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Abstract: - The possibility of applying the maximum principle of Pontryagin to the problem of optimisation of 
electronic circuits is analysed. It is shown that in spite of the fact that the problem of optimisation is formulated 
as a nonlinear task, and the maximum principle in this case isn't a sufficient condition for obtaining a maximum 
of the functional, it is possible to obtain the decision in the form of local minima. The relative acceleration of 
the CPU time for the best strategy found by means of maximum principle compared with the traditional 
approach is equal to some orders of magnitude.
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1 Introduction
To improve the overall quality of electronic circuit 
designs, it is very important to reduce their design 
time. Many works devoted to this problem focus on 
how to reduce the number of operations when 
solving two main problems: circuit analysis and 
numerical optimisation. By solving these problems 
successfully, one can reduce the total time required 
for analogue circuit optimisation and this fact serves 
as a basis for improving design quality. 

The methods used to analyse complex systems 
are being improved continuously. Some well-known 
ideas related to the use of a method of sparse 
matrixes [1] and decomposition methods [2] are 
used for the reduction of time for the analysis of 
circuits. Some alternative methods such as 
homotopy methods [3] were successfully applied to 
circuit analysis.

Practical methods of optimisation were 
developed for circuit designing, timing, and area 
optimisation [4]. However, classical deterministic 
optimisation algorithms may have a number of 
drawbacks: they may require that a good initial 
point be selected in the parameter space, they may 
reach an unsatisfactory local minimum, and they 
require that the cost function be continuous and 
differentiable. To overcome these issues, special 
methods were applied to determine the initial point 
of the process by centring [5] or applying geometric 
programming methods [6].

A more general formulation of the circuit 
optimisation problem was developed on a heuristic 
level some decades ago [7]. This approach ignored 
Kirchhoff’s laws for all or part of a circuit during 
the optimisation process. The practical aspects of 
this idea were developed for the optimisation of 
microwave circuits [8] and for the synthesis of high-
performance analog circuits [9] in an extreme case 
where all the equations of the circuit were not 
solved during the optimisation process. 

In work [10] the problem of circuit optimisation 
is formulated in terms of the theory of optimal 
control. Thus, the process of circuit optimisation 
was generalised and defined as the dynamic 
controllable system. In this case, the basic element 
is the control vector that changes the structure of the 
equations of the system of optimisation process. 
Thus, there is a set of strategies of optimisation that 
have different number of operations and different 
computing times. The introduction and analysis of 
the function of Lyapunov of the optimisation 
process [11-12] allows comparison of various 
strategies of optimisation and choosing the best of 
them having minimum processor time. At the same 
time, the problem of searching for the optimal 
strategy and the corresponding optimal trajectory 
can be solved most appropriately by the maximum 
principle of Pontryagin [13]. 

The main complexity of application of the 
maximum principle consists of the search of initial 
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values for auxiliary variables at the solution of the 
conjugate system of equations. Application of the 
maximum principle in case of linear dynamic 
systems is based on the creation of an iterative 
process [14-15]. 

In case of nonlinear systems, the convergence of 
this process is not guaranteed. However, application 
of the additional approximating procedures [16] 
allows constructing sequence of the solutions 
converging to a limit under certain conditions.

The first step in the problem of possibility of 
application of maximum principle for circuit 
optimisation was presented in [17]. In the present 
work, the application of the maximum principle for 
circuit optimization was investigated with a 
sufficient accuracy.

2 Problem Formulation
Let’s analyse an example of the optimisation of the 
elementary nonlinear circuit for which the solution 
was obtained on the basis of the maximum 
principle. We will consider the simplest nonlinear 
circuit of a voltage divider in Fig. 1.

Fig. 1. Simplest nonlinear voltage divider

Let us consider that the nonlinear element has the 
following dependence:

 01 VVbaRn  , (1)

where a>0, b>0, a>b,  0V and 1V the voltages on an 
input and an output of circuit.

We will consider that 0V is equal 1. We will 
define the variables x1, x2. Rx 1 , 12 Vx  . Thus 
the vector of phase variables 2RX . In this case the 
formula (1) can be replaced with the following 
expression:

 12  xbaRn . (2)

We can present the equation of a circuit in the 
form:

     01, 1212211  xxbaxxxxg (3)

The circuit optimisation is formulated as a 
problem of obtaining at the exit of a circuit of the 
defined voltage w. We will determine the cost 
function of the optimisation process by the formula:

   2
2 wxC X . (4)

In this case, the problem of circuit optimisation 
is converted to minimisation of the cost function 
 XC . Following theoretical bases that were 

developed in [10], we formulate the problem for 
circuit optimisation as a task of search of the 
optimisation strategy with a minimum possible CPU 
time. For this purpose, we define the functional, 
which is subject to minimisation, by the following 
expression:

 
T

dtfJ
0

0 X , (5)

where  X0f is the function that is conditionally 
determining the density of a number of arithmetic 
operations in a unit of time t. In that case, the 
integral (5) defines total number of operations 
necessary for circuit optimisation and is 
proportional to the total CPU time.

The structure of function  X0f cannot be 
defined. However, we can compute CPU time using 
the possibilities of the compiler. We will further 
identify the integral (5) with CPU time, and 
therefore, the problem of minimisation of CPU time 
corresponds to a problem of minimisation of the 
integral (5).

According to [10], we introduce the control 
vector U that consists   of   only   one   component  
u(t) for   the   reviewed example. This component 
has one of two possible values: 0 or 1. The control 
vector allows to generalise circuit optimisation 
process and to define a set of the optimisation 
strategies differing in operations number and CPU 
time. The generalised cost function is defined by the 
formula:

     XXX  CF , (6)
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where  X is an additional penalty function, 
which can be determined, for example, by the 
following formula:

   



M

j
jj gu

1

2 XX , (7)

M is the number of nodes of the circuit. In our case 
M=1.

Process of circuit optimisation thus can be 
described by the system (8) with restrictions (9):

 uxxf
dt
dx

i
i ,, 21 ,   i=1, 2, (8)

    0,1 211  xxgu , (9)

where functions  uxxfi ,, 21 are defined by a 
concrete numerical method of optimisation. When 
using a gradient method, these functions are defined 
by the following formulas:

   XF
x

uxxf
i

i 


,, 21 , i=1,2,           (10)

where the operator ix / is defined by the 

expression:      
i

p
MK

Kp pii x
x

xxx 









 






1

XXX .

The value u(t)=0 corresponds to the traditional 
strategy of optimisation (TSO). In this case in the 
system (8), there is only one equation for the 
independent x1 variable, whereas the variable x2 is 
defined from the equation (9). The value u(t)=1 
corresponds to the modified traditional strategy of 
optimisation (MTSO) when both x1 and x2 variables 
are independent. In this case, the system (8) includes 
two equations for the independent variables x1 и x2, 
and the equation (9) disappears. A change in the 
value of function u(t) with 0 on 1 and back can be 
made at any moment and generates a set of various 
strategies of optimisation. Two main strategies are 
defined as follows:

1) TSO, u=0. The equations (8)–(10) are 
replaced with the following equations:

1

2

2

1

dx
dx

dx
C

dt
dx 

 , (11)

 
dt
dx

x
x

dt
txdx 1

1

212 ,

 , (12)

where the derivative 12 / dxdx is defined from the 
equation (9) and can be calculated by the formula:

  
















1
2

1

1

1

2

4

21
2
1

bxcx

bcx
bdx

dx , с=a-b.

2) MTSO, u=1. The equations (8) are 
transformed to the next one:

    XX 2
1gC

xdt
dx

i

i 

 ,   i=1, 2.     (13)

In a general case, the right-hand parts of the 
equations (8) can be presented in the form:

       21122111211 ,,1,, xxfuxxfuuxxf  ,
(14)

       21222121212 ,,1,, xxfuxxfuuxxf  ,

where the functions  21 , xxf ij are determined by 
the following formulas:

   
  




















1
2

1

12
2111

4
21,

bxcx

bcx
b

xwxxf

         221222112 1112, xxbaxxxxxf 

(15)

   
 

2

1
2

1

1
2

2
2121

4
1

2
,





















bxcx
bax

b
xwxxf

     
    22212

2122122

11
222,

xxbaxxx
bxxcwxxxf




According to methodology of the maximum 
principle, the system of the conjugate equations for 
additional variables 21 , has the next form:

   
2

1

212
1

1

2111 ,,,,  






x

uxxf
x

uxxf
dt

d ,

(16)
   

2
2

212
1

2

2112 ,,,,  






x

uxxf
x

uxxf
dt

d .

The Hamiltonian is expressed by the following 
formula:

   uxxfuxxfH ,,,, 21222111   (17)
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Substituting (14) in (17) and doing identical 
transformations, we obtain the following expression 
for the Hamiltonian:

   
 2121

2121221111

,,,
,,




xxu
xxfxxfH




, (18)

where

      
    212121222

2111211212121

,,
,,,,,

xxfxxf
xxfxxfxx





 .

According to the maximum principle, we obtain 
the next main condition for the control function u:









0,1
0,0

u (19)

The behaviour of the control function u(t) that 
corresponds to the maximum principle is also 
defined by the functions  t1 and  t2 , which 
are computed from the Eq. 1 (16).Please, leave two 
blank lines between successive sections as here.

3 Numerical Results
The solution of the equations (16) depends on the 
initial values 10 и 20 , which are defined within 
the precision of the common multiplier. One of 
these constants can be taken arbitrarily. Let us 
define the constant 110  . The value of the 
constant 20 , which corresponds to the correct 
solution of a task in the conditions of the maximum 
principle c20 , can be obtained by iterative 
procedure. We use the iterative procedure like a 
gradient method, which minimise the functional (5). 
The analysis of the process of optimisation for a 
similar example, which is carried out in work [18], 
showed that the TSO (u=0) is the optimal one when 
both initial values of variables 1x and 2x , ( 10x ,

20x ) are positive. In this case the number of 
iterations is equal to 3898, and CPU time is equal to 
42.88 msec for the initial point 10x =1, 20x =2. At 
the same time, the negative initial values of the 
variable 2x significantly lead to other results. In the 
case of negative initial values of the variable 2x , 
emergence of effect of acceleration of the process of 
circuit optimisation is possible [18]. This effect 
accelerates the optimisation process in many times. 

It is interesting to check if this result corresponds to 
the maximum principle.

Fig. 2 shows the trajectories of the process of 
circuit optimisation with the negative initial value of 
coordinate 20x , ( 10x =1, 20x = –2).

Fig. 2. Trajectories of optimisation process with 
initial point ( 10x =1, 20x = –2) and different 

values of 20 .

The structure of function u(t) that was obtained 
automatically and corresponds to a condition of the 
maximum principle (19) has one or two points of a 
rupture that corresponds to switching from the 
trajectory corresponding to MTSO (u=1, a dotted 
curve) on trajectory corresponding to TSO (u=0, a 
continuous curve). Coordinates of a point of 
switching of tsw depend on the value of 20 . The 
data corresponding to the different points of 
switching from 1 to 11 in Fig. 2 are presented in 
Table 1.

Table 1. Data of some strategies with different 
initial values of variable  t2 .

N Control Switching Total CPU
function points iterations time
structure number (msec)

1 7.27 1; 0; 1 198; 199 2606 14.34
2 7.265 1; 0; 1 200; 201 2464 13.56
3 7.26 1; 0; 1 202; 203 2274 12.52
4 7.255 1; 0; 1 203; 204 2148 11.82
5 7.25 1; 0; 1 205; 206 1759 9.68
6 7.245 1; 0 206 207 1.14
7 7.24 1; 0 209 620 5.67
8 7.235 1; 0 211 711 6.66
9 7.23 1; 0 214 785 7.46

10 7.225 1; 0 216 818 7.81
11 7.22 1; 0 219 855 8.21

20
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A change in the value of 20 from 7.27 to 7.245 
leads to reduction of iterations number and CPU 
time from 14.34 msec to 1.14 msec, but the CPU 
time is increasing later on. That is visible also in 
Fig. 3, where the dependence of CPU time of a task 
from initial value 20 is shown.

Fig. 3. CPU time for different initial values of  t2

The value opt20 = 7.245 corresponds to the 
minimum CPU time Tmin and in this case the integral 
J and the initial value of variable  t2 provides 
the maximum value of a Hamiltonian according to 
the maximum principle. The gain in time computed 
as time relation for TSO by the minimum time of 
Tmin thus equal to 37.6 times.

Let us define partial Hamiltonians H(0), H(1) by
formulas:

   0,,0,, 21222111)0( xxfxxfH   , (20)

   1,,1,, 21222111)1( xxfxxfH   . (21)

Dependencies of the functions H(0)(t), H(1)(t) and 
 t for various values of parameter 20 are 

presented in Fig. 4 – Fig. 6. Optimum value of a 
constant 20 is equal to 7.245 and corresponds to 
the results presented in Fig. 4.

In this case the function H(1)(t) passes above the 
function H(0)(t) from the beginning of the process 
until the point Tsw. At this point both functions 
become equal, function  t changes a sign, and 
according to condition (19), value of the control 
function u is changing to 1 on 0. Then, the iterative 
process comes to the end because the criterion for 
the end of the optimisation process is satisfied.

Fig. 4. Time dependency of functions H(0)(t), H(1)(t) 
and  t for optimal parameter 20 .

We can analyse the behaviour of the functions 
H(0)(t), H(1)(t) and  t with non-optimal initial 
value 20 . The point of switching of the control 
function u from 1 on 0 is not satisfying the optimum 
point. The behaviour of functions H(0)(t), H(1)(t) and 
 t is shown in Fig. 5 for 20 =7.249.  

Fig. 5. Time dependency of functions H(0)(t), H(1)(t) 
and  t for non-optimal value of parameter 20 , 

opt2020   .

The control function switching happens before 
an optimum point and the computing time grows till 
7.55 msec. 

The behaviour of these functions is given in Fig. 
6 at 20 = 7.24. In this case the control function 
switching happens after an optimum point and the 
time of computing grows again to 5.67 msec.

It is clear that when the point of switching differs 
from the optimal one, the value of the Hamiltonian 
is changing over time.

Alexander Zemliak
International Journal of Circuits and Electronics 

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 62 Volume 2, 2017



Fig. 6. Time dependency of functions H(0)(t), H(1)(t) 
and  t for non-optimal value of parameter 20 , 

opt2020   .

The analysis of the optimisation process for the 
considered circuit has shown that use of the 
maximum principle really allows for the finding of 
the optimum structure of the control function u(t) by 
means of the iterative procedure. At the same time 
the considerable reduction of the processor time in 
comparison with the traditional approach is 
observed.

4 Conclusion
The analysis of optimisation process of the 
presented circuit showed that application of the 
maximum principle really allows finding the 
optimum structure of the control function u(t) by 
means of iterative procedure. Thus, considerable 
reduction of CPU time in comparison with 
traditional approach is observed.
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