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Abstract: In this article, neural network based observer with unknown terms has been implemented for actuator
fault approximation in linear systems. All states in a system are not measurable or difficult to measure. In such
cases, state observers are used to estimate the states. In this paper, state observer problem with unknown terms
is considered. Neural networks are used to approximate the unknown terms in the model. The neural network is
trained using back propagation algorithm.The proposed observer is tested on DC motor with various actuator faults
such as abrupt, incipient and sinusoidal faults. It is observed that the results obtained for these faults are validated
the satisfactory performance of the observer.
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1 Introduction
State observer is a system, which estimates the inter-
nal states of a real time system from measurements
of the input and output [1]. It provides foundation
for a real time systems. Determining the states is re-
quired in solving linear and non-linear control sys-
tem problems [4]. The states cannot be evaluated by
the direct observation. Therefore, the states are ob-
served from the outputs of the system [2]. If a sys-
tem is observable, it is possible to reconstruct the sys-
tem states from its output using the state observer [3].
State space representation is an useful in the analysis
and design of the control systems. All state variables
of the system are not available for measurement [3].
Sometimes it is difficult to measure the state variables.
In such situations, the state variables are estimated.

1.1 Literature Survey

The problem of the state vector observation of a lin-
ear multi-variable system with unknown inputs has re-
ceived considerable attention in the last four decades.
A comprehensive survey of the nonlinear observer is
given in [].

Conventionally, Luenberger observer[5,6] and
Kalman filter[7] are used to estimate the states from
the model of linear systems. For systems with un-
known terms, adaptive observers are used for state
estimation of linear systems[8]. Disturbance and

nonlinear Luenberger observers for estimating me-
chanical variables in permanent magnet synchronous
motors under mechanical parameters uncertainties is
provided in [9].Observers for linear systems with
arbitrary plant disturbances is addressed in [10].
Observers for linear systems with unknown inputs
is given in [12,13]. Full-order observers for lin-
ear systems with unknown inputs is provided in
[14],[16],[17], [18].

Recently, neural networks are used for several
application in engineering. Multi-layer feed-forward
networks are universal approximators that is given in
[19]. Other applications of neural networks and slid-
ing mode control are provided in [20-37].

1.2 Observation and Motivation

In many practical systems,only the input and output
of a system are measurable.Therefore,estimating
the states of a system plays a crucial role in mod-
eling,monitoring or controlling the system. The
adaptive learning ability neural networks(NN) makes
them powerful tools for identification, observation,
monitoring and control of non-linear system with-
out any apriori knowledge about the system dynamics.

State observers are used to estimate the state vari-
ables. Approximation of the actuator fault is required
for the fault tolerant control (FTC). The state ob-
servers are a viable option for approximation of actu-
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ator faults in the linear systems. Active fault tolerant
control (FTC) requires Fault detection and isolation
(FDI) step[]. For FDI fault approximation is key step
towards the fault tolerant control. These estimated
fault terms information can be used to compensate
the fault terms automatically and achieve fault toler-
ant control of the plant. In this paper proposed ANN
observer based fault approximation is used to approxi-
mate the additive actuator faults of linear system. The
objective here is to develop a state observer which es-
timates both states and actuator faults simultaneously
using multi-layer feed forward neural network.

1.3 Contributions of the article

The contributions of the article are provided below.

1. artificial neural networks (ANN) based observers
are used to account for unknown terms the in the
plant.

2. simultaneously estimates both the states and un-
known additive actuator faults of linear systems

3. Additive actuator faults are combined with inputs
of the plant

4. The proposed method is applied DC motor for
the purpose of validation

1.4 Organization of the article

The proposed state observer has been developed in
MATLAB/SIMULINK. It has been tested on DC mo-
tor with various standard faults. The remaining arti-
cles is organized as follows. setion 2 describes linear
system with unknown actuator fault, a brief descrip-
tion about artificial neural networks is provided in sec-
tion 3, development of Neural network observer and
actuator fault estimation is elaborated in section 04,
case studies with various fault conditions are given in
section 05 and finally conclusions are provided in the
last section.

2 Linear system with unknown actu-
ator fault

A system with unknown actuator fault is represented
with the following state space model.

ẋ = Ax+Bu+Buf (1)

y = Cx (2)

Where x is state variable vector. A,B, and
C is state variable matrix, u is the input, uf is the

Figure 1: Basic neuron model

added actuator fault. All the states in a dynamic sys-
tem are not accessible for measurement. The inacces-
sible states are to be estimated using state observers.
The information of estimated states is used in state
feedback control.

3 Neural networks

3.1 back ground

Neural network consists of interconnection of basic
units called neurons. The basic artificial neuron is
shown in Fig. 01.

The above artificial neuron is represented by the
following model.

net =
n∑
t=1

wixi (3)

y = O(net) (4)

O(net) =
1

e−λnet + 1
(5)

3.2 Multi layer Feed-farward neural net-
work

A feed-farward neural network is considered in this
article. Feedforward neural network consists of lay-
ers of neurons. First layer is input layer and last layer
is output layer. The layers between he input and out-
put layers are called hidden layers. Each layer is con-
nected to its successive layer only. Multi layer feed
farward neural network is provided in Fig.02.

I Input node.
W The weight of a connection.
H Hidden node.
HA Hidden node activated.
O Outut node.
OA Output node activated.
B Bias node.
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Figure 2: Multi layer feed farward neural network

Figure 3: Architecture of back propagation algorithm

e Difference between the output and the desired
value.

Multi-layer feed-farward neural networks
(MLFFNN) are universal function approximators.
For given values of input and output variables, the
MLFFNN is trained using supervised algorithms
to relate input with output. The back propagation
algorithm ha been used in this article to train the
neural network.

3.3 Back propagation algorithm

The back propagation algorithm is a generalization
of the delta rule for training multi-layer networks
(MLN). This algorithm updates the weights wi of the
network by means of successive iterations that mini-
mize the cost function of the error E. Minimization
of the error is obtained using the gradient of the cost
function, which consists of the first derivative of the
function with respect to all the weights. Architecture
of back propagation algorithm is shown in Fig.03. Er-
ror back propagation algorithm perform gradient de-
scent.This is used to train the neural network in this
paper.If dp is the desired output and op is actual out-
put then error

Basic steps involved in the BPA algorithm are
provided below.

1. Inputs X, arrive through the pre-connected path

2. Input is modeled using real weights W. The
weights are usually randomly selected.

3. Calculate the output for every neuron from the
input layer, to the hidden layers, to the output
layer.

4. Calculate the error in the outputs i.e Error= Ac-
tual Output – Desired Output

5. Travel back from the output layer to the hidden
layer to adjust the weights such that the error is
decreased.

E =
1

2
|dp − oe|2 (6)

∆wij = −n ∂g

∂wij
(7)

4 Development of Neural network
observer and actuator fault estima-
tion

4.1 state observer

The state observer for the system (1) is represented as

x̄ = Ax̄+Bu+Būf + L(y − ȳ) (8)

ȳ = Cx̄ (9)

x̄ is estimated state vector.
ūf is estimated additive fault.
ȳ is the estimated output.
ūf is to be approximated by a multilayer feedforward
neural network.

4.2 Error estimation of state and actuator
fault

The state estimation error and actuator fault estima-
tion error are given by

The actuator faults are estimated by the neural
network

uf = wTσ(x, u) (10)

4.3 Weights updation of the neural networks

The weights of the neural network are to be adjusted
so that the state estimation error and actuator fault es-
timation error are converges to zero. The weights are
adjusted using error back propagation learning algo-
rithm. The weights are adjusted according to the fol-
lowing equation
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Figure 4: Developed model of the proposed approach

Figure 5: Neural network model

δwij = −n ∂E

∂wij
(11)

E =
1

2
(12)

4.4 Selection of observer gain

Observer gain is chosen such that matrix A-LC is hav-
ing eigen values with negative real parts. The plant is
controlled using PID controller.The DC Motor is con-
trolled by PID control in the closed loop.

The developed block diagram in simulink is
shown in Fig. 04. Three major sub-systems namely
DC motor, neural network and are represented with
green in colour.

Sub-block of Neural network model is given in
Fig. 05. State diagram is shown in Fig. 06.

5 Case study

The proposed algorithm is developed in MAT-
LAB/SIMULNK and executed on a personal com-
puter. The model is validated with various fault condi-
tions. Model of the DC motor is as follows. The state
variables are armature current(Ia)and speed (ω). Pa-
rameters of the DC motor are adopted from [22] and
provided in Table 01.

Figure 6: states diagram

Table 1: Parameters of the DC Motor
S.no variable Value
1 Resistance (ohm) 8.9
2 Inductance (mH) 99.4
3 B (Nm-sec/rad) 0.003
4 J(Kg −m2) 0.002
5 Constant (K) in volts 1.41
6 Rated voltage in volts 230
7 Rated speed in rpm 1500

With these parameters, the model of DC motor is
given in the matrices. A=(− ) 1.5705

− 14.1851− 89.5372
B=( 0 ) 10.0604

C=( 0 )

1
L=( 1 ) 5

Proportional-integral-derivative (PID) controller
has been used here to get expected output from the
system. It is tuned using MATLAB. The tuned pa-
rameters are Kp = 4.02,Ki = 40,Kd = 0.1

To validate the model, three cases have been con-
sidered.

1. Case 01 Abrupt fault

2. Case 02 Incipient fault
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Figure 7: Abrupt and Incipient fault

Figure 8: DC motor input with additive abrupt fault
and reference input

3. Case 03 Sinusoidal fault

5.1 Case 01 Abrupt Fault

In this case, Abrupt fault is considered. The mathe-
matical expression is given in Fig.7.

Fig.8 specifies the reference input i.e required
speed 0f 157 rad per second. It also specifies the ac-
tuator fault occuring at the control input i.e the output
of the PID controller. The input is applied to the DC
motor at 25 seconds and fault occurs at 50 seconds.

Fig.9 depicts the actual fault occurring and the ap-
proximation of the fault by neural network for abrupt
fault.The curves are in good agreement.

Fig. 10 specifies the actual states and estimated
states. It is noticed that the states obtained from the
state observer are almost same as the actual states.

The same approach has been extended by chang-
ing the type of fault from abrupt fault to incipient
fault. The detailed results are given in the preceeding
section.

5.2 Incipient fault

In this case, Incipient fault is taken. The mathematical
expression is given in Fig.12.

Figure 9: The fault approximation of Neural network.

Figure 10: State variables speed and armature current.

Figure 11: Error between actual and estimated state
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Figure 12: Error between actual and estimated state

Figure 13: Incipient fault.

The reference input is provided in Fig. 13. It also
specifies the actuator fault occuring at the control in-
put i.e the output of the PID controller. The input is
applied to motor at 25 seconds and the fault occurs at
50 seconds.

Fig. 14 depicts the actual fault occurring and the
approximation of the fault by neural network for in-
cipient fault.Both the curves are in good agreement.

Fig. 15 specifies the actual states of the motor and
estimated states of motors which are armature current
ia and w.The observers states are in good agreement
with actual states.

5.3 sinusoidal fault

f3(t) = 5× sin(ωt) (13)

Figure 14: DC motor input with additive incipient
fault.

Figure 15: The fault approximation by neural net-
work.

Figure 16: State variables speed and armature current.
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Figure 17: DC motor input with additive sinusoidal
fault.

Figure 18: The fault approximation by Neural net-
work.

Fig. 15 specifies the sinusoidal fault applied to the
dc motor along with reference speed input. The sinu-
soidal fault is added with control input i.e the output
of PID controller.

Fig. 17 depicts the actual fault occurring and the
approximation of the fault by neural network for in-
cipient fault.Both the curves are in good agreement.

Fig. 18 specifies the actual states of the motor and
estimated states of motors which are armature current
ia and speed w.The observers states are in good agree-
ment with actual states.

6 conclusions

The proposed observer is applied to the DC motor.
The DC motor is studied under the effect of abrupt,
incipient and sinusoidal actuator faults. Initially sys-

Figure 19: Satate variables speed and armature cur-
rent.

tem is under no fault situation. Then the state observer
is able to estimate the states asymptotically. Faults are
applied at 50sec. Under the application of faults, the
state observer is able to approximate the faults along
with states. The proposed observer is able to approxi-
mate unknown terms in the model with the aid of arti-
ficial neural networks satisfactorily.
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