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Abstract: – The problem of designing of analog network for a minimal computer time has been formulated as 
the functional minimization problem of the control theory. The design process in this case is formulated as the 
controllable dynamic system. The optimal sequence of the control vector switch points was determined as a 
principal characteristic of the minimal-time system design algorithm. The conception of the Lyapunov function 
was proposed to analyze the behavior of the process of designing. The special function that is a combination of 
the Lyapunov function and its time derivative was proposed to predict the design time of any strategy by 
means of the analysis of initial time interval of the process of network optimization. The parallel computing 
serves to compare the different strategies of optimization in real time and to select the best strategy that has the 
minimal computer time. This approach gives us the possibility to select the quasi optimal strategy of network 
optimization by analyzing the initial part of the total design process only.

Key Words: – Minimal-time system designing, control theory application, network optimization, Lyapunov 
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1 Introduction
The problem of the reduction of computer time for a 
large system designing is one of the essential 
problems of the total quality design improvement. 
Besides the traditionally used ideas of sparse matrix 
techniques and decomposition techniques [1-5] 
some another ways were proposed to reduce the 
total computer design time [6-7]. The above
described ideas of system designing can be named 
as the traditional approach or the traditional strategy 
because the method of analysis is based on the 
Kirchhoff laws.

The other formulation of the circuit optimization 
problem was developed on heuristic level some 
decades ago [8-9]. This idea was based on the 
Kirchhoff’s laws ignoring for all the circuit or for 
the circuit part. The special cost function is 
minimized instead of the circuit equation solving. 
This idea was developed in practical aspect for the 
microwave circuit optimization [10] and for the 
synthesis of high-performance analog circuits [11] 
in extremely case, when the total system model was 
eliminated.

The generalized approach for the analog system 
design on the basis of control theory formulation 
was elaborated in some previous works [12-14]. 

This approach serves for the definition of minimal-
time algorithm of designing. On the other hand this 
approach gives the possibility to analyze with a 
great clearness the design process while moving 
along the trajectory curve into the design space. The 
main conception of this theory is the introduction of 
the special control functions, which, on the one hand 
generalize the design process and, on the other hand, 
they give the possibility to control design process to 
achieve the optimum of the cost function of 
designing for the minimal computer time. This 
possibility appears because practically an infinite 
number of the different design strategies that exist 
within the bounds of the theory. The different 
design strategies have the different operation 
number and different executed computer time. On 
the bounds of this conception, the traditional design 
strategy is only a one representative of the enormous 
set of different strategies of designing. As shown in 
[13] the potential computer time gain that can be 
obtained by the new design problem formulation 
increases when the size and complexity of the 
system increase. However it can be realized for 
optimal or quasi optimal algorithm only. 

We can define the formulation of the main 
properties of the quasi optimal design strategy as one 
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of the first problems that needs to be solved for the 
optimal algorithm construction. 

2 Problem Formulation
The designing process for any analog system design 
can be defined in discrete form [13] as the problem 
of the generalized cost function  UXF ,
minimization by means of the equation (1) with the 
constraints (2):
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where NRX ,  XXX  , , KRX  is the vector 
of the independent variables and the vector 

MRX  is the vector of dependent variables 
( MKN  ),  Xg j for all  j presents the system 

model, s is the iterations number, st is the iteration 

parameter, 1Rts  , HH(X,U) is the direction of 
the generalized cost function  UXF , decreasing, 
U is the vector of the special control functions 
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generalized cost function  UXF , is defined as:
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where  XC is the nonnegative cost function of the 
designing process, and  UX , is the additional 
penalty function:
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This formulation of the problem permits us to 
redistribute the computer time expense between the 
solution of problem (2) and the optimization 
procedure (1) for the function  UXF , . The control 
vector U is the main tool for the redistribution 
process in this case. Practically an infinite number 
of the different design strategies are produced 
because the vector U depends on the optimization 
procedure current step. The problem of search of the 
optimal design strategy is formulated now as the 
typical problem for the functional minimization of 
the control theory. The functional that needs to 
minimize is the total CPU time T of the design 

process. This functional depends directly on the 
operations number and on the strategy of designing 
that has been realized. The main difficulty of this 
definition is unknown optimal dependencies of all 
control functions u j .

The continuous form of the problem definition is 
more adequate for the control theory application. 
This form replaces Eq. (1) and can be defined by the 
next formula:

 dx
dt

f X Ui
i , , Ni ,...,2,1 (5)      

This system together with equations (2), (3) and 
(4) composes the continuous form of the design 
process. The structural basis of different design 
strategies that correspond to the fixed control vector
U includes 2M design strategies. The functions of the 
right hand part of the system (5) can be determined 
for example for the gradient method as:
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is equal to  x t dti  ;   i X is the implicit function 
(  x Xi i ) that is determined by system (2).

The control variables u j have the time 
dependency in general case. The equation number j
is removed from (2) and the dependent variable 
xK j is transformed to the independent when u j =1. 
This independent parameter is defined by the 
formulas (5), (6'). In this case there is no difference 
between formulas (6) and (6'). On the other hand, 
the Eq. (5) with the right part (6') is transformed to 
the identity d x

d t
d x
d t

i i , when u j =0, because 

      iii
s
ii dxdttxtxxX  . It means that at 

this time moment the parameter xi is dependent one 
and the current value of this parameter can be 
obtained from the system (2) directly. This 
transformation of the vectors X and X can be 
done at any time moment.
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It is necessary to find the optimal behavior of the 
control functions u j during the design process to 
minimize the total computer time of designing. The 
functions  f X Ui , are piecewise continued as the 
temporal functions and the optimal structure of 
these functions can be found by means of 
approximate methods of the control theory [15-16].

The idea of the system design problem 
formulation as the functional minimization problem 
of the control theory is not depend on the 
optimization method and can be embedded into any 
optimization procedures. In this paper the gradient 
method is used, nevertheless any optimization 
method can be used as shown in [13-14].

Now the analog system design process is 
formulated as a dynamic controllable system. The 
time-optimal design process can be defined as the 
dynamic system with the minimal transition time in 
this case. So we need to find the special conditions 
to minimize the transition time for this dynamic 
system.

3 Lyapunov Function
On the basis of the analysis in previous section we 
can conclude that the minimal-time algorithm has 
one or some switch points in control vector where 
the switching is realize among different design 
strategies. As shown in [17] it is necessary to switch 
the control vector from like modified traditional 
design strategy to like traditional design strategy 
with an additional adjusting.

The main problem of the time-optimal algorithm 
construction is unknown optimal sequence of the 
switch points during the design process. We need to 
define a special criterion that permits to realize the 
optimal or quasi-optimal algorithm by means of the 
optimal switch points searching. On the other hand 
a Lyapunov function of dynamic system serves as a 
very informative object to any system analysis in 
the control theory. We suppose that the Lyapunov 
function can be used for the revelation of the 
optimal algorithm structure. First of all we can 
compare the behavior of the different design 
strategies by means of the Lyapunov function 
analysis. 

There is a freedom of the Lyapunov function 
choice because of a non-unique form of this 
function. Let us define the Lyapunov function of 
the process of designing (2)-(6) by means of the 
following expression:

    
i

ii axXV 2 (7)

where ia is the stationary value of the coordinate 

ix . In other words the set of all the coefficients ia
is the main objective of the process of designing. 
The function (7) satisfies all of the conditions of the 
standard Lyapunov function definition for the 
variables iii axy  . In fact the function 

  
i

iyYV 2 is the piecewise continue. Besides 

there are three characteristics of this function: i) 
V(Y)>0, ii) V(0)=0, and  iii)   YV when 

Y . Inconvenience of the formula (7) is an 

unknown point A=  Naaa ,...,, 21 , because this 
point can be reached at the end of the design 
process only. We can use this form of the Lyapunov 
function if we already found the design solution 
someway. On the other hand, it is very important to 
control the stability of the design process during the 
optimization procedure. In this case we need to 
construct other form of the Lyapunov function that 
doesn’t depend on the unknown stationary point.
Let us define the Lyapunov function of the design 
process (2)-(6) by the following expression:

    rUXFUXV ,,  (8)
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where F(X,U) is the generalized cost function of the 
design process. The formula (8) can be used when 
the general cost function is non-negative and has 
zero value at the stationary point a. Other formula 
(9) can be used always because all derivatives 

ixF  / are equal to zero in the stationary point a.
We can define now the design process as a 

transition process for controllable dynamic system 
that can provide the stationary point (optimal point 
of the design procedure) during some time. The 
problem of the construction of the time-optimal 
design algorithm can be formulated now as the 
problem of the transition process searching with the 
minimal transition time. There is a well-known idea 
[18-19] to minimize the time of transition process 
by means of the special choice of the right hand part 
of the principal system of equations, in our case 
these are the functions  UXf i , . It is necessary to 
change the functions  UXf i , by means of the 
control vector U selection to obtain the maximum 
speed of the Lyapunov function decreasing (the 
maximum absolute value of the time derivative of 
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Lyapunov function dtdVV /


). Normally the time 
derivative of Lyapunov function is non-positive for 
the stable processes. However we define more 
informative function as a relatively time derivative 

of the Lyapunov function: VVW /


 . In this case we 
can compare the different strategies by means of the 
analysis of behavior of the function W(t).

4 Analysis of Different Strategies
All examples have been analyzed for the continuous 
form of the optimization procedure (5). Lyapunov 
function V(t) and some other functions that been 
produced from V(t) were the main objects of the 
analysis. The behavior of all these functions have
been analyzed for all strategies that compose the 
structural basis of the general design methodology. 
We need to analyze some special functions for the 
definition of the rigorous correlation between the 
CPU time and the properties of Lyapunov function.
The cost function  C X has been determined as the 
sum of the squared differences between beforehand-
defined values and current values of the nodal 
voltages for some nodes. All results were obtained 
by parallel computing for different strategies of 
designing. This computing was emulated on PC.

4.1 Example 1
The two-node network is shown in Fig. 1. 

Fig. 1.  Two-node nonlinear passive network.

The nonlinear element has the following 
dependency:  2

2101 VVbyyn  . The vector X

includes five components: 1
2
1 yx  , 2

2
2 yx  , 3

2
3 yx  , 

14 Vx  , 25 Vx  . The model of this network (2) 
includes two equations (M=2) and the optimization 
procedure (5) includes five equations. The cost 
function  C X has been determined by the 

formula    215 mxXC  , where 1m is a 
beforehand-defined output voltage of the divider.

This network is characterized by two dependent 
parameters (two nodal voltages) and the control 
vector includes two control functions: U=  21,uu . 
The structural basis of the design strategies includes 
four design strategies with the control vectors: (00), 
(01), (10), and (11). The Lyapunov function was 
calculated by formula (8) for r=0.5. 

The results of the analysis of complete structural 
basis of different strategies of designing for network 
in Fig. 1 and initial point 10 ix , i = 1,2,…,5 are 
shown in Table 1.

Table 1. Data of complete structural basis of 
designing strategies.

The behavior of the functions V(t) and W(t) for 
the network in Fig. 1 is shown in Fig. 2.

Fig. 2.  Behavior of the functions V(t) and W(t) for 
four design strategies during the design process for 

network in Fig.1.

As we can see from Fig. 2 the functions V(t) and 
W(t) can  give  an  exhaustive   explanation   for   
the design process characteristics. A greater 
absolute value of the function W(t) corresponds to a 
more rapid decreasing of the function V(t). We can 
state that the greater absolute value of the function 
W(t) on initial part of the design process provoke 
the lesser computer time. On the other hand the 
function W(t) is a normalized derivative and for this 
reason it is very sensitive. The behavior of this 

N Control Iterations Total
vector number design

time (sec)
1 (0 0) 406308 8.52 
2 (0 1) 455191 3.96 
3 (1 0) 226909 3.31 
4 (1 1) 451090 2.81 
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function for various strategies is non monotonic, 
and there are some intersections between the 
functions belonging to different strategies as we can 
see in Fig. 2. This complicates the identification of 
the best and the worst strategies. One of the 
strategies can be identified as the best for one time
interval, and another strategy is the best for other 
time interval. We can assume that the area under the 
curve -W(t) may be the best way to predict the CPU 
time, as important to the behavior of this function at 
a certain time range, rather than a specific point. In 
this case, it makes sense to introduce a new function 
defined by the integral of the function W(t), which 
will serve as a criterion for analyzing of dynamic 
properties for a Lyapunov function.

     
  

 

 
tV

V

tt

V
tV

V
dVdt

Vdt
dVdttWtS

000 0
ln1 (10)

The behavior of the function S(t) for all
strategies of the Table 1 is presented in Fig. 3.

The curves of the functions W(t) are presented 
also in this figure for comparing both types of 
dependencies. The curves W(t) have intersections 
but the curves S(t) do not have intersections. We 
can see that all curves corresponding to the function 
S(t) are very well regulated as in design time and in 
absolute value of this function. There is a
correlation between the function S(t) and a 
computer time. The strategy that has a lesser
computer time of designing, it has a greater value of 
the function S(t) at any time moment.

Fig. 3. Behavior of the functions W(t) and S(t) for 
all strategies of structural basis during the design 

process for network in Fig. 1.

Hypothesis 1. There is a strong correlation between 
the behavior of the Lyapunov function of the
process of designing and a full CPU time of 
designing.

4.2 Example 2
Another passive nonlinear network with three nodes 
(Fig. 4) was analyzed below.  

Fig. 4. Three-node nonlinear passive network.

The nonlinear elements have been defined by 
following dependencies:  2

21111 VVbay nnn  , 

 2
32222 VVbay nnn  . The vector X includes 

seven components: 1
2
1 yx  , 2

2
2 yx  , 3

2
3 yx  , 4

2
4 yx  , 

15 Vx  , 26 Vx  , 37 Vx  . The model of this 
network (2) includes three equations (M=3) and the 
optimization procedure (1) includes seven 
equations. This network is characterized by three 
dependent parameters and the control vector 
includes three control functions: U=  321 ,, uuu . 
The cost function  C X has been determined as:

     226
2

17 mxmxXC  , where 1m and 2m
are the beforehand-defined voltages of the circuit.

The results of the analysis for a complete 
structural basis of the design strategies and for 
initial point 10 ix , i = 1,2,…,7 are shown in 
Table 2.

Table 2. Data of complete structural basis of 
strategies of designing for network in Fig. 4.

The behavior of the functions W(t) and S(t)
during the design process is shown in Fig. 5.

N Control Iterations Total
vector number design

time (sec)
1 ( 0 0 0 ) 104961 5.72  0
2 ( 0 0 1 ) 270001 5.71  0
3 ( 0 1 0 ) 74428 1.65  0
4 ( 0 1 1 ) 80317 0.93
5 ( 1 0 0 ) 102500 2.53  0
6 ( 1 0 1 ) 253473 4.34  0
7 ( 1 1 0 ) 157583 2.63  0
8 ( 1 1 1 ) 246776 1.92  0
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Fig. 5. Behavior of the functions W(t) and S(t) for 
all strategies of structural basis during the design 

process for network in Fig. 4.

There is a strong correspondence between the 
time of the designing shown in Table 2 and the 
dependencies S(t) in Fig. 5. The less time is one or 
another strategy, the higher is its graph. One can 
note an important difference between the behavior 
of the function S(t) and the function W(t). The 
relative derivative W(t), corresponding to the
different strategies have intersections, which 
prevents the unequivocal determination of the best 
strategy. Dependence of S(t) such intersections do 
not have.

Results corresponding the optimization of this 
circuit by means of different strategies support the 
conclusion of a complete correlation between the 
CPU time and the behavior of the function S(t).

4.3 Example 3
Other three examples correspond to the designing of 
transistors’ networks. The cost function  C X in 
these cases has been determined as the sum of the 
squared differences between beforehand-defined 
values of voltages on transistors’ junctions and the 
current values of these voltages.

The next example corresponds to the designing
of a single-stage transistor amplifier shown in Fig. 
6. The vector X includes six components: 1

2
1 yx  , 

2
2
2 yx  , 3

2
3 yx  , 14 Vx  , 25 Vx  , 36 Vx  . 

The model of this network (2) includes three 
equations (M=3).

The optimization procedure (5) includes six 
equations. The total structural basis contains eight 
different design strategies. The control vector 
includes three control functions: U=  321 ,, uuu .
The Ebers-Moll static model of the transistor has 
been used [20].

Fig. 6. One-stage transistor amplifier.

The results of the process of designing for all 
strategies of the complete structural basis are given 
in Table. 3.

Table 3. Data of complete structural basis of 
strategies of designing for one-stage transistor 

amplifier.

The corresponding dependences of the function 
S(t) during the design process are presented in 
Fig. 7.

Fig. 7. Behavior of the functions S(t) for different 
design strategies of structural basis during the 

design process for one-stage transistor amplifier.

N Control Iterations Total
vector number design

time (sec)
1 ( 0 0 0 ) 418791 26.970
2 ( 0 0 1 ) 95396 5.051
3 ( 0 1 0 ) 615254 39.722
4 ( 0 1 1 ) 53218 2.581
5 ( 1 0 0 ) 393730 22.310
6 ( 1 0 1 ) 56821 2.913
7 ( 1 1 0 ) 292356 14.834
8 ( 1 1 1 ) 7234 0.111
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Comparing the behavior of S(t) during the design 
process in this figure and the behavior of W(t) for 
the same example in paper [21] shows the 
advantages of using the function S(t). The graphs of 
W(t) have many intersections, and the ranking of 
strategies for the best and the worst may be done 
from the data [21] only in average sense, but Fig. 7
gives us the reasonably argued what of the strategies 
is the best or the worst directly.

4.4 Example 4
This example corresponds to the design of a two-
stage transistor amplifier showed in Fig. 8. 

Fig. 8. Two-stage transistor amplifier.

The vector X includes ten components: 1
2
1 yx  , 

2
2
2 yx  , 3

2
3 yx  , 4

2
4 yx  , 5

2
5 yx  , 16 Vx  , 27 Vx  , 

38 Vx  , 49 Vx  , 510 Vx  . The model of this 
network (2) includes five equations (M=5) and the 
optimization procedure (5) includes ten equations. 
The total structural basis contains 32 different 
design strategies. The control vector includes five 
control functions: U=  54321 ,,,, uuuuu .

The results of the process of designing for some 
strategies are given in Table. 4.

Table 4. Data of some strategies for two-stage 
transistor amplifier.

Fig. 9. Behavior of the functions S(t) for different 
design strategies of structural basis during the 

design process for two-stage transistor amplifier.

The corresponding dependences of the function 
S(t) during the designing process are presented in 
Fig. 9 for all strategies of Table 4.

Comparing the behavior of curves corresponding 
to the function S(t) in this figure with the data of 
CPU time from the Table 4 can be stated a very 
strong correlation of two these characteristics.

Summarizing the results of the analysis can 
be argued that Hypothesis 1 is confirmed in 
full, that is, the behavior of the function, the 
derivative of Lyapunov function of the 
designing process and that is calculated as the 
logarithm of the Lyapunov function related to 
the total CPU time that is required to optimize 
the circuit. Knowledge of the behavior of this 
function at the initial stage of the optimization 
process serves to estimate the total CPU time of 
designing of the electronic system.

5 Conclusion
The problem of the construction of minimal-time 
algorithm of designing can be solved adequately on 
the basis of the control theory. The designing
process in this case is formulated as the controllable 
dynamic system. The Lyapunov function and its 
time derivative include the sufficient information to 
select more perspective design strategies from 
infinite set of the different strategies of designing 
that exist into the general methodology of 
designing. The special functions W(t) and S(t) have 
been proposed to predict the better designing 
strategies with a minimal designing time. These 
functions can be used as the principal tool to the 
prediction of the optimal in time algorithm of 
designing. The successful solution of this problem 

N Control Iterations Total
vector number design

time (sec)
1 ( 0 0 0 0 0 ) 165962 107.872
2 ( 0 0 0 0 1 ) 337487 263.481
3 ( 0 0 1 0 0 ) 44118 24.610
4 ( 0 0 1 0 1 ) 14941 6.540
5 ( 0 0 1 1 1 ) 21971 7.361
6 ( 0 1 1 0 1 ) 4544 1.543
7 ( 1 0 1 0 1 ) 2485 0.592
8 ( 1 0 1 1 1 ) 7106 1.212
9 ( 1 1 1 0 1 ) 2668 0.440

10 ( 1 1 1 1 1 ) 79330 3.411
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permits us to construct the algorithm with a 
minimal CPU time.
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