

𝑇𝑘
⌉ 𝐼𝐻 + ⌈

𝑅𝑖

𝑇𝑐𝑙𝑘
⌉ 𝐶𝑇𝑐 +𝑘𝜖𝛤𝑠

∑ ⌈
𝑅𝑖

𝑇𝑔
⌉ 𝐶𝑇𝑠𝑔𝜖𝛤𝑝

 (4-6)

Since 𝑅𝑖 appears in both parts of the equation, we must

solve the problem by forming a recurrence relation:

𝑊𝑖
𝑛+1 = 𝐶𝑆1 + 𝐶𝑖 + 𝐵𝑖 + ∑ ⌈

𝑊𝑖
𝑛

𝑇𝑗

⌉

𝑗𝜖ℎ𝑝(𝑖)

(𝐶𝑆1 + 𝐶𝑆2 + 𝐶𝑗)

+ ∑ ⌈
𝑊𝑖

𝑛

𝑇𝑘

⌉ 𝐼𝐻 + ⌈
𝑊𝑖

𝑛

𝑇𝑐𝑙𝑘

⌉ 𝐶𝑇𝑐

𝑘𝜖𝛤𝑠

+ ∑ ⌈
𝑊𝑖

𝑛

𝑇𝑔

⌉ 𝐶𝑇𝑠

𝑔𝜖𝛤𝑝

 (4-7)

The set of values constitutes a non-

decreasing monotone sequence. When we have equality,

the solution of the equation (4-7) is found. The process for

calculating the response time is described by the following

algorithm.

0 1 2, , ,..., n

i i i iw w w w

Azer Hasnaoui et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 61 Volume 5, 2020

4.4 Worst Case Response Time Pseudo-Algorithm

Computation.

For i in1..N loop

n := 0

loop

Calculate Ci for periodic tasks

n := n + 1

end loop

end loop

for i in 1..N loop

n := 0

Win=Ci

loop

calculate new Win+1

if Win+1= Win then Ri= Win

exit value found

endif

if
1n

i iW T 
 then

exit value not found

end if

n := n + 1

end loop

Applying the previous algorithm with Ethernet

bus speed = 100 M bit/s, we obtain the following results

presented in Table II.

TABLE 4: SAE BENCHMARK RESULTS

Vehicular module Message ID
Size

(bytes)
D (ms)

Min separation

(ms)
T (ms)

Task

priority

WCRT

R(ms)

Body

Control

module

1 1 5 0.0153 50 1 0.0170

3 1 5 0.0153 5 3 0.0339

13 1 5 0.0153 10 13 0.0509

17 1 10 0.0153 10 17 0.0678

18 2 10 0.0153 10 18 0.0848

31 4 100 0.0153 100 31 0.1017

34 3 320 0.0153 320 34 0.1187

Engine controller module

4 2 5 0.0153 5 4 0.0171

6 2 5 0.0153 5 6 0.0340

19 6 10 0.0153 10 19 0.0510

20 2 10 0.0153 10 20 0.0680

21 3 20 0.0153 20 21 0.0849

35 1 300 0.0153 300 35 0.1019

Front control Unit

2 2 5 0.0153 5 2 0.0161

30 1 20 0.0153 50 30 0.0804

32 1 100 0.0153 100 32 0.0965

5 1 5 0.0153 5 5 0.0322

33 1 100 0.0153 100 33 0.1125

36 1 320 0.0153 320 36 0.1286

7 1 5 0.0153 5 7 0.0483

29 3 10 0.0153 10 29 0.0643

Left Wheel Unit

9 1 5 0.0153 5 9 0.0170

23 2 10 0.0153 10 23 0.0510

11 1 5 0.0153 5 11 0.0340

25 2 10 0.0153 10 25 0.0679

Righ Wheel Unit

10 1 5 0.0153 5 10 0.0170

24 2 10 0.0153 10 24 0.0510

12 1 5 0.0153 5 12 0.0340

26 2 10 0.0153 10 24 0.0679

Central Control Unit

27 2 10 0.0153 10 27 0.0171

22 2 10 0.0153 10 22 0.0341

14 4 5 0.0153 5 14 0.0510

8 1 5 0.0153 5 8 0.0680

15 4 5 0.0153 5 15 0.0849

16 4 5 0.0153 5 16 0.1019

28 5 10 0.0153 10 28 0.1188

Azer Hasnaoui et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 62 Volume 5, 2020

We have noticed that the deadline has been met and

the equation below is verified.

T D R 
 For Ethernet, we can assume that the DDS Deadline

QoS Policy always be reached.

 As for the Time Based Filter we have approximated

the minimum_separation parameter to be the reception

delay which is for Ethernet case the transmission delay C.

Same as the DDS Deadline QoS Policy, we can assume

that the Time Based Filter QoS Policy is verified.

_R Min Sep

V. COMPARATIVE STUDY

To make the comparison between FlexRay and

Ethernet, we propose to base our evaluation on the WCRT.

 The goal is to determine which of the two buses

(Ethernet or FlexRay) is most suitable for real-time, and to

know the impact of bus speed on performance of the

system.

Figures 2.3 and 4 present the comparison between the

WCRT (20 Mhz) and best case response time (BCRT, 5

MHz) of the bus flexray [12] and the WCRT of bus

Ethernet. This comparison is made for 3 modules: front

Control Module, body central control Module and central

control Module.

 The responses obtained by the same Ethernet

calculate scheduling.

Figure 4: Comparison between BCRT , WRCT for

Flexray and WCRT for Ethernet for front Control

Module

Figure 5: Comparison between BCRT , WRCT for

Flexray and WCRT for Ethernet for body control

Module

Figure 6: Comparison between BCRT , WRCT for

Flexray and WCRT for Ethernet for central control

Module

 We note that in the case of central control module and

front Control Module, the 100Mbit/s Ethernet gives better

performance than the FlexRay because the bus speed is

much most significant and allows a scheduling with this

technique to route messages more quickly.

 In the case of body control Module, we note that the

temporal performances are penalized by the access

technique, which handles messages according to their

priority. However, it still remains very close and exceed

the temporal performances of FlexRay.

VI. CONCLUSION

In this paper, we have proposed to use DDS on top of

the real-time network Ethernet to enhance the timing QoS.

To do so, we have tested using vehicular applications

based on the SAE benchmark. The tests have proven that

using Ethernet combined with the DDS middleware is

promising alternative for FlexRay or CAN. We conclude

that for body and multimedia domains the Ethernet at 100

Mbps can be applied to these domains without any

modification. In a further paper we demonstrate that the

minimum Ethernet throughputs for powertrain and chassis

domains is one Gbps and higher, however when the

throughput exceeds 10 Gpbs the Ethernet becomes strictly

deterministic without any modification (ie use of virtual

links, etc.)

0 5 10 15 20 25 30 35 40
0.05

0.1

0.15

0.2

0.25

0.3

message ID

T
im

e

Worst Case WCRT for FlexRay

Best Case WCRT for FlexRay

WCRT for Ethernet

0 5 10 15 20 25 30 35
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

message ID

T
im

e

Worst Case WCRT for FlexRay

Best Case WCRT for FlexRay

WCRT for Ethernet

8 10 12 14 16 18 20 22 24 26 28
0.05

0.1

0.15

0.2

0.25

0.3

message ID

T
im

e

Worst Case WCRT for FlexRay

Best Case WCRT for FlexRay

WCRT for Ethernet

(9)

(10)

Azer Hasnaoui et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 63 Volume 5, 2020

ACKNOWLEDGMENT

The researchers presented in this paper would not

have been possible without the support of many people.

We wish to express our gratitude to the SYSCOM ENIT

members for their help and assistance.

VII. REFERENCES

[1] M. Utayba Mohammad, N. Al-Holou, “Development of an

Automotive Communication Benchmark”, Canadian Journal on

Electrical and Electronics Engineering, Vol. 1, No. 5, August
2010.).

[2] Pedreiras, P., Gai, P., Almeida, L., Buttazzo, G., "FTT-Ethernet: a

flexible real-time communication protocol that supports dynamic
QoS management on Ethernet-based systems", IEEE Transactions

on Industrial Informatics, Vol.1, N°3, 2005, pp 162-172.

[3] Houda Jaouani, "Etude, Modélisation et Implémentation sous
MATLAB de Modules SAE Benchmark en tant qu’entités DDS",

PhD dissertation, ENIT/Al-Manar University, December 2015,

[4] Rim BOUHOUCH, " Implémentation de DDS et des connecteurs
de la radio logicielle et évaluation de leurs performances, PhD

dissertation, ENIT/Al-Manar University, March 2014,

[5] Azer Hasnaoui, Prof. Tahar EZZEDDINE, "Génération de code C

des entités DDS à partir de fichiers XML", Rapport de recherche,

décembre 2015.

[6] Azer Hasnaoui, "Conception et développement d'une carte à base
du contrôleur FlexRay MB88121C et de son driver sous la

plateforme LPC2294 et μC-OSII", End-Studies Project, TELNET

company, June 2012.
[7] FlexRay Consortium, FlexRay Communications System-Protocol

Specification, Version 2.1, Revision A, 2005.

[8] I. Broster. “Flexibility in dependable real-time communication”.
PhD Thesis, Department of Computer Science, University of York,

August 2003.

[9] N. Navet (editor) and F. Simonot-Lion, “Automotive embedded
systems handbook”. Industrial Information Technology Series.

CRC Press, 2009..

[10] The MathWorks :Embedded Matlab User’s Guide
[11] « Data Distribution Service for Real-time Systems», Version 1.2.

OMG Available Specification formal/07-01-01.
[12] Object Management Group, Data distribution service for real-time

systems, version 1.2, Massachusetts: Needham, January 2007.

[13] T. Guesmi, R. Rekik, S. Hasnaoui, H. Rezig, Design and

Performance of DDS-based Middleware for Real-Time Control

Systems, IJCSNC, VOL.7, No.12, 2007, pp 188-200

[14] Christopher A. Lupini, “Vehicle Multiplex Communication - Serial
Data Networking Applied to Vehicular Engineering”, SAE, April

2004.

[15] Tindel, K., Burns, A., “Guaranteeing Message Latencies On
Control Area Network (CAN)”, Real-Time Systems Research

Group, Department of Computer Science, University of York,

[16] D. Millinger, R. Nossal, « FlexRay CommunicationTechnology »,

The Industrial Communication Technology Handbook, CRC Press,

Taylor & Francis, éditeur R. Zurawski, ISBN 0-8493-3077-7,

janvier 2005.
[17] Zouheira Abdellaoui, "Etude, Modélisation et Implémentation sous

MATLAB de Modules SAE Benchmark en tant qu’entités DDS",

PhD dissertation, ENIT/Al-Manar University, Jan-2016.
[18] R. Bosch GmbH, CAN Specification, Version 2, September 1991.

[19] International Standard Organization, ISO 11519-2, Road Vehicles

- Low Speed serial data communication - Part 2: Low Speed
Controller Area Network, ISO, 1994.

[20] Ben Gaid, M-M; çela, A.; Diallo, S.; Kocik, R.; Hamouche, R.;

Reama A., “Performance Evaluation of the Distributed
Implementation of a Car Suspension System”, In proceedings of

the IFAC Workshop on Programmable Devices and Embedded

Systems (PDeS 2006). Brno, Czech Republic, February 2006
[21] Bo-Chiuan Chen, Cheng-Chi Yu, Wei-Feng Hsu, “Design of

electronic stability control for rollover prevention using sliding

mode control”, Int. J. Vehicle Design.
[22] Andrew James Pick,’’Neuromuscular Dynamics and theVehicle

Steering Task’’, a dissertation submitted to the University of.

Cambridge.

[23] K. Schmidt, E. Guran, “Message scheduling for the FlexRay

Protocol: The Static Segment”; IEEE transactions on vehicular

technology, Vol.58, No.5, 2008, pp. 2170-2179.
[24] H. Kopetz, G. Grunsteidl, “TTP – A Time Triggered protocol for

fault tolerant Real Time Systems”, The Twenty-Third International

Symposium on Fault-Tolerant Computing FTCS-23, pp. 524 - 533
Jun 1993. A. Burns, A. Wellings, “Scheduling Real-Time

Systems”, Chapter 11, Real-Time Systems and Programming

Languages,The university of York, Department of Computer
Science.

[25] JJ. Labrosse, “µcOS-II the real time kernel”, Kansas: Lawrence,

November 1998.
[26] Marisol GarcíaValls, Patricia UriolResuela, Felipe IbáñezVázquez,

Pablo BasantaVal: Low complexity reconfiguration for real time
data intensive service oriented applications. Future Generation

Comp. Syst. 37: 191-200 (2014)

[27] Pablo BasantaVal, Marisol GarcíaValls: Resource management
policies for real time Java remote invocations. J. Parallel Distrib.

Comput. 74(1): 1930-1944 (2014) and also typical time triggered

models like FTT:

[28] Julian Proenza, Manuel Barranco, Joan Llodra, Luís Almeida:

Using FTT and stars to simplify node replication in CAN based

systems. ETFA 2012: 1-4

Azer Hasnaoui et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 64 Volume 5, 2020

