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Abstract: - Heterogeneous integration enabled by 3D technology is one of the innovations for future 

microprocessor design. The heterogeneous integration of DRAM and multi-core processor in the 3D 

architecture offer much higher memory bandwidth, and mitigating the memory wall problem in off-chip 

DRAM design. However, stacking of multiple memory tiers comes out a serious thermal problem. In this paper, 

we propose a segment-based task scheduling methodology for this stacked memory architecture, and resolve 

this problem by ILP formulations. The proposed approach is integrated with task allocation and memory 

mapping in our system. Experimental results from the thermal simulation tool show that the proposed segment-

based approach can reduce the thermal temperature by about 10% than using the task scheduling approach 

directly. 
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1 Introduction 
In comparison with two dimensional integrated 

circuits, 3D ICs stack multiple dies in the vertical 

direction, and transfer data between stacking dies by 

the high density through silicon via (TSVs). The 

architecture of 3D ICs provide the benefits of 

reducing wire length, communication delay, and 

power consumption on connection wires, increasing 

communication bandwidth, minimizing the overall 

package size, and heterogeneous integration of 

devices with different semiconductor processes.  

There have been many researches on the design 

and synthesis of multi-core processors and 

memories targeted at the 3D ICs architecture. 

Research [1] implemented a checking core to 

improve the reliability while not increasing too 

much hardware cost. In research [2], micro 

architecture techniques are applied to control 

hotspots in the 3D integrated circuits. Researches [7, 

9] analyzed in detail the benefit of performance 

efficiency by stacking memory, cache, and 

processor in the 3D architecture. Research [8] 

compared the tradeoff of different memory 

architecture in integrating with microprocessor. 

Research [15] explored true 3D DRAM organization 

to make better use of die to die memory bandwidth. 

In research [12], they investigated the degradation 

of DRAM retention time caused by thermal stress 

and the corresponding reliability problem. Research 

[10] proposed the concept of system in package (SIP) 

to reduce the overall cost while still match or close 

to the performance of system on chip (SOC). 

Research [11] discussed the 3D integration 

technology, EDA tools that enable the adoption of 

3D ICs, and implementation of various 

microprocessor architectures. Research [16] 

surveyed various approaches to design 3D 

microprocessors, with their intrinsic ability to 

reduce the wire length, increase the memory 

bandwidth, and heterogeneous integration for 

innovation designs. Research [17] proposed a 

system level hardware/software co-synthesis 

framework for the 3D SOC design, including 

resource allocation, 3D layer partitioning and 

floorplanning, task scheduling and mapping, and 

evaluation of power, thermal, etc.  

However, because of direct dies stacking, 3D ICs 

has the side effect of high power density and poor 

heat dissipation, result to the increase of overall 

temperature. For an integrated circuit to operating in 

the high temperature environment, it paid the cost of 

circuit reliability, performance efficiency, IR drop, 

die yield, and extra cooling system. Therefore, 

thermal issue has become a critical challenge in the 

design of 3D ICs. 

Most of the thermal-aware optimization problem 

targeted on the stacked processor cores. Research [4, 

5] controlled and optimized the circuit temperature 

through task scheduling. Not only for homogeneous 

multi-core architecture, had research [5] also 
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optimized the thermal issue for the heterogeneous 

multi-core architecture. Research [14] proposed a 

quick and accurate mathematical model for task 

scheduling to optimize the system performance 

under the thermal constraint by clock frequency 

adaption. Research [3] proposed a set of 

mathematical equations for task load calculation, 

thermal temperature estimation, and management of 

power mode transition, such that they can consider 

thermal effect of 3D architecture effectively. In 

research [6], they create a thermal estimation model 

for 3D integrated circuits, and proposed a rotation 

scheduling methodology to reduce the peak 

temperature. 

On the other hand, as memory occupies about 

40% of power consumption and this percentage still 

increases continuously, thermal optimization on the 

stacked memory tiers become a serious problem in 

the future. Research [13] proposed a thermal-aware 

memory mapping technology by considering the 

behavior of power consumption and relative 

location of memory blocks simultaneously. 

However, research [13] targeted their problem on a 

fixed task execution order, the effect of task 

scheduling on thermal dissipation was not 

considered in their methodology. 

In this paper, after task allocation and memory 

mapping, we propose a segment-based task 

scheduling methodology for thermal optimization 

on the 3D stacked memory architecture, and model 

this problem as ILP formulations. The contributions 

of this paper are summarized as follows: 

 We integrate task allocation, memory 

mapping, and task scheduling on the 

stacked memory architecture. 

 We propose a segment-based task 

scheduling approach to avoid intensive 

memory access on the same memory group 

continuously for thermal optimization. 

 ILP formulations are proposed for the 

segment-based task scheduling and idle slot 

allocation problems. 

The rest of this paper is organized as follows. 

Section 2 describes the proposed 3D architecture 

and the motivation of segment-based task 

scheduling. Section 3 shows the problem 

formulation and system flow. In Section 4, we 

describe the proposed ILP formulations for 

segment-based task scheduling. Experimental 

results in Section 5 show the thermal effect of our 

segment-based task scheduling algorithms. Finally, 

we draw the concluding remarks in Section 6. 

 

 

2 Motivation and Target Architecture 

2.1 Task Allocation and Memory Mapping 
We optimize the thermal-aware tasks execution on 

the stacked memory architecture in three aspects. 

The first is task allocation to balance the memory 

accesses of processor cores. The second is memory 

mapping to keep intensively memory access banks 

closer to heat sink and away from processor cores. 

And the final is task scheduling to avoid intensive 

memory access on the same memory group 

continuously. For the example in Fig. 1, suppose 

Task1, Task2, Task3, and Task4 are memory bound 

tasks, while Task5, Task6, Task7, and Task8 are 

CPU bound tasks. In the first stage, each processor 

core is allocated with a memory bound task and a 

CPU bound task to balance their power 

consumption and memory accesses. Then, in the 

memory mapping stage, all memory bound tasks 

access memory from Group2 that far away from the 

processor cores for better thermal dissipation; and 

all CPU bound tasks access memory from Group1. 

Finally, in the task scheduling stage, if {Task1, 

Task4, Task2, Task3} are scheduled to execute on 

{Core1, Core2, Core3, Core4} simultaneously, all 

dies in memory Group2 will be accessed intensively 

as shown in Fig. 1(a), hence increasing the overall 

temperature of memory tiers instantly. However, if 

{Task1, Task8, Task6, Task3} are scheduled to 

execute on {Core1, Core2, Core3, Core4} 

simultaneously, memory accesses are as shown in 

Fig. 1(b), temperature of the memory tiers could 

remain stable.  

 

        (a)                           (b) 

Fig. 1: Task scheduling to balance memory loading. 

 

 

2.2 Segment-based Task Scheduling 
Although the task scheduling in Fig. 1(b) can avoid 

the execution of memory bound tasks 

simultaneously, a CPU bound task still may have 

certain code segments access memory intensively. 

Therefore, we propose a segment-based task 

scheduling methodology for thermal optimization of 

3D stacked memory and processor architecture. For 

the example in Fig. 2, a memory bound task Task1 

is partitioned into three page segments, and a CPU 
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bound task Task2 is partitioned into two page 

segments. Among which, Seg1-1, Seg1-3 and Seg2-

1 are memory intensive segments (heavy segments), 

while the other two are memory non-intensive 

segments (light segments). If segments are 

scheduled as shown in Fig. 2(a), Seg1-1 and Seg2-1 

are totally overlapped such that Core1 and Core2 

will access memory intensively in the same period 

of time. However, if sub-segments are scheduled as 

shown in Fig. 2(b), Seg1-1 and Seg2-1 are 

overlapped with only a little of time, which will 

benefit the thermal behavior of stacked processor 

cores and memory banks. 

 

 
             (a)                                       (b) 

Fig. 2: Segment-based task scheduling to balance 

memory loading. 

 

 

2.3 Target Architecture 
Fig. 3 shows our target architecture. We suppose 

there are four cores in a processor tier, stacked on it 

are memory tiers, and heat sink is on top of memory 

tiers. In each memory tier, there are four memory 

dies. And in each memory die, there are four 

memory banks. Because we restrict the available 

memory size and balance the memory accesses of 

each processor core during the task allocation phase 

as described in Section 3, we make the assumption 

that each processor core can only accesses the 

memory dies vertically stacked on top of it through 

TSVs. 

In order to compare with research [13] fairly, we 

also suppose that only one memory bank can be 

accessed at a time for each memory die. Therefore, 

if the width of system data bus is a multiple of the 

bandwidth of a memory bank, a multiple of 

vertically stacked memory dies need to be accessed 

simultaneously. For this reason, we partition the 

memory tiers into groups in the vertical direction. 

For the example, if width of the system data bus is 

32 bits, and the bandwidth of a memory bank is 8 

bits, four memory tiers will form a group as shown. 

If there are M memory tiers in the architecture, and 

N memory tiers form a group, then there will be 

totally M/N groups. The parameters M and N are all 

configurable in our target architecture. 

 

 
 

Fig. 3: Proposed target architecture. 

      

 

3 Algorithms and System Flow 
Fig. 4 shows our system flow. The first phase is 

segments generation, we use the program analysis 

tool Simplescalar3.0 [19] to get the relative 

information for instruction count, execution time, 

memory address, and reference count of memory. 
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Fig. 4: System Flow. 

 

According to the reference address of memory 

and the flow of program execution, we partition the 

application programs into data segments to fit the 
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size of memory banks as the pseudo code shown in 

Fig. 5. The first step is segment classification based 

on the address of memory reference as shown in line 

1 to line 10. If a memory reference does not belong 

to any created data segment, a new data segment is 

created. The second step is to merge data segments 

to fit the size of memory bank as shown in line 12, 

data segments are merged in the order created in the 

first step. And the third step is segments 

reconstruction to balance the size of data segments, 

and update the reference record of data segments as 

shown in line 13. 

The second phase is task allocation. We balance 

both memory size requirement and memory 

references among the processor cores. The approach 

in research [1] is applied to balance power 

consumption, and we modify it in our work to take 

into account the memory references issue 

simultaneously. 

Under the memory size constraint of memory 

dies stacked on each processor core, we firstly 

classify and sort the tasks based on their memory 

size requirement. In the case when two or more 

tasks belong to the same class of memory size 

requirement, they are sorted based on their memory 

references. Then we allocate the sorted tasks to 

processor cores sequentially to balance both their 

memory size and memory references. 

 

 
Fig. 5: Pseudo code of segment generation. 

 

Fig. 6 shows an example to illustrate the effect of 

this two-stage sorting approach. In this example, we 

suppose there are totally eight tasks to be allocated 

to four processor cores, each task has its memory 

size requirement and memory references, and the 

memory size stacked on each processor core is eight 

memory segments. The result of task sorting by only 

memory references is {Task1, Task5, Task6, Task2, 

Task3, Task4, Task8, Task7}, Fig. 6(a) shows the 

result when we allocate tasks in sequential based on 

this sorting order to balance memory references of 

processor cores. The allocation result shows that 

memory size requirement of core 2 exceeds the 

memory segments stacked on it, and hence needs to 

access the memory segments stacked on other 

processor cores in some time, resulting to the bad 

thermal dissipation. While if our two-stage sorting 

approach is applied, the result of task sorting is 

{Task1, Task6, Task5, Task2, Task4, Task7, Task3, 

Task8}, Fig. 6(b) shows the result when we allocate 

tasks in sequential based on this sorting order to 

balance memory references of processor cores. The 

allocation result shows that no memory requirement 

of processor core exceeds the memory segments 

stacked on it, and the memory references of 

processor cores is even better balanced than that in 

Fig.6(a). Therefore, with this task allocation 

approach, we make the assumption in our target 

architecture that each processor core can only 

accesses the memory dies vertically stacked on top 

of it as described in Section 2.3. 

 

 
                    (a)                                      (b) 

Fig. 6: Example of two-stage sorting approach for 

task allocation. 

 

The third phase is memory mapping. We apply 

and modify the approach proposed in research [13] 

to fit our target architecture. The first step is to 

avoid the accesses of memory banks in the vertical 

direction simultaneously, which has been proved to 

have critical impact on the thermal behavior of 3D 

memory architecture in research [13]. In the second 

step, we further consider the thermal effect of 

memory mapping in the same memory tier by 

memory banks classification.  

As shown in Fig. 7, there are four memory dies 

in a memory tier, and four memory banks in a 
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memory die. The memory banks marked with region 

1 locating in the corner and neighbouring with less 

memory banks, hence have the best thermal 

dissipation. On the other hand, the memory banks 

marked with region 3 locating in the centre and 

neighbouring with more memory banks, hence have 

the worst thermal dissipation. Therefore, memory 

segments with high access frequency should be 

mapped to region 1 to reduce thermal temperature, 

and mapped to region 3 in the versa. 

 

 
Fig. 7: Classification of memory banks in terms of 

thermal dissipation in the same memory plane. 

 

Based on this observation, we map task segments 

to memory banks by two methods. As illustrated in 

Fig. 8, we suppose there are four tasks executing on 

the same processor core and access the stacked 

bottom-right corner of memory tiers. If memory 

access frequencies of task3 and task4 are much 

higher than that of task1 and task2, we apply the 

first memory mapping method as shown in Fig. 8(a), 

in which memory-bound tasks access memory banks 

far from the centre of memory tiers to have better 

thermal dissipation. On the other hand, if memory 

access frequencies of all the four tasks are not 

obviously different, we apply the second memory 

mapping method as shown in Fig. 8(b), in which all 

tasks share the centre memory banks in even. 

 

 
               (a)                                       (b) 

Fig. 8: (a) Memory mapping for tasks with non-even 

memory access frequencies. (b) Memory mapping 

for tasks with even memory access frequencies. 

 

Finally, under the constraint of finished deadline 

of tasks, ILP formulations for segment-based task 

scheduling and time slot allocation are proposed to 

minimize the time overlap of massive memory 

references of processor cores, such that we can 

optimize the thermal behavior of multi-core 

processor and the stacked memory tiers on it. Detail 

description and ILP formulations of segment-based 

task scheduling and time slot allocation are 

described in the next section. 

 

 

4 Segment-Based Task Scheduling 
4.1 Segment-Based Task Scheduling 
In the segment-based task scheduling, we firstly 

partition the segments accessed by a task into sub-

segments according to its program structure and 

execution behavior. For the example in Fig. 9, there 

are two tasks allocated to core N, and both tasks 

access two memory segments. For task1, the two 

memory segments seg1-1 and seg1-2 are further 

partitioned into five sub-segments {sub1-1-1, sub1-

1-2, sub1-1-3, sub1-2-1, sub1-2-2}; and for task2, 

two memory segments seg2-1 and seg2-2 are further 

partitioned into four sub-segments {sub2-1-1, sub2-

1-2, sub2-2-1, sub2-2-2}. Sub-segments sub1-1-3 

and sub2-1-1 are duplicated because of multiple 

accesses in different stages of their task execution. 

An edge between two sub-segments implies the 

execution order constraint in the task. After sub-

segments duplication, there are totally eleven sub-

segments and two dependency streams in this 

example. 

 

 
Fig. 9: Example of segment-based task scheduling. 

 

There is execution order constraint for sub-

segments that belong to the same task. However, 

there is no execution order constraint for sub-

segments that belong to different tasks. For the 

example in Fig. 9, there is an execution order 

constraint between sub-segments sub1-1-1 and 

sub1-1-2, but there is no execution order constraint 

between sub-segment sub2-1-1 and any sub-
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segment of task1. In this paper, we define the 

segment-based task scheduling problem as to 

determine the execution order of all sub-segments 

allocated to the same processor core under the 

execution order constraint. We define the objective 

function to maximize the total difference of access 

frequencies between sub-segments that scheduled in 

successive execution order, such that sub-segments 

with high memory access frequency and sub-

segments with low memory access frequency are 

shuttled to avoid intensively memory access in 

continuous time. 

To get the best result, we model the segment-

based task scheduling problem by integer linear 

programming (ILP) formulations, and apply this 

methodology to all the processor cores. Notations, 

objective function, and constraints of these 

formulations are described as below. 

 

 Notations 

Si:  sub-segment i 

SN: total number of sub-segments after duplication 

in the target processor core 

feqi: memory access frequency of sub-segment i 

xi,j: a binary number to represent whether sub-

segment i is scheduled in the jth execution order 

oi: an integer number to represent the execution 

order of sub-segment i 

 

 Objective function 

We define the objective function of the proposed 

segment-based task scheduling as to maximize the 

total difference of memory access frequencies 

between all successive execution sub-segments. The 

larger the value of this objective function, the less 

opportunity a memory bank will be accessed 

intensively in continuous time. Formulation of the 

objective function is described as below. 

 

               
  
     

  
                    

  

    

  

    

  

   

 

 

 Constraints 

1. Each sub-segment can be scheduled to only one 

execution order. 

     

  

   

                            

 

2. When sub-segment l is dependent on sub-segment 

i, its execution order must be later than sub-segment 

i. 

                     

                     

  

   

 

 

3. Each execution order can have only one sub-

segment scheduled to it. 

     

  

    

                                 

 

 

4.2 Time Slot Allocation 
Idle slots are inserted between sub-segments to 

release the thermal pressure of processor cores due 

to continuously task execution and memory access. 

Fig. 10 shows the example of time slot allocation, in 

Fig. 10 (a) and Fig. 10 (b), one time slot is allocated 

at the end and the beginning of ASAP scheduling 

and ALAP scheduling, respectively. As shown in 

Fig. 10 (c), the time slot allocation problem is 

defined as to find an idle slots insertion solution 

between ASAP scheduling and ALAP scheduling of 

sub-segments, such that to get the maximal thermal 

reduction. 

 

 
                   (a)                                        (b) 

 
                                  (c) 

Fig. 10: Time slot allocation of sub-segments and 

idle slots. 
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Since memory segments with intensively access 

frequency are map to the memory groups that close 

to the heat sink, and we aim at avoiding accessing 

these memory groups simultaneously, cost function 

is designed to insert idle slots such that the time 

overlapping of sub-segments that access the same 

memory group is as less as possible.  

The example for evaluation of time slot 

allocation is shown in Fig. 11. Suppose sub-segment 

sub1-2 is scheduled in time slot 3, and sub-segment 

sub1-3 is scheduled in time slot 10. If sub-segment 

sub2-2 of Core2 is scheduled in time slot 8, its 

execution time overlaps with both the sub-segments 

sub1-2 and sub1-3 of Core1, and the overlapping 

time are all two time slots. In this example, sub-

segments sub1-2 and sub2-2 all have more memory 

accesses and are mapped to memory Group1, while 

sub-segment sub1-3 has less memory accesses and 

is mapped to memory Group3. 

 

 
Fig. 11: Evaluation of time slot allocation. 

 

As shown in Fig. 11, time overlapping of sub-

segments sub1-2 and sub2-2 is not preferred 

because they all have intensive memory accesses. 

Since we aim at avoid all processor cores accessing 

the same memory group simultaneously as 

illustrated in Fig. 1 and Fig. 2, cost function of this 

time overlapping is defined as below. 

 

                                           
                                                

 

Suppose totally there are four memory groups, 

the cost of time overlapping for sub-segment sub2-2 

with sub-segments sub1-2 and sub1-3 is calculated 

as (4 -|1-1|) * 2 + (4 - |3-1|) * 2 = 12. The less the 

cost is, the better the time slot a sub-segment should 

be scheduled to. To achieve this objective function, 

we propose an integer linear programming (ILP) 

formulation for this time slot allocation problem. 

Notations, objective function, and constraints of 

these formulations are described as below. 

 

 Notations 

Cycle:  total number of time slots 

Core: total number of processor cores 

GN: total memory group number 

Gi: memory group that sub-segment i is mapped to 

Si: sub-segment i 

SNc: total number of sub-segments after duplication 

in the target processor core c 

leni: execution length of sub-segment i in terms of 

time slot number 

xi,j: a binary number to represent whether sub-

segment i is scheduled in the jth time slot 

bi: an integer number to represent the beginning time 

slot of sub-segment i 

ei: an integer number to represent the ending time 

slot of sub-segment i 

overlapj,c: cost of time overlapping of sub-segments 

in the jth time slot between processors cores c and 

c+1 

 

 Objective function 

We define the objective function as to minimize the 

time overlapping of sub-segments with intensive 

memory access among different processor cores. 

The smaller the value of cost function, the less 

opportunity two memory banks in the same group 

will be accessed intensively in the same time. 

Formulation of the objective function is described as 

below. 

              
   

     

   

      

   

 

where 

       
   
                                        

                             
                                  
                               
                                 

 

 Constraints 

1. Each sub-segment can be scheduled to only one 

time slot 

     

     

   

                             

 

2. When sub-segment l is dependent on sub-segment 

i, beginning time slot of sub-segment l must be later 

than ending time slot of sub-segment i 

                  

where 
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3. For each processor core c, each time slot can have 

at most one sub-segment scheduled to it 

      

   

    

                           

 

 

5 Experimental Results 
We implement our system in the C/C++ 

programming language, and use Extended LINGO 

Release 11.0 as the ILP solver for the proposed 

segment-based task scheduling and time slot 

allocation problems. The platform is Windows-7 

x64 running on i5-2500K quad-cores CPU with 

4GB RAMs. 

 

Table 1  

System parameters 

System Parameter Value 

Total tiers 9 

Memory tiers 8 

Processor tier 1 

Dies on memory tier 4 

Banks per memory tier 16 

Bit width of a memory die 8 

Bit width of system bus 32 

DRAM Parameter Value 

Capacity per die 256 Mb 

Total Memory Size 1GB 

Processor Parameter Value 

Processor Alpha 

Cores number 4 

 

We test our system flow and segment-based 

approach by four test benches, each test bench is 

consist of a set of application programs from SPEC 

[18] and MiBench [21], and use program analysis 

tool Simplescalar3.0 [19] to get the information for 

instruction count, execution time, and reference 

count of memory. Power consumption of memory is 

calculated based on the Micron DDR3 specification 

[23], the processor cores in our architecture are 

Alpha 21264 [22]. For all the experimental results, 

we use thermal simulator HotSpot [20] to simulate 

and report the highest temperature, the lowest 

temperature, and the average temperature in the 3D 

floorplanning. Table 1 lists the parameters of our 

target system. 

Table 2 compares the effect of different task 

allocation approaches. The notation BF denotes the 

task allocation approach based on memory access 

frequency only, and our two-stage sorting approach 

considers both memory access frequency and 

memory size requirement. Both approaches all 

apply our memory mapping and segment-based task 

scheduling methodologies. Experimental results 

show that our approach gets lower thermal 

temperature on all the three corners. 

Table 3 compares the effect of different memory 

mapping approaches. The direct mapping method 

does not avoid the memory access in the vertical 

direction; while our memory mapping approach not 

only avoids accessing memory in the vertical 

direction, but also considers the thermal effect of 

memory mapping in the same memory tier. Both 

approaches all apply our task allocation and 

segment-based task scheduling methodologies. 

Experimental results show that our memory 

mapping approach improves the thermal 

temperature over ten percentage for all the test 

benches. 

Table 4 shows the effect of our segment-based 

task scheduling and time slot allocation 

methodologies. With the same task allocation and 

memory mapping results by our methodologies, 

experimental results of our segment-based 

approaches further improve the thermal temperature 

by about ten percentages for all the test benches 

than that using the task scheduling directly. 

Comparing Table 2, Table 3 and Table 4, 

experimental results show that memory mapping 

and segment-based task scheduling have larger 

impact on the thermal temperature than task 

allocation. Therefore, we further compare the effect 

of memory mapping and segment-based task 

scheduling as the results shown in Table 5. When 

both memory mapping and segment-based task 

scheduling approaches are all not applied, the results 

are the worst. The results of applying memory 

mapping approach only are a little better than that of 

applying segment-based task scheduling approach 
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only, this is because that vertical direction has larger 

impact on the thermal temperature. However, when 

both approaches are applied, there is still obvious 

thermal temperature improvement over the memory 

mapping approach only. Therefore, although the 

segment-based task scheduling approach is not the 

unique factor to reduce thermal temperature, 

applying it together with memory mapping can 

avoid the continuous access of memory hot spot and 

further improve the thermal temperature. 

 

 

Table 2  

Thermal results of task allocation approaches 

 
 

Table 3  

Thermal results of memory mapping approaches 

 
 

Table 4  

Thermal results of task scheduling approaches 

 
 

 

 

Table 5  

Thermal results of different optimization approaches 

 
 

6 Conclusions 
In this paper, we propose a methodology for thermal 

optimization of 3D stacked memory architecture. In 

addition to task allocation and memory mapping, 

ILP formulations for segment-based task scheduling 

and time slot allocations are proposed to further 

reduce the thermal temperature of stacked memory 

architecture. Experimental results from the HotSpot 

thermal simulator show that our approach is indeed 

effective for this optimization problem. 
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