

Segment-Based Task Scheduling for Thermal Optimization of Stacked

Memory Architecture

WEI-KAI CHENG, TING-WEI HSU, RUEY-YEU WANG

Department of Information Computer Engineering

Chung Yuan Christian University

 Chung Li, Taiwan 32023

wkcheng@cycu.edu.tw, wadekyowade@hotmail.com, g10377013@cycu.edu.tw

Abstract: - Heterogeneous integration enabled by 3D technology is one of the innovations for future

microprocessor design. The heterogeneous integration of DRAM and multi-core processor in the 3D

architecture offer much higher memory bandwidth, and mitigating the memory wall problem in off-chip

DRAM design. However, stacking of multiple memory tiers comes out a serious thermal problem. In this paper,

we propose a segment-based task scheduling methodology for this stacked memory architecture, and resolve

this problem by ILP formulations. The proposed approach is integrated with task allocation and memory

mapping in our system. Experimental results from the thermal simulation tool show that the proposed segment-

based approach can reduce the thermal temperature by about 10% than using the task scheduling approach

directly.

Key-Words: - 3D architecture, TSVs, memory mapping, task scheduling

1 Introduction
In comparison with two dimensional integrated

circuits, 3D ICs stack multiple dies in the vertical

direction, and transfer data between stacking dies by

the high density through silicon via (TSVs). The

architecture of 3D ICs provide the benefits of

reducing wire length, communication delay, and

power consumption on connection wires, increasing

communication bandwidth, minimizing the overall

package size, and heterogeneous integration of

devices with different semiconductor processes.

There have been many researches on the design

and synthesis of multi-core processors and

memories targeted at the 3D ICs architecture.

Research [1] implemented a checking core to

improve the reliability while not increasing too

much hardware cost. In research [2], micro

architecture techniques are applied to control

hotspots in the 3D integrated circuits. Researches [7,

9] analyzed in detail the benefit of performance

efficiency by stacking memory, cache, and

processor in the 3D architecture. Research [8]

compared the tradeoff of different memory

architecture in integrating with microprocessor.

Research [15] explored true 3D DRAM organization

to make better use of die to die memory bandwidth.

In research [12], they investigated the degradation

of DRAM retention time caused by thermal stress

and the corresponding reliability problem. Research

[10] proposed the concept of system in package (SIP)

to reduce the overall cost while still match or close

to the performance of system on chip (SOC).

Research [11] discussed the 3D integration

technology, EDA tools that enable the adoption of

3D ICs, and implementation of various

microprocessor architectures. Research [16]

surveyed various approaches to design 3D

microprocessors, with their intrinsic ability to

reduce the wire length, increase the memory

bandwidth, and heterogeneous integration for

innovation designs. Research [17] proposed a

system level hardware/software co-synthesis

framework for the 3D SOC design, including

resource allocation, 3D layer partitioning and

floorplanning, task scheduling and mapping, and

evaluation of power, thermal, etc.

However, because of direct dies stacking, 3D ICs

has the side effect of high power density and poor

heat dissipation, result to the increase of overall

temperature. For an integrated circuit to operating in

the high temperature environment, it paid the cost of

circuit reliability, performance efficiency, IR drop,

die yield, and extra cooling system. Therefore,

thermal issue has become a critical challenge in the

design of 3D ICs.

Most of the thermal-aware optimization problem

targeted on the stacked processor cores. Research [4,

5] controlled and optimized the circuit temperature

through task scheduling. Not only for homogeneous

multi-core architecture, had research [5] also

C. Wei-Kai et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 39 Volume 1, 2016

optimized the thermal issue for the heterogeneous

multi-core architecture. Research [14] proposed a

quick and accurate mathematical model for task

scheduling to optimize the system performance

under the thermal constraint by clock frequency

adaption. Research [3] proposed a set of

mathematical equations for task load calculation,

thermal temperature estimation, and management of

power mode transition, such that they can consider

thermal effect of 3D architecture effectively. In

research [6], they create a thermal estimation model

for 3D integrated circuits, and proposed a rotation

scheduling methodology to reduce the peak

temperature.

On the other hand, as memory occupies about

40% of power consumption and this percentage still

increases continuously, thermal optimization on the

stacked memory tiers become a serious problem in

the future. Research [13] proposed a thermal-aware

memory mapping technology by considering the

behavior of power consumption and relative

location of memory blocks simultaneously.

However, research [13] targeted their problem on a

fixed task execution order, the effect of task

scheduling on thermal dissipation was not

considered in their methodology.

In this paper, after task allocation and memory

mapping, we propose a segment-based task

scheduling methodology for thermal optimization

on the 3D stacked memory architecture, and model

this problem as ILP formulations. The contributions

of this paper are summarized as follows:

 We integrate task allocation, memory

mapping, and task scheduling on the

stacked memory architecture.

 We propose a segment-based task

scheduling approach to avoid intensive

memory access on the same memory group

continuously for thermal optimization.

 ILP formulations are proposed for the

segment-based task scheduling and idle slot

allocation problems.

The rest of this paper is organized as follows.

Section 2 describes the proposed 3D architecture

and the motivation of segment-based task

scheduling. Section 3 shows the problem

formulation and system flow. In Section 4, we

describe the proposed ILP formulations for

segment-based task scheduling. Experimental

results in Section 5 show the thermal effect of our

segment-based task scheduling algorithms. Finally,

we draw the concluding remarks in Section 6.

2 Motivation and Target Architecture

2.1 Task Allocation and Memory Mapping
We optimize the thermal-aware tasks execution on

the stacked memory architecture in three aspects.

The first is task allocation to balance the memory

accesses of processor cores. The second is memory

mapping to keep intensively memory access banks

closer to heat sink and away from processor cores.

And the final is task scheduling to avoid intensive

memory access on the same memory group

continuously. For the example in Fig. 1, suppose

Task1, Task2, Task3, and Task4 are memory bound

tasks, while Task5, Task6, Task7, and Task8 are

CPU bound tasks. In the first stage, each processor

core is allocated with a memory bound task and a

CPU bound task to balance their power

consumption and memory accesses. Then, in the

memory mapping stage, all memory bound tasks

access memory from Group2 that far away from the

processor cores for better thermal dissipation; and

all CPU bound tasks access memory from Group1.

Finally, in the task scheduling stage, if {Task1,

Task4, Task2, Task3} are scheduled to execute on

{Core1, Core2, Core3, Core4} simultaneously, all

dies in memory Group2 will be accessed intensively

as shown in Fig. 1(a), hence increasing the overall

temperature of memory tiers instantly. However, if

{Task1, Task8, Task6, Task3} are scheduled to

execute on {Core1, Core2, Core3, Core4}

simultaneously, memory accesses are as shown in

Fig. 1(b), temperature of the memory tiers could

remain stable.

 (a) (b)

Fig. 1: Task scheduling to balance memory loading.

2.2 Segment-based Task Scheduling
Although the task scheduling in Fig. 1(b) can avoid

the execution of memory bound tasks

simultaneously, a CPU bound task still may have

certain code segments access memory intensively.

Therefore, we propose a segment-based task

scheduling methodology for thermal optimization of

3D stacked memory and processor architecture. For

the example in Fig. 2, a memory bound task Task1

is partitioned into three page segments, and a CPU

C. Wei-Kai et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 40 Volume 1, 2016

bound task Task2 is partitioned into two page

segments. Among which, Seg1-1, Seg1-3 and Seg2-

1 are memory intensive segments (heavy segments),

while the other two are memory non-intensive

segments (light segments). If segments are

scheduled as shown in Fig. 2(a), Seg1-1 and Seg2-1

are totally overlapped such that Core1 and Core2

will access memory intensively in the same period

of time. However, if sub-segments are scheduled as

shown in Fig. 2(b), Seg1-1 and Seg2-1 are

overlapped with only a little of time, which will

benefit the thermal behavior of stacked processor

cores and memory banks.

 (a) (b)

Fig. 2: Segment-based task scheduling to balance

memory loading.

2.3 Target Architecture
Fig. 3 shows our target architecture. We suppose

there are four cores in a processor tier, stacked on it

are memory tiers, and heat sink is on top of memory

tiers. In each memory tier, there are four memory

dies. And in each memory die, there are four

memory banks. Because we restrict the available

memory size and balance the memory accesses of

each processor core during the task allocation phase

as described in Section 3, we make the assumption

that each processor core can only accesses the

memory dies vertically stacked on top of it through

TSVs.

In order to compare with research [13] fairly, we

also suppose that only one memory bank can be

accessed at a time for each memory die. Therefore,

if the width of system data bus is a multiple of the

bandwidth of a memory bank, a multiple of

vertically stacked memory dies need to be accessed

simultaneously. For this reason, we partition the

memory tiers into groups in the vertical direction.

For the example, if width of the system data bus is

32 bits, and the bandwidth of a memory bank is 8

bits, four memory tiers will form a group as shown.

If there are M memory tiers in the architecture, and

N memory tiers form a group, then there will be

totally M/N groups. The parameters M and N are all

configurable in our target architecture.

Fig. 3: Proposed target architecture.

3 Algorithms and System Flow
Fig. 4 shows our system flow. The first phase is

segments generation, we use the program analysis

tool Simplescalar3.0 [19] to get the relative

information for instruction count, execution time,

memory address, and reference count of memory.

Evaluating
Microprocessors
(Simplescalar3.0)

Memory Reference
Information

Benchmark

Segments Generation

Task Allocation

Thermal Behavior
Simulation (HotSpot)

Thermal Simulation
Result

Segments Mapping

 Power Map

Start

Finish

 Power Trace

Segments
Generation

Phase

Task
Allocation

Phase

Task
Scheduling

Phase

Thermal
Simulation

Phase

Segment Based Task
Scheduling

Time Slot Allocation

Mapping
Phase

Fig. 4: System Flow.

According to the reference address of memory

and the flow of program execution, we partition the

application programs into data segments to fit the

C. Wei-Kai et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 41 Volume 1, 2016

size of memory banks as the pseudo code shown in

Fig. 5. The first step is segment classification based

on the address of memory reference as shown in line

1 to line 10. If a memory reference does not belong

to any created data segment, a new data segment is

created. The second step is to merge data segments

to fit the size of memory bank as shown in line 12,

data segments are merged in the order created in the

first step. And the third step is segments

reconstruction to balance the size of data segments,

and update the reference record of data segments as

shown in line 13.

The second phase is task allocation. We balance

both memory size requirement and memory

references among the processor cores. The approach

in research [1] is applied to balance power

consumption, and we modify it in our work to take

into account the memory references issue

simultaneously.

Under the memory size constraint of memory

dies stacked on each processor core, we firstly

classify and sort the tasks based on their memory

size requirement. In the case when two or more

tasks belong to the same class of memory size

requirement, they are sorted based on their memory

references. Then we allocate the sorted tasks to

processor cores sequentially to balance both their

memory size and memory references.

Fig. 5: Pseudo code of segment generation.

Fig. 6 shows an example to illustrate the effect of

this two-stage sorting approach. In this example, we

suppose there are totally eight tasks to be allocated

to four processor cores, each task has its memory

size requirement and memory references, and the

memory size stacked on each processor core is eight

memory segments. The result of task sorting by only

memory references is {Task1, Task5, Task6, Task2,

Task3, Task4, Task8, Task7}, Fig. 6(a) shows the

result when we allocate tasks in sequential based on

this sorting order to balance memory references of

processor cores. The allocation result shows that

memory size requirement of core 2 exceeds the

memory segments stacked on it, and hence needs to

access the memory segments stacked on other

processor cores in some time, resulting to the bad

thermal dissipation. While if our two-stage sorting

approach is applied, the result of task sorting is

{Task1, Task6, Task5, Task2, Task4, Task7, Task3,

Task8}, Fig. 6(b) shows the result when we allocate

tasks in sequential based on this sorting order to

balance memory references of processor cores. The

allocation result shows that no memory requirement

of processor core exceeds the memory segments

stacked on it, and the memory references of

processor cores is even better balanced than that in

Fig.6(a). Therefore, with this task allocation

approach, we make the assumption in our target

architecture that each processor core can only

accesses the memory dies vertically stacked on top

of it as described in Section 2.3.

 (a) (b)

Fig. 6: Example of two-stage sorting approach for

task allocation.

The third phase is memory mapping. We apply

and modify the approach proposed in research [13]

to fit our target architecture. The first step is to

avoid the accesses of memory banks in the vertical

direction simultaneously, which has been proved to

have critical impact on the thermal behavior of 3D

memory architecture in research [13]. In the second

step, we further consider the thermal effect of

memory mapping in the same memory tier by

memory banks classification.

As shown in Fig. 7, there are four memory dies

in a memory tier, and four memory banks in a

C. Wei-Kai et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 42 Volume 1, 2016

memory die. The memory banks marked with region

1 locating in the corner and neighbouring with less

memory banks, hence have the best thermal

dissipation. On the other hand, the memory banks

marked with region 3 locating in the centre and

neighbouring with more memory banks, hence have

the worst thermal dissipation. Therefore, memory

segments with high access frequency should be

mapped to region 1 to reduce thermal temperature,

and mapped to region 3 in the versa.

Fig. 7: Classification of memory banks in terms of

thermal dissipation in the same memory plane.

Based on this observation, we map task segments

to memory banks by two methods. As illustrated in

Fig. 8, we suppose there are four tasks executing on

the same processor core and access the stacked

bottom-right corner of memory tiers. If memory

access frequencies of task3 and task4 are much

higher than that of task1 and task2, we apply the

first memory mapping method as shown in Fig. 8(a),

in which memory-bound tasks access memory banks

far from the centre of memory tiers to have better

thermal dissipation. On the other hand, if memory

access frequencies of all the four tasks are not

obviously different, we apply the second memory

mapping method as shown in Fig. 8(b), in which all

tasks share the centre memory banks in even.

 (a) (b)

Fig. 8: (a) Memory mapping for tasks with non-even

memory access frequencies. (b) Memory mapping

for tasks with even memory access frequencies.

Finally, under the constraint of finished deadline

of tasks, ILP formulations for segment-based task

scheduling and time slot allocation are proposed to

minimize the time overlap of massive memory

references of processor cores, such that we can

optimize the thermal behavior of multi-core

processor and the stacked memory tiers on it. Detail

description and ILP formulations of segment-based

task scheduling and time slot allocation are

described in the next section.

4 Segment-Based Task Scheduling
4.1 Segment-Based Task Scheduling
In the segment-based task scheduling, we firstly

partition the segments accessed by a task into sub-

segments according to its program structure and

execution behavior. For the example in Fig. 9, there

are two tasks allocated to core N, and both tasks

access two memory segments. For task1, the two

memory segments seg1-1 and seg1-2 are further

partitioned into five sub-segments {sub1-1-1, sub1-

1-2, sub1-1-3, sub1-2-1, sub1-2-2}; and for task2,

two memory segments seg2-1 and seg2-2 are further

partitioned into four sub-segments {sub2-1-1, sub2-

1-2, sub2-2-1, sub2-2-2}. Sub-segments sub1-1-3

and sub2-1-1 are duplicated because of multiple

accesses in different stages of their task execution.

An edge between two sub-segments implies the

execution order constraint in the task. After sub-

segments duplication, there are totally eleven sub-

segments and two dependency streams in this

example.

Fig. 9: Example of segment-based task scheduling.

There is execution order constraint for sub-

segments that belong to the same task. However,

there is no execution order constraint for sub-

segments that belong to different tasks. For the

example in Fig. 9, there is an execution order

constraint between sub-segments sub1-1-1 and

sub1-1-2, but there is no execution order constraint

between sub-segment sub2-1-1 and any sub-

C. Wei-Kai et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 43 Volume 1, 2016

segment of task1. In this paper, we define the

segment-based task scheduling problem as to

determine the execution order of all sub-segments

allocated to the same processor core under the

execution order constraint. We define the objective

function to maximize the total difference of access

frequencies between sub-segments that scheduled in

successive execution order, such that sub-segments

with high memory access frequency and sub-

segments with low memory access frequency are

shuttled to avoid intensively memory access in

continuous time.

To get the best result, we model the segment-

based task scheduling problem by integer linear

programming (ILP) formulations, and apply this

methodology to all the processor cores. Notations,

objective function, and constraints of these

formulations are described as below.

 Notations

Si: sub-segment i

SN: total number of sub-segments after duplication

in the target processor core

feqi: memory access frequency of sub-segment i

xi,j: a binary number to represent whether sub-

segment i is scheduled in the jth execution order

oi: an integer number to represent the execution

order of sub-segment i

 Objective function

We define the objective function of the proposed

segment-based task scheduling as to maximize the

total difference of memory access frequencies

between all successive execution sub-segments. The

larger the value of this objective function, the less

opportunity a memory bank will be accessed

intensively in continuous time. Formulation of the

objective function is described as below.

 Constraints

1. Each sub-segment can be scheduled to only one

execution order.

2. When sub-segment l is dependent on sub-segment

i, its execution order must be later than sub-segment

i.

3. Each execution order can have only one sub-

segment scheduled to it.

4.2 Time Slot Allocation
Idle slots are inserted between sub-segments to

release the thermal pressure of processor cores due

to continuously task execution and memory access.

Fig. 10 shows the example of time slot allocation, in

Fig. 10 (a) and Fig. 10 (b), one time slot is allocated

at the end and the beginning of ASAP scheduling

and ALAP scheduling, respectively. As shown in

Fig. 10 (c), the time slot allocation problem is

defined as to find an idle slots insertion solution

between ASAP scheduling and ALAP scheduling of

sub-segments, such that to get the maximal thermal

reduction.

 (a) (b)

 (c)

Fig. 10: Time slot allocation of sub-segments and

idle slots.

C. Wei-Kai et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 44 Volume 1, 2016

Since memory segments with intensively access

frequency are map to the memory groups that close

to the heat sink, and we aim at avoiding accessing

these memory groups simultaneously, cost function

is designed to insert idle slots such that the time

overlapping of sub-segments that access the same

memory group is as less as possible.

The example for evaluation of time slot

allocation is shown in Fig. 11. Suppose sub-segment

sub1-2 is scheduled in time slot 3, and sub-segment

sub1-3 is scheduled in time slot 10. If sub-segment

sub2-2 of Core2 is scheduled in time slot 8, its

execution time overlaps with both the sub-segments

sub1-2 and sub1-3 of Core1, and the overlapping

time are all two time slots. In this example, sub-

segments sub1-2 and sub2-2 all have more memory

accesses and are mapped to memory Group1, while

sub-segment sub1-3 has less memory accesses and

is mapped to memory Group3.

Fig. 11: Evaluation of time slot allocation.

As shown in Fig. 11, time overlapping of sub-

segments sub1-2 and sub2-2 is not preferred

because they all have intensive memory accesses.

Since we aim at avoid all processor cores accessing

the same memory group simultaneously as

illustrated in Fig. 1 and Fig. 2, cost function of this

time overlapping is defined as below.

Suppose totally there are four memory groups,

the cost of time overlapping for sub-segment sub2-2

with sub-segments sub1-2 and sub1-3 is calculated

as (4 -|1-1|) * 2 + (4 - |3-1|) * 2 = 12. The less the

cost is, the better the time slot a sub-segment should

be scheduled to. To achieve this objective function,

we propose an integer linear programming (ILP)

formulation for this time slot allocation problem.

Notations, objective function, and constraints of

these formulations are described as below.

 Notations

Cycle: total number of time slots

Core: total number of processor cores

GN: total memory group number

Gi: memory group that sub-segment i is mapped to

Si: sub-segment i

SNc: total number of sub-segments after duplication

in the target processor core c

leni: execution length of sub-segment i in terms of

time slot number

xi,j: a binary number to represent whether sub-

segment i is scheduled in the jth time slot

bi: an integer number to represent the beginning time

slot of sub-segment i

ei: an integer number to represent the ending time

slot of sub-segment i

overlapj,c: cost of time overlapping of sub-segments

in the jth time slot between processors cores c and

c+1

 Objective function

We define the objective function as to minimize the

time overlapping of sub-segments with intensive

memory access among different processor cores.

The smaller the value of cost function, the less

opportunity two memory banks in the same group

will be accessed intensively in the same time.

Formulation of the objective function is described as

below.

where

 Constraints

1. Each sub-segment can be scheduled to only one

time slot

2. When sub-segment l is dependent on sub-segment

i, beginning time slot of sub-segment l must be later

than ending time slot of sub-segment i

where

C. Wei-Kai et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 45 Volume 1, 2016

3. For each processor core c, each time slot can have

at most one sub-segment scheduled to it

5 Experimental Results
We implement our system in the C/C++

programming language, and use Extended LINGO

Release 11.0 as the ILP solver for the proposed

segment-based task scheduling and time slot

allocation problems. The platform is Windows-7

x64 running on i5-2500K quad-cores CPU with

4GB RAMs.

Table 1

System parameters

System Parameter Value

Total tiers 9

Memory tiers 8

Processor tier 1

Dies on memory tier 4

Banks per memory tier 16

Bit width of a memory die 8

Bit width of system bus 32

DRAM Parameter Value

Capacity per die 256 Mb

Total Memory Size 1GB

Processor Parameter Value

Processor Alpha

Cores number 4

We test our system flow and segment-based

approach by four test benches, each test bench is

consist of a set of application programs from SPEC

[18] and MiBench [21], and use program analysis

tool Simplescalar3.0 [19] to get the information for

instruction count, execution time, and reference

count of memory. Power consumption of memory is

calculated based on the Micron DDR3 specification

[23], the processor cores in our architecture are

Alpha 21264 [22]. For all the experimental results,

we use thermal simulator HotSpot [20] to simulate

and report the highest temperature, the lowest

temperature, and the average temperature in the 3D

floorplanning. Table 1 lists the parameters of our

target system.

Table 2 compares the effect of different task

allocation approaches. The notation BF denotes the

task allocation approach based on memory access

frequency only, and our two-stage sorting approach

considers both memory access frequency and

memory size requirement. Both approaches all

apply our memory mapping and segment-based task

scheduling methodologies. Experimental results

show that our approach gets lower thermal

temperature on all the three corners.

Table 3 compares the effect of different memory

mapping approaches. The direct mapping method

does not avoid the memory access in the vertical

direction; while our memory mapping approach not

only avoids accessing memory in the vertical

direction, but also considers the thermal effect of

memory mapping in the same memory tier. Both

approaches all apply our task allocation and

segment-based task scheduling methodologies.

Experimental results show that our memory

mapping approach improves the thermal

temperature over ten percentage for all the test

benches.

Table 4 shows the effect of our segment-based

task scheduling and time slot allocation

methodologies. With the same task allocation and

memory mapping results by our methodologies,

experimental results of our segment-based

approaches further improve the thermal temperature

by about ten percentages for all the test benches

than that using the task scheduling directly.

Comparing Table 2, Table 3 and Table 4,

experimental results show that memory mapping

and segment-based task scheduling have larger

impact on the thermal temperature than task

allocation. Therefore, we further compare the effect

of memory mapping and segment-based task

scheduling as the results shown in Table 5. When

both memory mapping and segment-based task

scheduling approaches are all not applied, the results

are the worst. The results of applying memory

mapping approach only are a little better than that of

applying segment-based task scheduling approach

C. Wei-Kai et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 46 Volume 1, 2016

only, this is because that vertical direction has larger

impact on the thermal temperature. However, when

both approaches are applied, there is still obvious

thermal temperature improvement over the memory

mapping approach only. Therefore, although the

segment-based task scheduling approach is not the

unique factor to reduce thermal temperature,

applying it together with memory mapping can

avoid the continuous access of memory hot spot and

further improve the thermal temperature.

Table 2

Thermal results of task allocation approaches

Table 3

Thermal results of memory mapping approaches

Table 4

Thermal results of task scheduling approaches

Table 5

Thermal results of different optimization approaches

6 Conclusions
In this paper, we propose a methodology for thermal

optimization of 3D stacked memory architecture. In

addition to task allocation and memory mapping,

ILP formulations for segment-based task scheduling

and time slot allocations are proposed to further

reduce the thermal temperature of stacked memory

architecture. Experimental results from the HotSpot

thermal simulator show that our approach is indeed

effective for this optimization problem.

7 Acknowledgement
This work was supported in part by the National

Science Council of Taiwan, R.O.C., under grant

number NSC 101-2221-E-033-069.

References:
[1] N. Madan and R. Balasubramonian,
“Leveraging 3D Technology for Improved
Reliability”, 40th International Symposium on
Microarchitecture, 2007.

[2] K. Puttaswamy and G. H. Loh, “Thermal
Herding: Microarchitecture Techniques for
Controlling HotSpots in High-Performance
3DIntegrated Processors”, 13th International
Symposium on High Performance Computer
Architecture, 2007.

[3] Changyun Zhu, Zhenyu Gu, Li Shang, R.P.
Dick and R. Joseph, “Three-Dimensional Chip-
Multiprocessor Run-Time Thermal
Management”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits
and Systems, vol.27, no.8, pp. 1479-1492,
August 2008.

[4] Han Wang, Yuzhuo Fu, Ting Liu and Jiafang
Wang, “Thermal management via task
scheduling for 3D NoC based multi-processor”,
International SoC Design Conference (ISOCC),
pp.440-444, November 2010.

[5] Xiuyi Zhou, Jun Yang, Yi Xu, Youtao Zhang
and Jianhua Zhao, “Thermal-Aware Task
Scheduling for 3D Multicore Processors”, IEEE
Transactions on Parallel and Distributed
Systems, vol. 21, no. 1, pp. 60-71, January 2010.

[6] Jiayin Li, Meikang Qiu, Jianwei Niu, Tianzhou
Chen and Yongxin Zhu, “Real-Time

C. Wei-Kai et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 47 Volume 1, 2016

Constrained Task Scheduling in 3D Chip
Multiprocessor to Reduce Peak Temperature”,
8th International Conference on Embedded and
Ubiquitous Computing (EUC), pp. 170-176,
December 2010.

[7] G. L. Loi, B. Agarwal, N. Srivastava, S.-C. Lin,
and T. Sherwood, “A Thermally-Aware
Performance Analysis of Vertically Integrated
(3-D) Processor-Memory Hierarchy”, 43rd
Design Automation Conerence (DAC), 2006.

[8] C. C. Liu, I. Ganusov, M. Burtscher, and S.
Tiwari, “Bridging the Processor-Memory
Performance Gap with 3D IC Technology”,
IEEE Design and Test of Computers, 22(6): pp.
556–564, Nov.-Dec. 2005.

[9] B. Black, M. Annavaram, N. Brekelbaum, J.
DeVale, L. Jiang, G. H. Loh, D. McCaule, P.
Morrow, D. W. Nelson, and D. Pantuso, “Die
stacking (3D) microarchitecture”, 39th Annual
IEEE/ACM International Symposium on
Microarchitecture, pp. 469–479, 2006.

[10] K. L. Tai, “System-In-Package (SIP):
Challenges and Opportunities”, Asia and South
Pacific Design Automation Conference
(ASPDAC), pp. 191-196, 2000.

[11] Y. Xie, G. Loh, B. Black, and K. Bernstein,
“Design space exploration for 3D architectures”,
ACM Journal of Emerging Technologies in
Computing Systems, 2006.

[12] Y. I. Kim, K. H. Yang and W. S. Lee,
“Thermal Degradation of DRAM Retention
Time: Characterization and improving
techniques”, 42nd IEEE International
Reliability Physics Symposium, pp. 667-668,
April 2004.

[13] Ang-Chih Hsieh and TingTing Hwang,
“Thermal-aware memory mapping in 3D
designs”, Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp.1361-
1366, April 2009.

[14] Chiao-Ling Lung, Yi-Lun Ho, Ding-Ming
Kwai and Shih-Chieh Chang, “Thermal-aware
on-line task allocation for 3D multi-core
processor throughput optimization”, Design,
Automation & Test in Europe Conference &
Exhibition (DATE), pp.1-6, March 2011.

[15] G. H. Loh, “3d-stacked memory
architectures for multicore processors”,
International Symposium on Computer
Architecture (ISCA), pp. 453-464, 2008.

[16] Y. Xie, “Processor Architecture Design
Using 3D Integration Technology”, 23rd
International Conference on VLSI Design, pp.
446-451, January 2010.

[17] Q. Zou, Y. Chen and Y. Xie, A. Su,
“System-level design space exploration for
three-dimensional (3D) SoCs”, 9th International
Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS), pp. 385-
388, October 2011.

[18] http://www.spec.org/
[19] D. C. Burger, T. M. Austin and S. Bennett,
“Evaluating Future Microprocessors– The
SimpleScalar Tool Set”, Technical Report
1342,University of Wisconsin-Madison, CS
Department, June 1997.

[20] W. Huang, K. Skadron, S. Gurumurthi, R. J.
Ribando, and M. R. Stan. “Differentiating the
Roles of IR Measurement and Simulation for
Power and Temperature-Aware Design”, IEEE
International Symposium on Performance
Analysis of Systems and Software (ISPASS),
April 2009.

[21] M. R. Guthaus, J. S. Ringenberg, D. Ernst,
T. M. Austin, T. Mudge and R. B. Brown,
“MiBench: A free, commercially representative
embedded benchmark suite”, Proceedings of the
Workload Characterization, 2001.

[22] M. K. Gowan et al., “Power Considerations
in the Design of the Alpha 21264
Microprocesso”r, Design Automation
Conerence (DAC), pp. 726-731, 1998.

[23] http://www.micron.com

C. Wei-Kai et al.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 48 Volume 1, 2016

http://www.spec.org/

