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Abstract: - The process of analogue circuit optimization is defined mathematically as a controllable dynamical 
system. In this context the problem of minimizing the CPU time can be formulated as the minimization 
problem of a transitional process of a dynamical system. To analyse the properties of such a system, we 
propose to use the concept of the Lyapunov function of a dynamical system. This function allows us to analyse 
the stability of the optimization trajectories and to predict the CPU time for circuit optimization by analysing 
the characteristics of the initial part of the process.
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1 Introduction
The problem of reducing the CPU time taken by 
electronic circuit optimization is one of the 
important problems related to improving design 
quality. The design process starts with an initial 
approximation done by analysing the circuit for the 
initial point, and then the system parameters are 
adjusted to obtain the performance characteristics 
included in the specification. The process of 
adjusting parameters can be based on an 
optimization procedure. Some methods reduce the 
time need for circuit analysis. This includes the 
well-known idea of using sparse matrix methods [1-
2] and decomposition methods [3-5]. Some another 
ways were proposed to reduce the total computer 
design time [6-8]. 

The more general formulation of the circuit 
optimization problem is proposed in [9]. There, the 
problem of analogue circuit optimization is defined 
in terms of the control theory. We suppose that this 
approach allows us to considerably accelerate 
deterministic optimization methods and to compete 
with stochastic algorithms in terms of CPU time. 

This approach was successfully developed in [10]. 
In this paper we studied some principal 
characteristics of optimization strategies, which 
form the complete basis of different designing 
strategies of new methodology. The possibility was 
shown to significantly reduction of CPU time on the 
basis of this approach. In [11-12] the characteristics 
of the optimization process for nonlinear circuits 
were analyzed on the basis of the Lyapunov 
function definition. This approach promises more 
precise analysis of optimization strategies with the 
aim to investigate the stability of various strategies 
and to improve the selection of the best strategy.

In the presented work we follow further 
development of this way with the purpose to reveal 
the main regularities and properties of the optimal 
algorithm of designing. These properties will allow 
constructing the optimal algorithm, which 
implements the process of designing for minimum 
possible CPU time. This problem is important and 
rather complex challenge of the control theory as 
well, because is required to build the algorithm 
during the "real time", i.e. in the course of 
optimization of electronic circuit.

Alexander Zemliak, Fernando Reyes
International Journal of Circuits and Electronics 

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 64 Volume 2, 2017



The main properties and the special conditions 
for the optimal strategy construction are the 
principal problems that need to be solved for the 
optimal algorithm searching.

2 Problem Formulation
In accordance with the conventional approach, the 
process of electronic circuit optimization is defined 
as the problem of minimizing an cost function C(X),

NRX  , with constraints given by a system of the 
circuit´s equations based on Kirchhoff’s laws. We 
assume that, by minimizing C(X), we achieve all our 
design goals. An approach proposed in [9] 
generalizes the circuit optimization problem by 
introducing a special control vector U and a special 
generalized cost function  UXF , . The design 
process for any analogue system design can be 
defined in discrete form [9] as the problem of the 
generalized cost function  UXF , minimization 
by means of the system (1) with the constraints (2):

 UXftxx is
s
i

s
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equal  x t dti  ;   i X is the implicit function 
(  x Xi i  ) that is determined by means of 
solution of the system (2). 

The generalized cost function  UXF , can be 
defined for example as:

     UXXCUXF ,,  , (4)

where  UX , is the additional penalty function:

   



M

j
jj XguUX

1

21,


 . (5)

This formulation of the design process permits 
the redistribution of the computer time expense 
between the solution of problem (2) and the 
optimization procedure (1) for the function 
 UXF , . The control vector U is the main tool for 

the redistribution process in this case. Practically an 
infinite number of the different design strategies are 
produced because the vector U depends on the 
optimization procedure current step. The problem of 
the optimal design strategy search is formulated 
now as the typical problem for the functional 
minimization of the control theory. The functional 
that needs to minimize is the total CPU time T of the 
design process. This functional depends directly on 
the operations number and on the design strategy 
that has been realized. The main difficulty of this 
definition is unknown optimal dependencies of all 
control functions u j . It is necessary to find the 
optimal behaviour of the control functions u j during 
the design process to minimize the total design 
computer time.

The idea of the system design problem 
formulation as the functional minimization problem 
of the control theory is not depend of the 
optimization method and can be embedded into any 
optimization procedures. In this paper the gradient 
method is used, nevertheless any optimization 
method can be used as shown in [9].

Now the process for analogue network design is 
formulated as a dynamic controllable system. The 
minimal-time design process can be defined as the 
dynamic system with the minimal transition time. 
So, we need to find the conditions to minimize the 
transition time for this dynamic system.

Let us define the Lyapunov function of the 
design process (1)-(5) by the following expression:

    rUXFUXV ,,  (6)

This formula can be used when the general cost 
function is non-negative and has zero value at the 
stationary point a.
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So, the function V has properties: V(a,U)=0, 
V(X,U)>0 for all X and at last, this function 
increases in a sufficient large neighbourhood of the 
stationary point.

According to Lyapunov’s method, the 
information about the stability of a trajectory is 
contained in the time derivative of the Lyapunov 

function 


V =dV/dt. The optimization process and 
its corresponding trajectory are steady if this 
derivative is negative. In this paper, the direct 
computation of Lyapunov function V is based on the 
formula (6), where the parameter r is equal to 0.5. 
This kind of formula improves the separation of 
curves for different strategies and gives us the 
possibility to analyse the behaviour of Lyapunov 
function by the better manner. By conducting a 
detailed behavioural analysis of the Lyapunov
function and its derivative for different optimization 
strategies, we can choose perspective strategies.

Our goal is to obtain, for each strategy, an 
interrelation between its relative CPU time and the 
behaviour of the derivative of its corresponding 
Lyapunov function.

We use a more informative function, namely the 
relative time derivative of the Lyapunov function 

VVW /


 . We can compare different strategies in 
terms of the behaviour of the function W(t).

In [12] some strategies for circuit optimization 
have been analyzed and Lyapunov function was 
entered on the basis of the formula similar to (7). 
The behaviour of this function was analyzed for the 
optimization of some simple nonlinear circuits. It is 
shown that there is a dependency between the time 
necessary for optimization of a circuit and 
behaviour of the Lyapunov function. At the same 
time, in the presented paper the behaviour of the 
normalized functions is investigated during the 
optimization process: the Lyapunov function 
computed by the formula (6) and its time derivative. 
It allowed to study in detail properties of these 
functions both for simple passive nonlinear circuits 
and for transistor amplifiers.

3 Structural Basis Analysis
In the presented work we follow further 
development of this way with the purpose to reveal 
the main regularities and properties of the optimal 
algorithm of designing.

In what follows, we give an analysis of the 
optimization process for some nonlinear circuits.

To present an analysis of the behaviour of 
functions V(t) and W(t), we use the examples of 

passive and active nonlinear circuits, which allows 
us to explain the principal features of the behaviour 
of the function W(t). Fig. 1 presents a three-node 
nonlinear passive circuit.

Fig. 1. Three-node nonlinear passive circuit.

Here, the circuit model (2) consists of three 
equations (M=3), and the control vector U consists 
of three components as well:  321 ,, uuuU  . The 
structural basis consists of eight different 
optimization strategies. The nonlinear elements are 
given as follows:  2

21111 VVbay nnn  and 

 232222 VVbay nnn  . The vector X consists of 

seven components, set as follows: 1
2
1 yx  , 2

2
2 yx  , 

3
2
3 yx  , 4

2
4 yx  , 15 Vx  , 26 Vx  and 

37 Vx  . By defining the components 321 ,, xxx
using the above formulas, we automatically obtain 
positive values of the conductance, which eliminates 
the issue of positive definiteness for each resistance 
and conductance and allows us to carry out 
optimization in the full space of the values of these 
variables without any restrictions. This circuit is a 
voltage divider, and the objective function can be 
defined by the formula    2

303 VVXC  , where 
V30 is the required value of the output voltage V3, 
which must be obtained during the optimization
process. Table 1 presents the analysis of the results 
of the optimization process for the eight strategies 
that form the complete structural basis.

Table 1. Complete set of strategies of structural 
basis for three-node nonlinear circuit.

N Control Iterations Total
vector number processor

time (sec)
1 ( 0 0 0 ) 519963 39.957
2 ( 0 0 1 ) 1261184 46.126
3 ( 0 1 0 ) 689354 23.276
4 ( 0 1 1 ) 230500 4.721
5 ( 1 0 0 ) 158245 5.81
6 ( 1 0 1 ) 402037 13.844
7 ( 1 1 0 ) 212405 6.182
8 ( 1 1 1 ) 446205 5.531
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For each strategy, we measure the CPU time 
needed to reach the time point that minimizes the 
function V. We introduce the functions V and W, 
which are the normalized versions of the functions 
V(t) and W(t). This normalization is done as follows: 
V=V(t)/Vmax and W=W(t)/Wmax, where Vmax and Wmax
are the maximum values of the functions V(t) and 
W(t), respectively, among the entire structural basis. 
We do similar normalization for all the examples.

Our main objective is to identify the main 
criterion that would allow us to compare various 
strategies and to choose the fastest of them during 
optimization, without computing the CPU time 
directly. The results of the analysis of the three-node 
circuit in Fig. 1 are given in Fig 2.

Fig. 2. Behaviour of the functions V and W for eight 
strategies during the optimization process, for three-

node nonlinear passive circuit.

As we can see from Fig. 2, the functions V and 
W give an exhaustive explanation for the 
characteristics of the optimization process. First of 
all, we can conclude that the Lyapunov function 
decreases at a rate that is inversely proportional to 
the CPU time. The minimum value of the Lyapunov 
function, which corresponds to the maximum 
precision, is approximately equal for all the 
strategies.

We can see that there is a correlation between the 
total CPU time for any strategy and the behaviour of 
the function W that corresponds to this strategy. The 
larger the absolute value of the function W in the 
initial part of the optimization process - the faster 
the Lyapunov function decreases.

We can identify three groups of strategies of the 
structural basis. The first group contains strategies 
4, 5, 7 and 8, which have the largest absolute value 
of the function W during the initial part of the 
optimization process. At the same time, these 
strategies have the shortest CPU time. The second 

group contains strategies 1 and 2, which have the 
minimum absolute value of the function W. It is 
these strategies that have the longest CPU time. The 
third group contains strategies 3 and 6, whose CPU 
is intermediate. For these strategies, the behaviour 
of the function W is also intermediate. Therefore, 
we can state that there is a correlation between the 
CPU time and the behaviour of the function W.

The other example is devoted to the analysis of 
the optimization process for one type of amplifier 
with feedback in Fig. 3.

Fig. 3. Circuit topology for amplifier with feedback.

The circuit contains six nodes. There are nine 
independent variables of the circuit: 

987654321 ,,,,,,,, yyyyyyyyy (K=9) and six 

dependent variables: 654321 ,,,,, VVVVVV (M=6).
The vector X includes 15 components. The objective 
function of optimization procedure was determined 
as:

       
     2661

2
565

2
45

2
34

2
223

2
121

kVEkVVkV
kVkVVkVVXC




(7)

where k1, k2, k3, k4, k5 and k6 are the before-defined 
values of voltages on GS and DS for Q1, Q2 and Q3. 
These parameters were defined as: k1= -1.8 V, k2= 
6.8 V, k3= -2.0 V, k4= 6.8 V, k5= -1.5 V, k6= 6.0 V. 
The initial value X0 and the final value Xf of the 
vector X are equal to:

)1,2,3,2,3,5.1,2,01.0,05.0
,01.0,015.0,01.0,05.0,02.0,02.0,02.0(0 X

and

).1.5,6.6,8.1,6.10,8.3,8.5,00557.0,0224.0,01.0

,00447.0,0091.0,01.0,0224.0,00447.0,00816.0(f X

The final values of the admittances (resistors) 
that were obtained on  basis of   optimization
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procedure are equal to:
),1002.15(1006658.0 3

1
3

1   Ry

),100.10(101.0
),1099.1(10502.0

),1050(1002.0

3
4

3
4

3
3

3
3

3
2

3
2













Ry
Ry

Ry

),100.10(101.0
),1050(1002.0

),1005.12(10083.0

3
7

3
7

3
6

3
6

3
5

3
5













Ry
Ry
Ry

).1026.32(10031.0
),10995.1(105012.0

3
9

3
9

3
8

3
8








Ry
Ry

The results of the analysis of some strategies of 
the structural basis are given in Table 2 and Fig. 4. 

Table 2. Some strategies of optimization for 
amplifier with feedback.

Once again, we can identify three groups of 
strategies. First group includes strategies 4, 8 and 10 
that have the largest absolute value of the function 
W in the initial part of the optimization process and 
shorter CPU times. Computer time gain for the 
strategy 4 in comparison with traditional strategy is 
equal 280.

Fig. 4. The behaviour of the functions V and W for 
the eight strategies during the optimization process, 

for amplifier with feedback.

Second group, strategies 3, 5, 6, 7 and 9 have 
intermediate values of the function W and 
intermediate CPU times. Finally, the strategies 1 
and 2 have small absolute values of the function W 
and long CPU times. Now we have proved the 
existence of the strong correlation between the CPU 
time and the properties of the Lyapunov function. 
Moreover this function also estimates the 
comparative performance time for each optimization 
strategy.

Summing up the obtained results, we can 
conclude that, by analysing the behaviour of the 
relative time derivative of the Lyapunov function of 
the optimization process in the initial interval of the 
optimization process, we can predict the total 
relative CPU time for a given strategy. It means 
that, to compare the total CPU time of optimization 
for different strategies, we do not have to run the 
entire optimization process for each strategy. To 
determine the strategy with the shortest CPU time, it 
is sufficient to compare the behaviour of the 
function W(t) in the initial part of the optimization 
process. It is important to emphasize that the 
obtained ratios and conclusions are a basis for 
creation further of the optimum algorithm that 
implement the best strategy of circuit optimization 
for minimum CPU time. This purpose is the main at 
creation of the generalized designing methodology. 
The obtained results are a basis for designing of 
optimum algorithm because allow to define the best 
strategy of optimization of a circuit by the analysis 
of properties of an initial interval of the optimization 
process. The main difficulty in creation of such 
algorithm, is its adaptation structure, i.e. the 
algorithm has to build the optimal designing 
strategy in the regime of "real time".

4 Conclusion
The generalized approach for circuit optimization 
gives possibility to considerably reduce the 
necessary CPU time. Relative gain of the best 
strategy in comparison with traditional, reaches 2-3 
orders of magnitude. Absolute gain can reach 
several minutes or hours for sufficiently small 
circuits and it increases at increase in the size and 
complexity of the circuit.

Based on the analysis presented in this paper, we 
can conclude that the properties of a given circuit 
optimization strategy depend on the stability of each 
strategy that can be defined by means of the 
Lyapunov function of the optimization process. A 
special function – the relative time derivative of the 
Lyapunov function – is a sufficiently informative 
source when searching for the strategies that 

N Control function vector Iterations Total
U(u1,u2,u3,u4,u5,u6) number processor

time (sec)
1 ( 0 0 0 0 0 0 ) 24417 117.674
2 ( 0 0 1 1 1 0 ) 25546 73.993
3 ( 0 1 1 0 0 1 ) 19306 3.181
4 ( 0 1 1 1 1 1 ) 561 0.42
5 ( 1 1 1 0 0 0 ) 5258 5.732
6 ( 1 1 1 0 1 0 ) 4457 4.287
7 ( 1 1 1 0 1 1 ) 2359 2.785
8 ( 1 1 1 1 0 1 ) 1427 0.813
9 ( 1 1 1 1 1 0 ) 2934 1.751

10 ( 1 1 1 1 1 1 ) 1923 0.486
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minimize the CPU time. We discovered a strong 
correlation between the properties of the Lyapunov 
function and its corresponding CPU time. The 
shortest CPU time is also shown by those strategies 
that have the largest absolute value of the relative 
time derivative of the Lyapunov function in the 
initial part of the optimization trajectory. This 
property can be the basis for developing an optimal 
or quasi optimal design algorithm.
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