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Abstract:  In  this  paper  the  optimal  control  of  electrical  drives  like  elevators  and  conveyor  machines  is
approached. Optimal control for moving components means better energy efficiency and also mechanical shock
free operation provides a better component lifetime. In the first part of the paper the concepts of optimal control
for stationary and dynamic regime together with the optimizing methods such as Gradient algorithm, Lagrange
multipliers,  Pontryaghin theory are  emphasized.  For  each  kind of  regime  and methods,  examples  used  in
electrical drives for transport are presented. In the last part of the paper, an optimal control of movement of a
robotic arm is designed and an other for mining elevators is modeled and simulated using Rapid Prototyping
methods in the Simulink-dSpace platform.
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1  Principles  and  methods  of  optimal
control

1.1. The need for optimal control
The  purpose  of  automated  control  is  driving  a
process without the intervention of human operators
by a controller that generates output values based on
information about the status of the process.[5]

The controller drives the technological process with
a variety of  commands,  from which the ones that
fulfill  a certain criteria are chosen,  according to a
mathematical  performance  index  (IP),  objective,
cost, criteria, etc.[7]

If  a  system  is  controllable  and  observable,  it  is
defined  by  it's  state  equations[3],  the  limitations
imposed by the process are known, these are called
restrictions, and they define the performance index
IP and allow us to write the equations of the optimal
system:

ẋ (t)= f [ x( t) , u (t)]; x∈Rn , u∈RP , f ∈C1

y (t )=g [ x (t) , u(t )] ; y∈Rq , g∈C 1

h [ x( t) , u (t)]=0 ; h∈Rt ,t<n (1)
IP=min(max )F [ x (t) , u( t)]=0 ; F∈R1

Achieving control of  y (t)  is done by passing the
state  x (t )  from x0  to  xn  using an input  u[ t0, t n]

so  that  the  performance  index  (IP)  is  extreme
(minimum or  maximum) and fulfills the restriction
h [ x( t ) , u (t)] .  u (t )  is  called  an  optimal

command,   and  the  state  x (t)  is  called  optimal

trajectory.
Determining  the  extreme  can  be  done  by
considering  the  system  to  be  in  a  stationary  or
dynamic  state.  If  the  system  is  considered  to  be
stationary,  the  optimization  is  stationary,  and
dynamic if otherwise. 
In  the  case  of  control  in  electrical  transportation
equipment, the value controlled is speed ω(t )  and
the optimal  trajectory is  called an optimal  control
tachogram.  Optimization  methods  differ  for  the
cases of dynamic and stationary working regimes. 

1.2. Optimal control principles
Stationary optimization
Stationary  regime  is  the  case  in  which  the  state
values of the system stay constant, meaning ẋ≡0 .
This means that the function f [(t ) , u( t )]≡0  and
the system reaches an equilibrium point or it gets to
move  in  a  limited  cycle.  The  function
f [ x (t ) , u(t )]=0  can be included anyway in the

restriction function  h [ x( t) , u (t )] .
The optimal system equations are obtained:

y (t )=g [ x0, u (t )]
h [ x0, u( t )]=0

IP=min(max )F [ x0, u (t)]; u(t )∈U
(2)

The stationary optimization defined be equations (2)
is also called mathematical programming. Even thou
stationary optimization is  easier  in  general,  it  can
only  be  solved  for  particular  cases  of  restriction
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functions  h [ x0, u(t )]  and  performance  index
F [ x0 , u( t)] :

 when  h , F  are linear,  the optimization is
done using linear equation programming:
Au=b ; IP=min(max ){cT u }  where

A∈Rn×Rm ,m<n ;u ,b , c∈Rn .
 When h  functions are linear, and  F  is a

quadratic function, the optimization is done
using  quadratic  programming:

Au=b ; IP=min
u∈U

{
1
2

uT Cu+ pT u}
,

where  C∈Rn x Rn  is  symmetric  and
positive and p∈Rn

 when  h  functions  are  linear,  and  F  a
convex function, optimization is done using
convex programming.

Dynamic optimization
When  the  variation  of  state  values  is  noticeable
ẋ≠0  and the optimal system is:

ẋ (t)= f [x ( t) , u (t )]
h [x ( t) , u (t)]=0

IP=min(max )
u(t )∈U

F [ x (t) , u( t)]
     (3)

Unlike  equations  (1)  here  we  consider  the  output
value  to  be  included  in  the  restrictions.  Dynamic
optimization in the  general  case can no longer be
solved, except for the cases presented earlier. In this
case, IP becomes an integral function.
Working  with  the  above  statements,  the  dynamic
optimization  problem  can  be  solved  in  certain
particular cases of the equations (3):

 when the system is linear and the functional
also linear the dynamic optimization can be
written:

ẋ=Ax+bu ;

IP=min(max )∫
t0

t

[uT (τ)Q(τ) x (τ)]d τ

 when the system is linear and the functional
quadratic,  the  quadratic  optimization  is
written:

ẋ=Ax+bu ;
IP=min(max)

∫
t 0

t

[uT
(τ)P (τ)u(τ )+xT

(τ)Q (τ) x (τ)]d τ

1.3. Optimal stationary control methods
There are many methods of stationary optimization,
but two of them are most widely used: the gradient

and Lagrange multipliers.
Lagrange multipliers
The  stationary  optimization  where  there  are  no
imposed sign restrictions on the input allows us to
write equations (2) like this:

y= f (u)
h(u)=0

IP=min(max )Φ(u )

The solution to this problem is based on Lagrange's
theorem which states that the solutions are given by
the equation system solutions:

∂Φ(u , x)
∂u

=0 ;

∂Φ(u , x)
∂ x

=0 ;Φ(u , x)=F (u)+xT a (u)

where  the  function  a (u)=[ f (u)− y , h(u)]

represents  restrictions  and  Φ(u , x) is  called  the
Lagrange function. The solution will be maximum
or minimum, according to the H (Hessian) matrix
which can be positive or negative defined:

H=[
∂

2
Φ( x , u)

∂ u2

∂
2
Φ(u , x )
∂ u∂ x

∂
2
Φ(u , x)
∂ x ∂u

∂
2
Φ(u , x )

∂ x2 ]   (4)

The gradient method
This method seeks the functions minimum, closing
to it based on the maximum slope.
Using  a  vectorial  function  F (u)  with  a
differential:

dF=
∂F
∂u

du=
∂F
∂ u1

du1+
∂F
∂ u2

du2+...+
∂F
∂ un

dun =

= grad F (u)cosβ

then  d̄u cosβ=d̄l  and  the  gradient  can  be

represented: grad  F=
dF
d l

 which is the maximum

variation of the function F according to the direction
d l  that is the maximum slope.
In conclusion, the vector F with the components:

∇ F=[ ∂F
∂u1

;
∂ F
∂u2

; ...
∂F
∂ un

;]
gives us  the maximum direction of growth of  the
function  F,  and −ΔF  the  direction  of  the
maximum slope. Determining the the minimum of
F (u)  is done starting from an initial point u0  and

solving  grad  F (u0)  after  which  a  new  point
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u1=u0−r⋅grad F (u)  is  chosen.  The  values
F (u1)=F (u0−r grad F )  are  determined  for

different  values of the ratio  r  determined with the
relation  r i=r i−1+α , i=1,2,. .. , k  as  long  as
F (ri)<F (ri−1) .  When  F (r k+1)≥F (rk ) ,  the

last  value  of  the  point  that  is  stored  is
uk=u0−r k grad F .  For  this  point,  the  new

gradient is determined and a new cycle of iterations
begins.  The  minimum  will  be  reached  when  the
gradient cancels, or when grad F≤ϵ , where ϵ  is
the set precision.
The  presented  method  has  the  disadvantage  that
close  to  the  minimum extra  cycles  are  generated
without  ever reaching minimum. To eliminate this
inconvenient,  the  Fletcher-Reevs  method  of
determination is used.
This method starts from a random point  u0 ,  grad
F (u0)  is  determined  and  the  direction
S 1=−grad F (u0)  and after  that  the new vector
u1=u0+α1 S0  is chosen, where  α1  is the value

for which the function F (α1)  is minimal.
The new gradient grad F (u1)  is later determined,

γ1=[ grad F (u1)

grad F (u0)]  and  the  new  direction

S 1=−grad F (u0)+γ1 S0  will be determined.
Vector  u2=u1+α2 S1  results,  where  α2  is
determined with the functions minimum,  F (α2) .
The  iterations  continue  until  the  set  precision  is
reached with grad F (un)≤ϵ .

1.4. Dynamic optimal control methods
Dynamic optimization, more difficult that stationary,
benefits of more methods of which, used more often
are  two:  variational  computation  and  Pontryagin
maximum.
The  optimization  of  systems  in  dynamic  regime
means  determining  u(t)  that  makes  an  optimal
performance  index,  and  if  it's  linear,  it  means
solving the problem described by equations  (5)

ẋ (t)= f [ x (t) ,u (t)]
h[ x (t) , u( t)]=0 ;

IP=min(max){∫
t0

t

F [ x( t) , u (t)]dt }

(5)

Variational computation
If no restrictions are imposed upon the systems state
values, the problem is solved by extracting u from
the first equation and substituting it in IP, that will
give us the following:

IP=min(max ){∫
t0

t1

F [ t , x (t ) , ẋ (t)]dt } (6)

The x(t) curve, that optimizes IP, is called extremal
and it's obtained as a solution of the Euler equation
of the extremals:

∂F
∂ x

−
d
dt (

∂F
∂ ẋ )=0

The extremal creates a maximum or a minimum of
the index IP, according to Legendre's conditions:

∂
2 F

∂ ẋ2
≤0  for maximum and 

∂
2 F

∂ ẋ2
≥0  for

minimum.
If  restrictions  are  imposed,  then  the  optimization
problem  works  for  an  IP  built  using  Lagrange
multipliers ( λ )
For example, if we impose the following restriction

∫
t 0

t

h(x ,u )dt=k  the new performance index  will

be given by the integral applied over the Lagrange
function:
ϕ(u , x )=F (x (t) , u(t ))+λh (x (t) , u( t)) ,  and

so:
IP=min(max)

u (t)∈U

∫
t 0

t

[F (x (t ) , u (t))+λ h( x( t) , u (t))]dt

(7)

For finding the extremal, Euler's formula is applied
on the composed functional, ϕ(u , x ) .
In the case of using Euler's formula, a few specific
cases appear: 

 If  the integral  function is  like  ϕ(t , x , ẋ)

then the Euler formula is known:
∂ϕ

∂ x
−

d
dt [

∂ϕ

∂ x ]=0

 If  the  function  is  like
ϕ(t , x1, x2,. .. , xn ; ẋ1 , ẋ2 ,... , ẋn)  then  we

have an Euler equation system like this:

∂ϕ

∂ x1

−
d
dt [ ∂ϕd ẋ1 ]=0

∂ϕ

∂ x2

−
d
dt [ ∂ϕd ẋ2 ]=0

 If  the  function is  like  ϕ(t , x , ẋ ,... , x(n ))
then Euler equation is:
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∂ϕ

∂ x1

−
d
dt [

∂ϕ

d ẋ ]+
d 2

dt 2 [ ∂ϕd ẍ ]+...

...+(−1)n d n

dt n [ ∂ϕ

d x (n)]=0

 If the function is like  ϕ(u , x , ẋ , ... , x(n )
) ,

where  u is an independent variable, Euler's
equation is like:
∂ϕ

∂ x1

−
d
du [

∂ϕ

d ẋ ]+
d 2

du2 [ ∂ϕd ẍ ]+...

...+(−1)n
d n

dun [ ∂ϕ

d x(n )]=0

 If the function is like ϕ(t , ẋ ) , and doesn't
explicitly depend on  variable  x,  the  Euler
equation is:

∂ϕ

∂ x
=C1=const

 If the function is like f (x , ẋ ) and doesn't
explicitly depend on independent variables
(t ;u) , the Euler equation is obtained with
a variable change and the result is:

ϕ− ẋ
∂ϕ

∂ ẋ
=C2=const

Pontryaghin's maximum
In this method's case, the system is considered to be
of this form:

ẋ1= f 1( x1 ,... , xn ;u1 , ... ,u p) ,
ẋ2= f 2( x1 , ... , xn ; u1 ,... , u p) ,... ,

ẋn= f n(x1 ,... , xn ;u1 , ... , u p)

and has this vectorial form: ẋ= f ( x ,u) or:
dx i /dt= f i(... , x i , ... , u j ,...); i=1,2,. .. n

the performance index IP= max
u( t )∈U

∫
t0

t 1

f 0(x ,u )dt

The  maximum principle  developed  by Pontryagin
requires  the  optimal  command  u (t )  to  be
determined  and  also  the  optimal  trajectory
x (t); t∈[ t 0, t1] ,  that maximizes the IP functional.

This  is  built  using auxiliary convergent  functions.
The method is used less frequently so we will skip
its detailed presentation.

2  Dynamic  optimization  of  cinematic
movement
2.1. Optimizing robot arm movement
In  the  example  of  an  industrial  robot  arm,  who's
gripper  needs  to  move  to  a  given  point,  using  a
minimal motion curve.
The following are known:

H – horizontal distance
T – movement duration

v – tangential speed to trajectory
x – trajectory length

The optimal control problem is the following:
The  gripper  motion  tachogram  needs  to  be
determined so that the  x length of the trajectory to
be minimum and the traveled space and time kept
constant.
We have the following relations:

∫
0

T

v⋅dt=H ; x=∫
0

T

√1+ v̇2⋅dt

Mathematically, the problem can be written like:

G(v)=∫
0

T

v dt

IP=min {∫
0

T

√1+ v̇2 dt+G(v)}

Lagrange's  formula  is  applied  for  the  function
f (v , v̇) under the integral:

f (v , v̇)− v̇
∂ f
∂ v̇

=const

√1+v̇2
+λ v−v̇

v̇

√1+ v̇2

By separating the variables we get:

v=∫
c2−λ v

√1−(c2−λ v)2
dv+c1

A circle equation is obtained after integration:

 (v−
c2

λ
)

2

+(t+
c1

λ
)

2

=
1
λ2

We impose that  the circle pass through the points
(0,0); (o,T) and we get the optimal speed:

vopt=√T 2

4
−( t−

T
2
)

2

The speed curve is a circle

that has an equal range with 
T
2 and the semicircle

surface is the traveled space H

H=
πT 2

8
,T=√ 8

π⋅√H=1,59⋅√H

If H=1m, T_optim = 1,59 s , v_max = 0,795 m/s

Fig 1: Robot arm movement model
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2.2. Optimization of a mining elevator
The  same  problem  is  accurate  for  an  extracting
installation (mining elevator)[6] that for H=400m will
have T_optim = 22,49 s , and v_max = T/2 = 11,24
m/s

2.3. Dynamic optimization with minimal shock of
a traction installation
Let's consider the case of a pulling installation that
needs to travel in the time T on a distance L a mass
(load)  so  that  the  quadratic  integral  of  the  shock
during  its  travel  to  be  minimal.  The  following
symbols will  be use for speed, acceleration, shock
and space: v(t); a(t); s(t), x(t). Between these there
are the known relations:

s(t )=
d a (t )

dt
=ȧ (t) ;a (t )=

d v (t)
dt

=v̇ (t) ; ẋ (t )=v (t )

The quadratic integral is F=
1
T
∫

0

T

[ ȧ (t)]2⋅dt

The dynamic optimization problem is the following:
The law of speed command needs to be determined
so that the quadratic integral of shock be minimal
during travel L and duration T.

The problem's equations:

IP= f ( ȧ)=min {∫
0

T
1
T
[ ȧ( t )]2⋅dt } (8)

and restriction: L=∫
0

T

v (t )⋅dt

We apply Lagrange's  formula for IP when it's  not

dependent of  a and t.

∂ f
∂ ȧ

=C0 ; f =
1
T
(ȧ)2 ;

∂ f
∂ ȧ

=
2
T

ȧ=C0 ;

a( t)=
T
2

C0⋅t+C1 ;
T
2

C0=C2

d v (t)
dt

=C2⋅t+C1 ; v (t)=C 2
t2

2
+C1⋅t

The  constants  C1 , C2 are  determined  from  the
conditions:

t=T ;v ( t)=0  and ∫
0

T

v( t)⋅dt=L

C1=
6L

T 2
;C 2=

−12L

T 3
;v max=1.5

L
T

The command law is parabolic:

v (t )=
6L
T 2 ( t−

t 2

T
)

Acceleration  and  shock  have  the  following
equations:

a (t )=
6L
T 2 (1−

2
T

t )

s (t)=
12L

T 3 =const

(9)

We notice that amax=
6L

T 2
; vmax=1,5

L
T

In  conclusion,  the  cinematic  equations  of  optimal
control with minimum shock are:

Fig 2: Robot arm movement – distance and speed

Fig 3: Movement model of mining elevator

Fig 4: Mining elevator simulation - distance and speed
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x (t)=amax⋅(
t 2

2
−

t 3

3T
)

v (t )=amax⋅(t−
t 2

T
)

a( t)=amax⋅(1−2
t
T
)

s (t)=−amax
2
T

(10)

As an example, let's consider a locomotive pulling
rolling stock on a distance of L=80m, in T=20s. The
model is built and simulation results are obtained in
the following figure.

3 Conclusions
Optimal  control  for  moving  components  means
better energy efficiency and also mechanical shock
free operation provides a better component lifetime.
The paper  studies  concepts  of  optimal  control  for
stationary  and  dynamic  regime  together  with

optimizing  methods  like  Gradient  algorithm,
Lagrange multipliers, Pontryaghin theory. 
Using MATLAB-Simulink to design a model  of  a
robotic arm and different transportation systems and
simulating their control and movement, simulation
data  show  the  correct  and  expected  results.
Acceleration  and  deceleration  is  smooth,  with  no
noticeable spikes, meaning a shock free operation,
from both an electrical and mechanical standpoint.
Rapid Prototyping methods in the Simulink-dSpace
platform  can  be  used  to  implement  the  control
algorithm on a real controller to be used with any of
these examples in the real world as is, with minimal
testing on the real  plants,  because of  the  accurate
modeling of the systems.
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