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Abstract: - This paper presents the design and implementation of adaptive filter using software/hardware co-design 
concepts and tools for noise cancellation. The adaptive filter system based on the least-mean-square algorithm was 
analyzed using the MATLAB/Simulink model, and it later was automatically converted from floating point to fixed 
point for an Intellectual Property Core. This IP Core was placed in Vivado Synthesis Design for synthesis and 
implementation. Finally, the debugger was run before the audio file was fed in Zedboard, a development board for the 
Xilinx Zynq. Experimental results show that the proposed hardware implementation method has a high degree of 
noise cancellation performance. 
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1 Introduction 
In the last decades, adaptive filters design has been a 

very active area of research and innovative FPGA 
implementations [1][2]. Adaptive filters are a neural 
network based filters that can self-adjust its coefficients 
based on some optimizing algorithms. Adaptive filters 
have numerous important real-world applications in a 
wide range of signal processing, control, and 
communications fields including: 1) signal detection; 2) 
echo cancellation; 3) noise cancellation and/or 
suppression; 3) channel equalization; 4) system 
identification and inverse modeling of unknown systems; 
5) forward and backward predictions and adaptive 
tracking; and 6) spectral analysis.  

Among these applications, the FPGA hardware 
implementations are extremely important whenever real-
time parallel processing is needed [3]. State-of-the-Art 
technological advances in VLSI fabrications have enable 
field-programmable gate arrays (FPGA) the platform of 
hardware implementations, especially when timing 
requirement is very strict. Such hardware 
implementations can be realized using hardware 
description languages such as VHDL or Verilog. 
Modern FPGA chip design contains numerous resources 
that are essential for digital signal processing 
applications such as embedded multipliers, multiply- 

 
 

accumulate units, soft and hard processor cores, and 
embedded memory blocks [4]. The powerful integration 
of available hybrid software and hardware co-design and 
synthesis packages, advanced FPGA boards, Intellectual 
property (IP) designs, and tools that allow seamless 
integration between these software and hardware design 
packages has made FPFA software/hardware co-design a 
methodology of choice for many of real-time 
applications. 

The rest of the paper is organized as follows. In 
Section 2, the problem formulation and the neural 
network model are discussed where an overview of the 
least mean square (LMS) algorithm is given and the 
implementation of the design in the FPGA Zynq 
evaluation kit is described. In Section 3, the details of 
the software/hardware codesign are discussed in detail. 
Experimental results are given in Section 4. Finally, the 
paper is concluded in Section 5. 

2 Different Neural Network Models for 
Adaptive Noise Cancellation Problem  

The most commonly-used algorithm to design 
adaptive filter is called least mean square (LMS) 
algorithm, originally developed by Widrow and Hoff 
[5]. The LMS algorithm is based on the principle of the 
steepest descent algorithms with minimum mean square 
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error. The greatest benefit is that it does not require 
exact measurements of the gradient vector, nor does it 
requires matrix inversion. The LMS algorithm is used to 
solve the Wiener-Hoff equation by searching for the 
optimal coefficients weights for an adaptive filter. 
Another main advantage of the LMS algorithm is its 
computational simplicity, ease of implementation, and 
unbiased convergence. A block diagram of an adaptive 
noise cancellation system is shown in Fig. 1. 

 
Fig. 1. Block diagram of a typical adaptive noise 

cancellation system 
 
The vector 𝑋(𝑘) denotes an input vector with time 

delay and x(k) is the input value at time k , that is: 
𝑋(𝑘) = [𝑥(𝑘)  𝑥(𝑘 − 1) … 𝑥(𝑘 − 𝑁 + 1)]𝑇                (1) 

The vector 𝑊(𝑘)  is used to represent the weights 
applied to the filter coefficients at at time 𝑘 and is given 
as:  
𝑊(𝑘) = [𝑊0(𝑘) 𝑊1(𝑘)  … 𝑊𝑁−1(𝑘) ]𝑇                     (2) 

 
The step size parameter 𝜇  is the step size of the 

adaptive filter. 
𝑒(𝑘) is the error between the desired response 𝑑(𝑘) 

and the output of the filter 𝑦(𝑘), i.e., the filtered signal, 
at time 𝑘. 

 The pseudo code of an LMS algorithm is described 
in Table 1. The algorithm is adopted to update the 
coefficients of a finite impulse response (FIR) filter. 

 
Table 1 The pseudo code of an LMS algorithm 
 

1. Calculate the output signal y(k) of the FIR filter. 
The output of the filter represents an estimate of the 
desired response. y(k) is the calculated as the 
convolution of the weight vector and the input 
vector: 
𝒚(𝒌) =  ∑ 𝑾𝒏(𝒌)𝒙(𝒌 − 𝒏) =  𝑾𝑻(𝒌)𝒙(𝒌)𝑵−𝟏

𝒏=𝟎   (3) 
2. The error signal e(k), is estimation error defined as 
the difference between the estimated response and 
the desired response. 

e(k) = d(k) – y(k)            (4) 
3. The error signal and the input signal are applied to 
the weight update algorithm to updates the filter 
coefficients. 

The LMS algorithm updates its coefficients through 
the minimization of the mean of the instantaneous 
squared error denoted by 𝐸[𝑒2(𝑘)] . While X(k) and 
W(k) are assumed to be independent, the LMS algorithm 
assumes that x(k) and d(k) are wide-sense stationary 
ergodic processes, and therefore their means and 
variances are constant. The iterative weight update 
procedure of the LMS algorithm is shown in the 
following equation [4]. 

𝑊(𝑘 + 1) = 𝑊(𝑘) + 2µ*e(k)*X(k)        (5) 
The selection of the step size parameter µ plays an 

important role in updating of the system coefficients and 
thus can affect the system performance. While a 
relatively small µ value could result in longer 
convergence time to find an optimal solution, selecting a 
larger µ value may lead to unstable convergence and a 
diverge output. For the consideration of stable behavior 
and convergence, the step size must be a small positive 
value (µ << 1) and meet the following criteria: 
0 < µ < 1

2∗𝑁∗𝑅
     (6) 

Where N is the number of taps of the filter and R is the 
input signal covariance matrix defined as 
𝑅 = 𝐸(𝑋(𝑛) ∗ 𝑋𝑇(𝑛))    (7) 

 

3 FPGA Implementation  
3.1 Zynq Evaluation Kit 

Eventually, the complete design will be implemented 
and exported to work with FPGA Zyn Evaluation Kit 
[7]. The software design using Simulink LMS Filter 
block is converted to an Intellectual Property (IP) Core, 
which is connected with Zynq Processing system and 
communicate with target interface platform AXI4-Lite. 
AXI stands for Advanced eXtensible Interface, and the 
current version is AXI4. The AMBA standard was 
originally developed by ARM for use in 
microcontrollers. AXI buses can be used flexibly, and in 
the general sense are used to connect the processor(s) 
and other IP blocks in an embedded system.  

AXI4-Lite provides a simplified link supporting only 
one data transfer per connection (no burst). It also is 
memory-mapped, an address and single data word are 
transferred. It means data is then written to, or read 
from, the specified address; in the case of AXI4 bursts, 
the address specified is for the first data word to be 
transferred, and the slave must then calculate the 
addresses for the data words that follow [8]. We also 
mention using AXI4-Lite as Target Interface, which 
defined as point-to-point connection for passing data, 
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addresses, and hand-shaking signals between master and 
slave clients within the system.  

3.2 FPGA Implementation 
The design and implementation of adaptive filter 

involves multiple steps and process before the design is 
completely exported and launched on Hardware (System 
debugger), as shown in Fig. 2a. Using both Simulink and 
Vivado Synthesis Design are the final option in 
Adaptive filter implementation due to the support 
between two platforms.  

 
 

 
 
Fig. 2a. Software\Hardware co-design of LMS adaptive 
filter 
 

A Software Development Kit (SDK) is launched to 
import necessary drivers and C++ files used for 
hardware implementation. Generally, whole process is 
organized with following steps. 

 
Step 1: Design Adaptive Filter LMS using Matlab 
Simulink DSP Toolbox with HDL Support blocks.. 
Filter block has to be supported by HDL Coder that it is 
able to convert to IP Core (lms_pcore), which later will 
be added into Vivado Synthesis Design Environment for 
Register Transfer Level design 
 
Step 2: Give input samples and simulate the Simulink 
design [6]. 
 
Step 3: Generate RTL design by converting LMS design 
in Simulink to an Intellectual Property (IP) Core using 
HDL Coder Support.  
 
Step 4: Target platform interface AXI4-Lite for signal 
x(k), d(k), and e(k).  
 
Step 5: Design a complete system of Filter based on 
Zynq board target architecture using Vivado Synthesis 
Design and VHDL target language. A complete design 
of IPs core includes lms_pcore, switches and buttons IP 

core, processing system IP core, and AXI Interconnect 
altogether wired, synthesized, and implemented. 
 
Step 6: Synthesis, implement, and export the complete 
design into Hardware. 
 
Step 7: Launch Software Development Kit (SDK) to 
generate all drives, input C++ files, and input signal 
needed. 
 
Step 8: Run System Hardware Debugger to Zedboard, 
and run test.       
      

HDL Coder plays an important role in converting 
LMS Filter from Simulnk design to an IP Core in 
Vivado Synthesis Design. HDL Coder is a built-in 
MathWorks product which enables the synthesizable 
HDL codes generation from MATLAB functions and 
Simulink models. It provides a workflow which analyzes 
a MATLAB/Simulink model and then converts the 
floating point signals to fixed point signals. This benefits 
the users on the development of algorithms and models 
without lower-level HDL code design. The HDL code 
optimization will give the option of choosing the desired 
FPGA device so that it can provide specified control 
during the implementation, implementing data paths, 
controlling the HDL architecture, and generating 
hardware resource utilization. Once generated by HDL 
Coder, the HDL code can be used to create an IP core, as 
detailed In Fig 2b.  

 

 
 

Fig. 2b. HDL Coder Flow 
 

4 Experimental Results 
We implemented the FPGA design of the adaptive 

noise cancellation system based on the least mean square 
(LMS) algorithm based on the steps described in Section 
III. 
• This design required the latest Simulink library to be 

properly installed. There exist many type of LMS 
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filters, as shown in Fig. 3. In order to fit our design, 
the DSP System Toolbox HDL Support LMS Filter is 
selected. Only this block later will be converted to an 
IP for synthesis design.  

 

 
Fig. 3. the LMS Block in Simulink Library 

 
LMS Filter is configurable to fit our design, and we 

assign signals x(k), d(k), and e(k), to denote the input, 
the desired signal and the error signal, respectively, as 
shown in Fig. 4. In order for the HDL Coder to generate 
HDL codes for the Simulink LMS model, the input type 
must be fixed-point number. Pair of DATA Type 
Conversion blocks converts the corrupt audio signals and 
the tonal noise signals to fixed-point signals. These 
fixed-point signals are then provided to the LMS 
subsystem. The error signal, e(k), along with the corrupt 
audio and tonal noise input are transmitted to a scope for 
visual inspection of the signal. Two blocks called To 
Workspace make the LMS output and the corrupt audio 
signals to be the Matlab workspace variables for audio 
playback.  
 

 
 

Fig. 4. the LMS Subsystem with parameters chosen. 
Adaptive Filter coefficients = 16 and step size = 0.13 
 

This step size is then calculated following Eq. (6). 
The selection of the step size parameter µ plays an 
important role in updating of the system coefficients and 
thus has a major impact on the performance of the LMS 
algorithm. The smaller the µ, the longer it takes for the 

adaptive filter to converge to the optimal solution. The 
complete design in Simulink is shown in Fig. 5. 

 
Fig. 5. Complete of Simulink design of LMS Filter 

  
• We simulate Simulink LMS filter design, as shown in 

Fig. 6. As expected, the Sine wave block generates 
sinusoidal noise signal, adding with an audio input 
signal file to generate the total noise, and which will 
be filtered out via LMS filter block. Each signal is 
linked with an output scope to observe output 
waveforms. 

 
Fig. 6. The first signal represents the audio input (From 
Workspace). The second one represents the total noise. 
And the other represent for filtered noise through LMS 
system. The final output demonstrates the efficiency of 
LMS filter in noise filtering of this design.  
 
• After Simulink Simulation is successfully run, the 

LMS filter block will be used for Register Transfer 
level Design, by converted it to an Intellectual 
Property (IP) Core using HDL Coder Support. As 
mention earlier, the HDL code optimization will give 
the option of choosing the desired FPGA device so 
that it can provide specified control during the 
implementation, implementing data paths, controlling 
the HDL architecture, and generating hardware 
resource utilization. This platform, as shown in Fig. 7 
gives converting target as using Xilinx Vivado 
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synthesis tool, and target device for implementation. 
The next step describes how to target communication 
between IP blocks and processing units by applying 
AXI4-Lite interfaces.  

 

 
 
Fig. 7. ZedBoard HDL Workflow Advisor Input 
Parameters (Set Target). 

• Another important point is to establish communication 
stream between each components and IP blocks in 
Evaluation boards. As mentioned earlier, the target 
interface uses AXI4-Lite as a point-to-point 
connection to transmit data, addresses, and hand-
shaking signals between master and slave clients. 

AXI4-Lite provides a link to support single data 
transfer per connection (no burst). All the signals x(k), 
d(k), and e(k) are assigned with AXI4-Lite interfaces, 
Port type, Data type, and Bit Range, as shown in Fig. 
8. 

Fig. 8. Target Platform Interface AXI4-Lite for x(k), 
d(k), and e(k), as well as with Port type, Data Type, and 
Bit Range. 

 
The final IP Core of LMS Filter is transformed into a 

single Core block that is able to implement into Vivado 
Synthesis environment, as shown in Fig. 9. The 
lms_pcore (LMS Filter IP Core) block contains all 
configurable settings that are set up on previous steps, 
including AXI4-Lite Interfaces. The next step describes 
how this block will be imported into Vivado Synthesis 
Design environment.  

 
Fig. 9. An Intellectual Property (IP) Core is generated 
configured with AXI4-Lite Interface 

 
• The IP Core of LMS Filter (lms_pcore)  is eventually 

imported into Vivado Synthesis Design environment, 
as shown in Fig. 10. Then the LMS Core will go 
through process of Package IP. This step allows 
packaging HDL Coder generated IP blocks in IP 
Package for use in Vivado IP Integrated designs.  

 
The whole IP block design involves multi different 

IPs, all are connected with AXI4-Lite interfaces. The 
complete design of LMS is shown in figure below. In 
this schematic, ninth IP Core blocks are presented: lms 
IP, AXI Interconnect IP, Processor System Reset IP, 
LED Controller IP, ZYNQ Processing System IP, Zed 
Audio IP, NCO (Numerical Controlled Oscillator) IP, 
AXI_GPIO_0 IP,   AXI_GPIO_1 IP.  
LMS IP: contains the design and algorithm of LMS 
Filter. 
AXI Interconnect IP: contains the configuration of 
AXI4-Lite interfaces. 
Processor System Reset IP: contains the reset function of 
Zynq Board. 
LED Controller IP: contains the functionality of LEDs. 
ZYNQ Processing System IP: contains the logic of Zynq 
Processing system. 
Zed Audio IP: contains the driver of Zedboard Audio 
map. 
Numerical Controlled Oscillator (NCO) IP: contains a 
digital signal generator which produces a clocked 
synchronous, discrete-time, and discrete-valued 
representation of a waveform, i.e. sine waveform. 
AXI_GPIO_0 IP, and AXI_GPIO_1 IP: connect to 
buttons and switches. 
The next step is synthesis, implement, and export the 
complete design into Hardware. 

 
• After the IP block design is complete, it is synthesized, 

implemented to verify the design requirement, and 
exported to hardware.  
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     Fig. 10. The complete IP Core design of LMS system 
 
• The Xilinx software development kit is used to create 

an integrated design environment for various 
embedded applications by applying all drivers, and 
C++ files needed to let IP Core design operate and 
debug. All C++ files and drivers after imported in 
SDK later will be debugged via System Debugger.  
 

• After the SDK part is finished, System Hardware 
Debugger is run to debug all necessary files into 
hardware board, as shown in Fig. 11. This step 
includes connecting Zynq board with computer for 
feeding audio in; and speaker will be connected at port 
out. The board is connected with computer by JART 
port and PROG USB port. Putty is used as machine to 
machine communication tool to communicate between 
computer and Zynq board to give operation command.  
 

 
 
         Fig. 11. The overview of hardware implementation 

Sinusoidal noise is added to audio input by switching 
switch on Zed board. Each switch contains a different 
numerical step size, and an adding of switch at same 
time will add the higher amplitude noise with higher 
pitch. Button is used to apply filter algorithm to filter out 
total noise. The Filter operation is given through Putty 
Serial Communication with Zed’s USB COM port as 
shown in the Fig. 12. 
 

 
 

Fig. 12. Putty display of LMS operation in noise-adding 
audio signal. 

5 Conclusions 
In this research an adaptive filter system was 

successfully completed, and deployed with 
software/hardware co-design method. The adaptive filter 
system was analyzed using the MATLAB/Simulink 
model, and it later was automatically converted from 
floating point to fixed point for an Intellectual Property 
Core. This IP Core was placed in Vivado Synthesis 
Design for synthesis and implementation. Finally, the 
debugger was run before the audio file was fed in 
Zedboard. The design method can be applied to any type 
of FPGA under the Zynq family as long as this design is 
supported by the DSP-HDL Tool Support. The LMS 
Filter was processed and implemented to the FPGA 
board since it is supported by HDL. Experimental results 
show that the proposed hardware implementation 
method has a high degree of noise cancellation 
performance. 
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