
An FPGA Implementation of an LMS Self-Adjusting Adaptive Noise
Cancellation System for Audio Processing

NIAN ZHANG, TAM LE, SASAN HAGHANI
Department of Electrical and Computer Engineering

University of the District of Columbia
4200 Connecticut Ave, NW, Washington, D.C.

USA
nzhang@udc.edu, tam.le@udc.edu, shaghani@udc.edu

Abstract: - This paper presents the design and implementation of adaptive filter using software/hardware co-design
concepts and tools for noise cancellation. The adaptive filter system based on the least-mean-square algorithm was
analyzed using the MATLAB/Simulink model, and it later was automatically converted from floating point to fixed
point for an Intellectual Property Core. This IP Core was placed in Vivado Synthesis Design for synthesis and
implementation. Finally, the debugger was run before the audio file was fed in Zedboard, a development board for the
Xilinx Zynq. Experimental results show that the proposed hardware implementation method has a high degree of
noise cancellation performance.

Key-Words: - FPGA, Least mean square, Intellectual property (IP), Adaptive filters, Adaptive noise cancellation,
Matlab Simulink, Vivado Hlx

1 Introduction
In the last decades, adaptive filters design has been a

very active area of research and innovative FPGA
implementations [1][2]. Adaptive filters are a neural
network based filters that can self-adjust its coefficients
based on some optimizing algorithms. Adaptive filters
have numerous important real-world applications in a
wide range of signal processing, control, and
communications fields including: 1) signal detection; 2)
echo cancellation; 3) noise cancellation and/or
suppression; 3) channel equalization; 4) system
identification and inverse modeling of unknown systems;
5) forward and backward predictions and adaptive
tracking; and 6) spectral analysis.

Among these applications, the FPGA hardware
implementations are extremely important whenever real-
time parallel processing is needed [3]. State-of-the-Art
technological advances in VLSI fabrications have enable
field-programmable gate arrays (FPGA) the platform of
hardware implementations, especially when timing
requirement is very strict. Such hardware
implementations can be realized using hardware
description languages such as VHDL or Verilog.
Modern FPGA chip design contains numerous resources
that are essential for digital signal processing
applications such as embedded multipliers, multiply-

accumulate units, soft and hard processor cores, and
embedded memory blocks [4]. The powerful integration
of available hybrid software and hardware co-design and
synthesis packages, advanced FPGA boards, Intellectual
property (IP) designs, and tools that allow seamless
integration between these software and hardware design
packages has made FPFA software/hardware co-design a
methodology of choice for many of real-time
applications.

The rest of the paper is organized as follows. In
Section 2, the problem formulation and the neural
network model are discussed where an overview of the
least mean square (LMS) algorithm is given and the
implementation of the design in the FPGA Zynq
evaluation kit is described. In Section 3, the details of
the software/hardware codesign are discussed in detail.
Experimental results are given in Section 4. Finally, the
paper is concluded in Section 5.

2 Different Neural Network Models for
Adaptive Noise Cancellation Problem

The most commonly-used algorithm to design
adaptive filter is called least mean square (LMS)
algorithm, originally developed by Widrow and Hoff
[5]. The LMS algorithm is based on the principle of the
steepest descent algorithms with minimum mean square

Nian Zhang et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 43 Volume 2, 2017

error. The greatest benefit is that it does not require
exact measurements of the gradient vector, nor does it
requires matrix inversion. The LMS algorithm is used to
solve the Wiener-Hoff equation by searching for the
optimal coefficients weights for an adaptive filter.
Another main advantage of the LMS algorithm is its
computational simplicity, ease of implementation, and
unbiased convergence. A block diagram of an adaptive
noise cancellation system is shown in Fig. 1.

Fig. 1. Block diagram of a typical adaptive noise

cancellation system

The vector 𝑋(𝑘) denotes an input vector with time

delay and x(k) is the input value at time k , that is:
𝑋(𝑘) = [𝑥(𝑘) 𝑥(𝑘 − 1) … 𝑥(𝑘 − 𝑁 + 1)]𝑇 (1)

The vector 𝑊(𝑘) is used to represent the weights
applied to the filter coefficients at at time 𝑘 and is given
as:
𝑊(𝑘) = [𝑊0(𝑘) 𝑊1(𝑘) … 𝑊𝑁−1(𝑘)]𝑇 (2)

The step size parameter 𝜇 is the step size of the

adaptive filter.
𝑒(𝑘) is the error between the desired response 𝑑(𝑘)

and the output of the filter 𝑦(𝑘), i.e., the filtered signal,
at time 𝑘.

 The pseudo code of an LMS algorithm is described
in Table 1. The algorithm is adopted to update the
coefficients of a finite impulse response (FIR) filter.

Table 1 The pseudo code of an LMS algorithm

1. Calculate the output signal y(k) of the FIR filter.
The output of the filter represents an estimate of the
desired response. y(k) is the calculated as the
convolution of the weight vector and the input
vector:
𝒚(𝒌) = ∑ 𝑾𝒏(𝒌)𝒙(𝒌 − 𝒏) = 𝑾𝑻(𝒌)𝒙(𝒌)𝑵−𝟏

𝒏=𝟎 (3)
2. The error signal e(k), is estimation error defined as
the difference between the estimated response and
the desired response.

e(k) = d(k) – y(k) (4)
3. The error signal and the input signal are applied to
the weight update algorithm to updates the filter
coefficients.

The LMS algorithm updates its coefficients through
the minimization of the mean of the instantaneous
squared error denoted by 𝐸[𝑒2(𝑘)] . While X(k) and
W(k) are assumed to be independent, the LMS algorithm
assumes that x(k) and d(k) are wide-sense stationary
ergodic processes, and therefore their means and
variances are constant. The iterative weight update
procedure of the LMS algorithm is shown in the
following equation [4].

𝑊(𝑘 + 1) = 𝑊(𝑘) + 2µ*e(k)*X(k) (5)
The selection of the step size parameter µ plays an

important role in updating of the system coefficients and
thus can affect the system performance. While a
relatively small µ value could result in longer
convergence time to find an optimal solution, selecting a
larger µ value may lead to unstable convergence and a
diverge output. For the consideration of stable behavior
and convergence, the step size must be a small positive
value (µ << 1) and meet the following criteria:
0 < µ < 1

2∗𝑁∗𝑅
 (6)

Where N is the number of taps of the filter and R is the
input signal covariance matrix defined as
𝑅 = 𝐸(𝑋(𝑛) ∗ 𝑋𝑇(𝑛)) (7)

3 FPGA Implementation
3.1 Zynq Evaluation Kit

Eventually, the complete design will be implemented
and exported to work with FPGA Zyn Evaluation Kit
[7]. The software design using Simulink LMS Filter
block is converted to an Intellectual Property (IP) Core,
which is connected with Zynq Processing system and
communicate with target interface platform AXI4-Lite.
AXI stands for Advanced eXtensible Interface, and the
current version is AXI4. The AMBA standard was
originally developed by ARM for use in
microcontrollers. AXI buses can be used flexibly, and in
the general sense are used to connect the processor(s)
and other IP blocks in an embedded system.

AXI4-Lite provides a simplified link supporting only
one data transfer per connection (no burst). It also is
memory-mapped, an address and single data word are
transferred. It means data is then written to, or read
from, the specified address; in the case of AXI4 bursts,
the address specified is for the first data word to be
transferred, and the slave must then calculate the
addresses for the data words that follow [8]. We also
mention using AXI4-Lite as Target Interface, which
defined as point-to-point connection for passing data,

Nian Zhang et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 44 Volume 2, 2017

addresses, and hand-shaking signals between master and
slave clients within the system.

3.2 FPGA Implementation
The design and implementation of adaptive filter

involves multiple steps and process before the design is
completely exported and launched on Hardware (System
debugger), as shown in Fig. 2a. Using both Simulink and
Vivado Synthesis Design are the final option in
Adaptive filter implementation due to the support
between two platforms.

Fig. 2a. Software\Hardware co-design of LMS adaptive
filter

A Software Development Kit (SDK) is launched to
import necessary drivers and C++ files used for
hardware implementation. Generally, whole process is
organized with following steps.

Step 1: Design Adaptive Filter LMS using Matlab
Simulink DSP Toolbox with HDL Support blocks..
Filter block has to be supported by HDL Coder that it is
able to convert to IP Core (lms_pcore), which later will
be added into Vivado Synthesis Design Environment for
Register Transfer Level design

Step 2: Give input samples and simulate the Simulink
design [6].

Step 3: Generate RTL design by converting LMS design
in Simulink to an Intellectual Property (IP) Core using
HDL Coder Support.

Step 4: Target platform interface AXI4-Lite for signal
x(k), d(k), and e(k).

Step 5: Design a complete system of Filter based on
Zynq board target architecture using Vivado Synthesis
Design and VHDL target language. A complete design
of IPs core includes lms_pcore, switches and buttons IP

core, processing system IP core, and AXI Interconnect
altogether wired, synthesized, and implemented.

Step 6: Synthesis, implement, and export the complete
design into Hardware.

Step 7: Launch Software Development Kit (SDK) to
generate all drives, input C++ files, and input signal
needed.

Step 8: Run System Hardware Debugger to Zedboard,
and run test.

HDL Coder plays an important role in converting
LMS Filter from Simulnk design to an IP Core in
Vivado Synthesis Design. HDL Coder is a built-in
MathWorks product which enables the synthesizable
HDL codes generation from MATLAB functions and
Simulink models. It provides a workflow which analyzes
a MATLAB/Simulink model and then converts the
floating point signals to fixed point signals. This benefits
the users on the development of algorithms and models
without lower-level HDL code design. The HDL code
optimization will give the option of choosing the desired
FPGA device so that it can provide specified control
during the implementation, implementing data paths,
controlling the HDL architecture, and generating
hardware resource utilization. Once generated by HDL
Coder, the HDL code can be used to create an IP core, as
detailed In Fig 2b.

Fig. 2b. HDL Coder Flow

4 Experimental Results
We implemented the FPGA design of the adaptive

noise cancellation system based on the least mean square
(LMS) algorithm based on the steps described in Section
III.
• This design required the latest Simulink library to be

properly installed. There exist many type of LMS

Nian Zhang et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 45 Volume 2, 2017

filters, as shown in Fig. 3. In order to fit our design,
the DSP System Toolbox HDL Support LMS Filter is
selected. Only this block later will be converted to an
IP for synthesis design.

Fig. 3. the LMS Block in Simulink Library

LMS Filter is configurable to fit our design, and we

assign signals x(k), d(k), and e(k), to denote the input,
the desired signal and the error signal, respectively, as
shown in Fig. 4. In order for the HDL Coder to generate
HDL codes for the Simulink LMS model, the input type
must be fixed-point number. Pair of DATA Type
Conversion blocks converts the corrupt audio signals and
the tonal noise signals to fixed-point signals. These
fixed-point signals are then provided to the LMS
subsystem. The error signal, e(k), along with the corrupt
audio and tonal noise input are transmitted to a scope for
visual inspection of the signal. Two blocks called To
Workspace make the LMS output and the corrupt audio
signals to be the Matlab workspace variables for audio
playback.

Fig. 4. the LMS Subsystem with parameters chosen.
Adaptive Filter coefficients = 16 and step size = 0.13

This step size is then calculated following Eq. (6).
The selection of the step size parameter µ plays an
important role in updating of the system coefficients and
thus has a major impact on the performance of the LMS
algorithm. The smaller the µ, the longer it takes for the

adaptive filter to converge to the optimal solution. The
complete design in Simulink is shown in Fig. 5.

Fig. 5. Complete of Simulink design of LMS Filter

• We simulate Simulink LMS filter design, as shown in

Fig. 6. As expected, the Sine wave block generates
sinusoidal noise signal, adding with an audio input
signal file to generate the total noise, and which will
be filtered out via LMS filter block. Each signal is
linked with an output scope to observe output
waveforms.

Fig. 6. The first signal represents the audio input (From
Workspace). The second one represents the total noise.
And the other represent for filtered noise through LMS
system. The final output demonstrates the efficiency of
LMS filter in noise filtering of this design.

• After Simulink Simulation is successfully run, the

LMS filter block will be used for Register Transfer
level Design, by converted it to an Intellectual
Property (IP) Core using HDL Coder Support. As
mention earlier, the HDL code optimization will give
the option of choosing the desired FPGA device so
that it can provide specified control during the
implementation, implementing data paths, controlling
the HDL architecture, and generating hardware
resource utilization. This platform, as shown in Fig. 7
gives converting target as using Xilinx Vivado

Nian Zhang et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 46 Volume 2, 2017

synthesis tool, and target device for implementation.
The next step describes how to target communication
between IP blocks and processing units by applying
AXI4-Lite interfaces.

Fig. 7. ZedBoard HDL Workflow Advisor Input
Parameters (Set Target).

• Another important point is to establish communication
stream between each components and IP blocks in
Evaluation boards. As mentioned earlier, the target
interface uses AXI4-Lite as a point-to-point
connection to transmit data, addresses, and hand-
shaking signals between master and slave clients.

AXI4-Lite provides a link to support single data
transfer per connection (no burst). All the signals x(k),
d(k), and e(k) are assigned with AXI4-Lite interfaces,
Port type, Data type, and Bit Range, as shown in Fig.
8.

Fig. 8. Target Platform Interface AXI4-Lite for x(k),
d(k), and e(k), as well as with Port type, Data Type, and
Bit Range.

The final IP Core of LMS Filter is transformed into a

single Core block that is able to implement into Vivado
Synthesis environment, as shown in Fig. 9. The
lms_pcore (LMS Filter IP Core) block contains all
configurable settings that are set up on previous steps,
including AXI4-Lite Interfaces. The next step describes
how this block will be imported into Vivado Synthesis
Design environment.

Fig. 9. An Intellectual Property (IP) Core is generated
configured with AXI4-Lite Interface

• The IP Core of LMS Filter (lms_pcore) is eventually

imported into Vivado Synthesis Design environment,
as shown in Fig. 10. Then the LMS Core will go
through process of Package IP. This step allows
packaging HDL Coder generated IP blocks in IP
Package for use in Vivado IP Integrated designs.

The whole IP block design involves multi different

IPs, all are connected with AXI4-Lite interfaces. The
complete design of LMS is shown in figure below. In
this schematic, ninth IP Core blocks are presented: lms
IP, AXI Interconnect IP, Processor System Reset IP,
LED Controller IP, ZYNQ Processing System IP, Zed
Audio IP, NCO (Numerical Controlled Oscillator) IP,
AXI_GPIO_0 IP, AXI_GPIO_1 IP.
LMS IP: contains the design and algorithm of LMS
Filter.
AXI Interconnect IP: contains the configuration of
AXI4-Lite interfaces.
Processor System Reset IP: contains the reset function of
Zynq Board.
LED Controller IP: contains the functionality of LEDs.
ZYNQ Processing System IP: contains the logic of Zynq
Processing system.
Zed Audio IP: contains the driver of Zedboard Audio
map.
Numerical Controlled Oscillator (NCO) IP: contains a
digital signal generator which produces a clocked
synchronous, discrete-time, and discrete-valued
representation of a waveform, i.e. sine waveform.
AXI_GPIO_0 IP, and AXI_GPIO_1 IP: connect to
buttons and switches.
The next step is synthesis, implement, and export the
complete design into Hardware.

• After the IP block design is complete, it is synthesized,

implemented to verify the design requirement, and
exported to hardware.

Nian Zhang et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 47 Volume 2, 2017

 Fig. 10. The complete IP Core design of LMS system

• The Xilinx software development kit is used to create

an integrated design environment for various
embedded applications by applying all drivers, and
C++ files needed to let IP Core design operate and
debug. All C++ files and drivers after imported in
SDK later will be debugged via System Debugger.

• After the SDK part is finished, System Hardware
Debugger is run to debug all necessary files into
hardware board, as shown in Fig. 11. This step
includes connecting Zynq board with computer for
feeding audio in; and speaker will be connected at port
out. The board is connected with computer by JART
port and PROG USB port. Putty is used as machine to
machine communication tool to communicate between
computer and Zynq board to give operation command.

 Fig. 11. The overview of hardware implementation

Sinusoidal noise is added to audio input by switching
switch on Zed board. Each switch contains a different
numerical step size, and an adding of switch at same
time will add the higher amplitude noise with higher
pitch. Button is used to apply filter algorithm to filter out
total noise. The Filter operation is given through Putty
Serial Communication with Zed’s USB COM port as
shown in the Fig. 12.

Fig. 12. Putty display of LMS operation in noise-adding
audio signal.

5 Conclusions
In this research an adaptive filter system was

successfully completed, and deployed with
software/hardware co-design method. The adaptive filter
system was analyzed using the MATLAB/Simulink
model, and it later was automatically converted from
floating point to fixed point for an Intellectual Property
Core. This IP Core was placed in Vivado Synthesis
Design for synthesis and implementation. Finally, the
debugger was run before the audio file was fed in
Zedboard. The design method can be applied to any type
of FPGA under the Zynq family as long as this design is
supported by the DSP-HDL Tool Support. The LMS
Filter was processed and implemented to the FPGA
board since it is supported by HDL. Experimental results
show that the proposed hardware implementation
method has a high degree of noise cancellation
performance.

ACKNOWLEDGMENT

This work was supported by the National Science
Foundation (NSF) grants: HRD #1505509, #1654474,
#1533479, and HRD #1435947.

Nian Zhang et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 48 Volume 2, 2017

References:
[1] Wagdy H. Mahmoud and Nian Zhang,

Software/Hardware Implementation of an Adaptive
Noise Cancellation System, 120th ASEE Annual
Conference & Exposition, Atlanta, GA, June 23-26,
2013.

[2] Nian Zhang, Investigation of Fault-Tolerant
Adaptive Filtering for Noisy ECG Signals, 2007
IEEE Symposium on Computational Intelligence in
Image and Signal Processing (CIISP), Honolulu, HI,
pp. 177-182, April 1-5, 2007.

[3] M. I. Troparevsky, C. E. D’Attellis, On the
convergence of the LMS algorithm in adaptive
filtering, Signal Processing Vol. 84, pp. 1985-1988,
October 2004.

[4] Ahmed Elhossini, Shawki Areibi, Robert Dony, An
FPGA Implementation of the LMS Adaptive Filter
for Audio Processing, Proceedings of IEEE
International Conference on reconfigurable
Computing and FPGS’s (ReConFig 2006), pp. 1-8,
2006.

[5] A. Rosado-Muñoz, M. Bataller-Mompe, E. Soria-
Olivas, C. Scarante, J. F. Guerrero-Martínez, FPGA
Implementation of an Adaptive Filter Robust to
Impulsive Noise: Two Approaches, IEEE
Transactions on Industrial Electronics, Vol. 58, No.
3, pp. 860-870, March 2011.

[6] https://www.mathworks.com/help/hdlcoder/example
s/basic-hdl-code-generation-with-the-workflow
advisor.html

[7] http://www.zynqbook.com/
[8] https://www.xilinx.com/support/answers/66421.html

Nian Zhang et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 49 Volume 2, 2017

https://www.mathworks.com/help/hdlcoder/examples/basic-hdl-code-generation-with-the-workflow-advisor.html
https://www.mathworks.com/help/hdlcoder/examples/basic-hdl-code-generation-with-the-workflow-advisor.html
https://www.xilinx.com/support/answers/66421.html

	1 Introduction
	2 Different Neural Network Models for Adaptive Noise Cancellation Problem
	3 FPGA Implementation
	3.1 Zynq Evaluation Kit

	3.2 FPGA Implementation
	4 Experimental Results
	5 Conclusions
	Acknowledgment
	References:

