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1 Introduction

Graphs G = (V,E) are often used to describe

molecules. The set V of vertices is associated with

the atoms of the molecule, and the set E = {vivj}
of edges to bonds between them. Moreover, a large

number of graphical invariants, i.e., formulae asso-

ciated with the graphs which do not depend on the

numbering of the vertices and/or edges, are used to de-

scribe the properties of those graphs. Extremal values,

i.e., minima or maxima, of the invariants often corre-

spond to graphical properties or structures in QSAR

and QSPR studies.

Finding algorithms for determination of these ex-

tremal graphs has been the subject of systematic stud-

ies on extremal chemical graphs, done at GERAD,

Montreal during the last decade. It focusses on

two different families of methods: (i) the Auto-

GraphiX (AGX) system which applies the variable

neighborhood search metaheuristic to study proper-

ties of various families of chemical graphs, such as

trees, unicyclic graphs, or trianle free graphs; (ii) the

ChemoGraphiX system (CGX) which exploits the fact

that such graphs have maximum degree at most 4.

One can then apply mixed integer programming with

variables associated with the number ni of vertices of

degree i and with the number mij of edges with end-

vertices with degrees i and j. This leads to mathemat-

ical programs in 13 variables which ar easy to solve.

2 Variable neighborhood search

Metaheuristics are general frameworks to build

heuristics for solving combinatorial and global opti-

mization problems. They have been the subject of in-

tensive research since genetic search and Simulated

Annealing were proposed [21] as general schemes for

building heuristics which get out of local minima or

maxima. Several other metaheuristics were soon pro-

posed. For discussion of the best-known of them the

reader is referred to the books of surveys [5, 12, 25].

Some of the many successful applications of meta-

heuristics are also mentioned there.

Variable Neighborhood Search (VNS) [16, 17,

18, 19, 23] is a metaheuristic which exploits system-

atically the idea of neighborhood change, both in de-

scent to local minima and in escape from the valleys

which contain them. VNS exploits the following three

observations:

• A local minimum with respect to one neighborhood

structure is not necessary so for another.

• A global minimum is a local minimum with respect

to all possible neighborhood structures.
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Figure 1: VNS curves

• For many problems local minima with respect to one

or several neighborhoods are relatively close to each

other.

Unlike many other metaheuristics, the basic

schemes of VNS and its extensions are simple and re-

quire few, and sometimes no parameters. Therefore,

in addition to providing very good solutions, often

in simpler ways than other methods, VNS gives in-

sight into the reasons for such a performance, which,

in turn, can lead to more efficient and sophisticated

implementations.

Function VNS (x, kmax, tmax);

1 repeat

2 k ← 1;

3 repeat

4 x′
← Shake(x, k);

5 x′′
← FirstImprovement(x′

) ;

6 NbhoodChange(x, x′′, k);

until k = kmax;

7 t← CpuTime();

until t > tmax;

Algorithm 1: Steps of the basic VNS

The Basic VNS (BVNS) method [23] combines

deterministic and stochastic changes of neighbour-

hood. Its steps are given in Algorithm 1 (see also

Figure 1). Often successive neighbourhoods will be

nested. Observe that point x′ is generated at random

in Step 4 in order to avoid cycling, which might occur

if deterministic rules were applied. In Step 5, sev-

eral neighborhoods may be used. In this case, we

speak about variable neighborhood descent (VND),

the scheme of which is given in Algorithm 2. For

more details about VNS and its applications in solv-

ing problems in different domains of sciences see the

recent survey [20] as well as the references therein.

In all its applications, VNS is used as an optimiza-

tion tool. These applications are mainly solving spe-

Function VND (x, k′
max);

1 repeat

2 k ← 1;

3 repeat

4 x′
← argminy∈N ′

k
(x) f(x);

5 NbhoodChange (x, x′, k);

until k = k′
max;

until no improvement is obtained;

Algorithm 2: Steps of the basic VND

cific optimization problems. However, VNS can also

be used in discovery science, i.e., help in the develop-

ment of theories. The first domain to be addressed in

this way was graph theory.

2.1 VNS for extremal graphs

VNS is the fundamental tool exploited in the system

AutoGraphiX (AGX, for short) [2, 8, 9], which is de-

voted to conjecture–making, and therefore to scien-

tific discovery, in graph theory. A long series of papers

(see the list in [4]) with the common title “Variable

neighborhood search for extremal graphs” was pub-

lished. Several of the papers which use AGX without

being included within this series are listed in [4]. This

system addresses the following problems:

• Find a graph satisfying given constraints;

• Find optimal or near optimal graphs for an invariant

subject to constraints;

• Refute a conjecture;

• Suggest a conjecture (or repair or sharpen one);

• Provide a proof (in simple cases) or suggest an idea

of proof.

A basic idea is then to consider all of these prob-

lems as parametric combinatorial optimization prob-

lems on the infinite set of all graphs (or in practice

some smaller subset) solved with a generic heuris-

tic. This is done by applying VNS to find extremal

graphs, with a given number n of vertices (and pos-

sibly also a given number of edges). Then a VND

with many neighbourhoods is used. Those neighbor-

hoods are defined by modifications of the graphs such

as the removal or addition of an edge, rotation of an

edge, and so forth. Once a set of extremal graphs,

parametrized by their order, is found, their proper-

ties are explored with various data mining techniques,

leading to conjectures, refutations and simple proofs

or ideas of proof.

2.2 The AutoGraphiX system

Among the first application of VNS, a computer

program, called the AutoGraphiX system (AGX, for

short) [2, 8, 9], was built for conjecture–making in
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Figure 2: Examples of moves (changes) used in AGX

graph theory. This system has been developed at

GERAD, Montreal, since 1997. Conjectures obtained

with AGX were proved by the present authors or by

graph theorists from several countries.

Graph theory is replete with theorems involving graph

invariants. They are either algebraic, i.e., equalities

or inequalities involving one or several invariants, or

structural, i.e., characterizations of the families of

graphs for which an invariant takes an extremal value.

Both types of results can be conjectured by AGX, in a

fully automated way, or in some cases, to be carefully

distinguished, in an assisted way.

Let Gn and Gn,m denote respectively the sets of all

graphs with n vertices, and with n vertices and m
edges. Two basic ideas underlie the systems AGX:

• Most problems of extremal graph theory can be

viewed as problems of parametric combinatorial opti-

mization of the form

min / max
G∈Gn

i(G) or min / max
G∈Gn,m

i(G) (1)

for some invariant i(G) with parameters n and m,

or the exploitation of their solutions (in practice only

moderate values of n and m will be considered);

• All problems of the form (1) can be solved ap-

proximately by a generic heuristic.

To obtain such a heuristic, the Variable Neigh-

borhood Search metaheuristic (VNS) is specialized.

VNS exploits systematically changes in neighbor-

hoods used in the search (see Figure 2 for examples

of changes), both in a descent phase to obtain a lo-

cally extremal graph, and in a ”shaking” phase, to get

out of the corresponding valley (or away from the cor-

responding mountain) in order to find a better graph.

Rules of VNS applied in AGX are the following:

1. Select the set of neighborhood structures

Nk, k = 1, . . . kmax that will be used in the

search for a better locally optimal graph, and a

stopping condition. Choose an initial graph G.

Repeat until the stopping condition is met:

2. Set k = 1;

3. Until k = kmax, repeat the following steps:

(a) (shaking) generate a graph G′ from the kth

neighborhood of G (G′ ∈ Nk(G));

(b) (descent) apply VND with G′ as initial

graph; denote with G′′ the locally optimal

graph obtained;

(c) (improvement or continuation) if i(G′′) is

better than i(G), the best value of i for

a previously visited graph, move there,

i.e., replace G by G′′, and continue search

within N1(G); otherwise, set k ← k + 1.

The stopping condition is usually a maximum

computing time. The optimization routine of VNS

is called variable neighborhood descent. It explores

systematically larger and larger neighborhoods of the

current graph, and performs a move whenever it is

profitable (first improvement) or is also best within

its neighborhood (best improvement). The neighbor-

hoods used initially in AGX are the following: re-

move, add, move, detour, short cut, 2–opt, insert pend-

ing vertex, add pending vertex, and remove vertex.

In the most recent version of AGX, the VND rou-

tine is replaced by Learning Descent (LD), in order to

keep track of which transformations are the most fruit-

ful and to reinforce their use. The LD used in AGX is

described in [7].

Once a set of (presumably) extremal graphs has

been found, conjectures can be stated by one of the

following 3 approaches [8]:

(i) a numerical method which applies the mathematics

of Principle Component Analysis [10] to determine,

in polynomial time, a basis of affine relations between

invariants, satisfied by the extremal graphs found.

(ii) a geometric method which views extremal graphs

as points in invariants space and applies a “gift-

wrapping” algorithm to find their convex hull and lin-

ear inequality relations associated with its facets. Note

that a similar approach is used in GraPHedron [11];

(iii) an algebraic method [1, 3, 2] which recognizes

to which family (or families) of graphs the extremal

graphs belong, then uses a database of formulae for

invariants in function of the order of G to obtain con-

jectures.

3 The ChemoGraphiX system

3.1 Edge realizability of simple graphs

Let G = (V,E) be a graph with vertex set V and edge

set E. We denote by G[W ] the subgraph of G induced

by a subset W ⊆ V of vertices, by dG(v) the degree

of v in G, and by ∆(G) the maximum degree in G.

Let euv be the number of edges linking u with v in G.

The number µ(G) of multiple edges in G is defined as
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µ(G) =
∑

u6=v max{euv − 1, 0}. Hence, µ(G) = 0 if

and only if G does not contain any multiple edge.

Given a symmetric r × r matrix M = [mij ], an

M -graph is a graph G with ∆(G) = r and such that

the number of edges with end-vertex degrees i and j is

equal to mij . Multiple edges contribute by their mul-

tiplicity to both of their end-degrees and loops con-

tribute by 2 to the degree of their unique end-vertex.

Let ΓM be the set of simple M -graphs (i.e., the

set of M -graph without loops or multiple edges). The

symmetric matrices M for which ΓM is non-empty

were characterized by [15] in the following theorem.

Theorem 1 ([15]) Let M = [mij ] be a symmetric r×
r matrix of non-negative integers. ΓM 6= ∅ if and only

if the following conditions hold:

(C1) ni =
1
i
(

r
∑

j=i

mij +
i
∑

j=1
mji) is an integer for all

i = 1, . . . , r;

(C2) mii ≤ 1
2(ni(ni − 1)) for all i = 2, . . . , r such

that 1 ≤ ni ≤ i.

(C3) mij ≤ ninj for all 2 ≤ i < j ≤ r such that

1 ≤ ni < j and 1 ≤ nj < i.

An algorithm for the construction of a simple M -

graph, based on the above theorem, is provided in

[15]. More precisely, given a matrix M that satisfies

conditions (C1)–(C3), the algorithm constructs a sim-

ple M -graph in three steps: (a) build an M -graph;

(b) remove loops; and (c) remove multiple edges.

3.2 Edge realizability of connected simple

graphs

Let Γ′
M ⊆ ΓM be the set of simple M -graphs with

minimum number of connected components. The next

theorem gives necessary and sufficient conditions on

M so that all graphs in Γ′
M are connected. In com-

parison with Theorem 1, a fourth condition has to be

added. Before the statement of the result, we first need

to introduce some notations.

For a graph G, let D(G) be the set of integers i
such that there is at least one vertex v with dG(v) =
i that lies on a cycle in G. Also, let D′(G) be the

set of integers i /∈ D(G) such that there is at least

one vertex w with dG(w) = i that lies on a path P
in G whose endpoints u and v have the same degree

dG(u) = dG(v) ∈ D(G). Finally, let H(G) be the

subgraph of G induced by the vertices with degree i ∈
D(G) ∪ D′(G) in G. For example, considering the

graphs in Figure 3, we have D(G) = {3, 4} in (a), (b),

(c), D(G) = ∅ in (d), D′(G) = {2} in (a), D′(G) =
{2, 6} in (b), and D′(G) = ∅ in (c) and (d). The black

w2=p

u

v
x

w1

q

u

v=x
p

q

u

v=w
q

p

(a) (b) (c) (d)

Figure 3: Example of graphs with D(G) = {3, 4}.

vertices are those with a degree i ∈ D(G), while the

grey ones are those with a degree i ∈ D′(G). The

vertices of H(G) are the black and grey ones, and the

edges of H(G) are those represented with bold lines.

Let Pr be the set containing all partitions of all

subsets of {2, . . . , r}. For example, for r = 4, P4
contains the 15 following partitions:

• the 5 non-empty partitions of {2, 3, 4} :
{

{2}, {3}, {4}
}

,
{

{2}, {3, 4}
}

,
{

{3}, {2, 4}
}

,
{

{4}, {2, 3}
}

, and
{

{2, 3, 4}
}

;

• the 2 non-empty partitions of {2, 3} :
{

{2}, {3}
}

,
{

{2, 3}
}

;

• the 2 non-empty partitions of {2, 4} :
{

{2}, {4}
}

,
{

{2, 4}
}

;

• the 2 non-empty partitions of {3, 4} :
{

{3}, {4}
}

,
{

{3, 4}
}

;

• the 3 non-empty partitions of {2}, {3} and {4} :
{

{2}
}

,
{

{3}
}

,
{

{4}
}

;

• the empty partition.

Also, for a partition p ∈ Pr, let Er(p) be the set of all

integers that appear in a subset of p (i.e., Er(p) =

∪s∈p s, and let Er(p) = {2, . . . , r} \ Er(p). For

example, for p = {{2, 3}, {5}}, we have E6(p) =

{2, 3, 5} and E6(p) = {4, 6}.
Now, let I(M) be the set of integers i in

{2, . . . , r} such that mii +
∑r

j=1mij ≥ 1. For a

partition p ∈ Pr, we denote by |p|M be the num-

ber of subsets s ∈ p such that s ∩ I(M) 6= ∅.
For example, for I(M) = {2, 3, 5, 6, 8} and p =
{{2, 4}, {3}, {5, 8}, {7}}, we have |p|M = 3.

There is a bijection between Pr and the set of par-

titions of {1, . . . , r}. Indeed, to every partition p ∈
Pr, we can associate a partition of the set {1, . . . , r}
by adding the bloc Er(p) ∪ {1} to p. Hence, the total

number of partitions in Pr is the rth Bell number Br

(sequence A000110 in OEIS [26]).

We are now ready for the statement of the main

theorem, proved in [15], that characterizes those ma-

trices M for which there is a simple connected M -

graph G.
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Theorem 2 ([15]) Let M = [mij ] be a symmetric

r × r matrix of non-negative integers. There is a sim-

ple connneted M -graph G if and only if the following

conditions hold:

(C1) ni =
1
i
(

r
∑

j=i

mij +
i
∑

j=1
mji) is an integer for all

i = 1, . . . , r;

(C2) mii ≤ 1
2(ni(ni − 1)) for all i = 2, . . . , r such

that 1 ≤ ni ≤ i.

(C3) mij ≤ ninj for all 2 ≤ i < j ≤ r such that

1 ≤ ni < j and 1 ≤ nj < i.

(C4)
∑

s6=s′

s,s′∈p

∑

i∈s
j∈s′

mij +
∑

i∈Er(p)

j∈Er(p)

mij +
∑

i≤j

{i,j}⊆Er(p)

mij −

m11 ≥
∑

i∈Er(p)

ni + |p|M − 1 ∀p ∈ Pr.

While conditions (C4) of Theorem 2 are numer-

ous, particularly for large values of r, they may prove

to be useful in the case of chemical graphs, where

r = ∆(G) ≤ 4. Indeed, P4 contains only 15 parti-

tions.

Given a matrix M that satisfies conditions (C1)–

(C4) of the above theorem, an algorithm for the con-

struction of a simple connected M -graph is provided

in [15].

3.3 An integer programming model

Let n and m be two positive integers. In this section,

we show how to determine a symmetric r × r matrix

M = [mij ] of non-negative integers that satisfies all

conditions of Theorem 2 as well as the two following

conditions:

(C5) n =
∑r

i=1 ni

(C6) m =
∑

1≤i≤j≤r mij .

An M -graph with such a matrix M has n vertices and

m edges. Finding such a matrix can be done using an

Integer Linear Programming (ILP) model. Since M
has to be symmetric, we consider non-negative integer

variables mij for all 1 ≤ i ≤ j ≤ r. The ILP also uses

non-negative integer variables ni (i = 1, . . . , r) which

are constrained as follows, to satisfy condition (C1) :

r
∑

j=i

mij +
i

∑

j=1

mji = ini ∀i = 1, . . . , r (2)

In order to impose condition (C2), we consider new

Boolean variables xik defined for i = 1, . . . , r and

k = 1, . . . , i, and impose

ni ≥ (k + 1)(1− xik) (3)

∀i = 2, . . . , r,∀k = 1, . . . , i

mii + xikm ≤
k(k − 1)

2
+m (4)

∀i = 2, . . . , r,∀k = 1, . . . , i

Constraints (3) imply that xik = 1 when ni ≤ k,

while xik can take value 0 or 1 otherwise. Consider

any i ∈ {2, . . . , r}:

• if ni > i, constraints (4) do not impose any re-

striction since xik can be set equal to 0 for all

k = 1, . . . , i;

• if ni = 0, constraints (4) impose a series of upper

bounds on mii, the strongest one being obtained

with k = 1. We thus get mii ≤ 0, which is

already imposed by constraints (2);

• if 1 ≤ ni ≤ i, constraints (4) impose a series

of upper bounds on mii, the strongest one being

obtained with k = ni (i.e., mii ≤ 1
2ni(ni − 1)),

which corresponds to condition (C2).

Condition (C3) is imposed in a similar way:

mij +mxjk ≤ kni +m

∀2 ≤ i < j ≤ r,∀k = 1, . . . , i− 1 (5)

mij +mxik ≤ knj +m

∀2 ≤ i < j ≤ r,∀k = 1, . . . , j − 1 (6)

Indeed, consider any i, j such that 2 ≤ i < j ≤ r:

• if ni ≥ j and nj ≥ i, no constraint is imposed

since xjk in (5) and xik in (6) can be set equal to

0 for all considered values of k;

• if ni = 0 or nj = 0, constraints (5) and (6) are

not more restrictive than constraints (2) which

impose mij = 0;

• if ni ≥ j and 1 ≤ nj ≤ i − 1, constraints (5)

impose mij ≤ ninj , which is not more restric-

tive than mij ≤ jnj imposed by constraints (2)

(while constraints (6) do not impose any restric-

tion);

• if nj ≥ i and 1 ≤ ni ≤ j− 1, constraints (6) im-

pose mij ≤ ninj , which is not more restrictive

than mij ≤ ini imposed by constraints (2).

• if 1 ≤ nj ≤ i − 1 and 1 ≤ ni ≤ j − 1, both (5)

and (6) impose condition (C3).
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For imposing condition (C4), the only difficulty

is the term |p|M since M is not known. By defini-

tion, I(M) is the set of integers i in {2, . . . , r} such

that mii +
∑r

j=1mij ≥ 1, and it follows from con-

straints (2) that this is equivalent to say that I(M) is

the set of integers i in {2, . . . , r} such that ni ≥ 1.

Hence, given a partition p ∈ Pr and a set s ∈ p, we

have s ∩ I(M) 6= ∅ if and only if there exists i ∈ s
with ni ≥ 1. We therefore define Boolean variables

qs for all non-empty subsets s of {2, . . . , r} so that

qs =

{

1 if there exists i ∈ s with ni ≥ 1
0 otherwise.

This is done by imposing the following constraints:
∑

i∈s
ni ≤ nqs ∀ non-empty s ⊆ {2, . . . , r} (7)

∑

i∈s
ni ≥ qs ∀ non-empty s ⊆ {2, . . . , r} (8)

Since |p|M =
∑

s∈p qs, we can now impose Condition

(C4) as follows. For a partition p ∈ Pr, let A(p) be

the set of pairs (i, j) such that i < j and there are two

distinct sets s, s′ in p with i ∈ s and j ∈ s′. Also,

let B(p) the the set of pairs (i, j) such that i < j and

either i ∈ Er(p) and j ∈ Er(p), or j ∈ Er(p) and

i ∈ Er(p). Condition (C4) is then imposed by the

following constraint:
∑

(i,j)∈A(p)∪B(p)

mij +
∑

i≤j

{i,j}⊆Er(p)

mij −m11 ≥

∑

i∈Er(p)

ni +
∑

s∈p
qs − 1 ∀p ∈ Pr (9)

Clearly, conditions (C5) and (C6) are imposed as fol-

lows, where n and m are fixed integers.

r
∑

i=1

ni = n (10)

∑

1≤i≤j≤r

mij = m (11)

Finally, the following constraints define the possible

values of all variables:

mij ∈ N ∀i = 1, . . . , r, ∀j = i, . . . , r (12)

ni ∈ N ∀i = 1, . . . , r (13)

xik ∈ {0, 1} ∀i = 2, . . . , r, ∀k = 1, . . . , i (14)

qs ∈ {0, 1} ∀ non-empty s ⊆ {2, . . . , r} (15)

A simple calculation shows that there are 2r−1+r(r+
2) − 2 variables and 2r + r

2(r
2 − r + 6) − 4 + Br

constraints (where Br denotes the rth Bell number).

3.4 Finding more than one matrix

Given any matrix M produced by the ILP of the previ-

ous section, we now show how to generate a different

one (if any) that also satisfies conditions (C1)–(C6).

This is done as follows. Let {Mij} denote the values

of the matrix obtained using the ILP of the previous

section. For all 1 ≤ i ≤ j ≤ r with Mij > 0, we de-

fine a Boolean variable yij so that yij = 1 if and only

if Mij < mij . This is done by imposing the following

constraints:

Mij +myij ≥ mij

∀1 ≤ i ≤ j ≤ r with Mij > 0 (16)

yij(Mij + 1) ≤ mij

∀1 ≤ i ≤ j ≤ r with Mij > 0 (17)

yij ∈ {0, 1}
∀1 ≤ i ≤ j ≤ r with Mij > 0 (18)

In a similar way, we consider, we consider Boolean

variable zij so that zij = 1 if and only if Mij > mij :

Mij +m(1− zij) ≥ mij + 1

∀1 ≤ i ≤ j ≤ r with Mij > 0 (19)

(1− zij)Mij ≤ mij

∀1 ≤ i ≤ j ≤ r with Mij > 0 (20)

zij ∈ {0, 1}
∀1 ≤ i ≤ j ≤ r with Mij > 0 (21)

In order to generate a new matrix different from the

previous one, it is then sufficient to add the constraint

that at least one the yij and zij variables must be equal

to 1. This is simply done as follows:

r
∑

i=1

r
∑

j=i

(yij + zij) ≥ 1 (22)

3.5 Extremal graphs for some Adriatic in-

dices

For a graph G, let I(G) be an invariant that can be

written as a function linear in the numbers ni of ver-

tices of degree i and in the numbers mij of edges with

end-degrees i and j. For example the first and sec-

ond Zagreb indices [13] and the Randić index [24] are
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defined as follows :

First Zagreb index of G :
r

∑

i=1

nii
2

Second Zagreb index of G :
r

∑

i=1

r
∑

j=i

mijij

Randić index of G :
r

∑

i=1

r
∑

j=i

mij√
ij

Such indices belong to the set of Adriatic indices

studied in [27]. In this section, we show how to de-

termine simple graphs and simple connected graphs

that optimize (i.e., minimize of maximize) these in-

variants.

Given two integers n and m, finding a simple con-

nected graph G with optimal value I(G) can be done

by solving the following ILP, and then building a sim-

ple connected M -graph (with Algorithm 2), using the

matrix M produced by the ILP:

Minimize or maximize the graph invariant I
Subject to constraints (1)–(14)

We illustrate the use of the models by consider-

ing chemical trees, i.e., trees with maximum degree

r ≤ 4. We therefore solve the ILP by setting r = 4
and m = n − 1. As already mentioned in Section

3.3, the ILP has 2r−1 + r(r + 2) − 2 variables and

2r+ r
2(r

2−r+6)−4+Br constraints, which gives a

total of 30 variables and 63 constraints for r = 4, re-

gardless of the number of vertices in the considered

chemical trees. We first identify all simple chemi-

cal trees with 6 ≤ n ≤ 15 vertices having mini-

mum, second-minimum, third-ninimum, fourth min-

imum, and fifth-minimum value of the Randić index.

The set of extremal chemical trees is shown in Figure

5.

For comparison, a similar study was performed

in [14] and [22], where the authors analyse chemical

trees with minimum, second minimum and third min-

imum Randić index. They give one example of such

extreme graphs for every n = 6, 7, . . . , 24. A care-

ful comparison of the these studies shows that three

graphs presented in [14] and [22] (at page 87) are not

correct: their second-minimum and third-minimum

for n = 11, and their third minimum for n = 14
have a Randić index strictly larger than our fifth-

minimum. For example, the graphs shown in Figure 5

with n = 11 have a Randić index of 4.5, 4.62, 4.65,

4.66, and 4.69, while the graph presented in [14] and

[22] as second-minimum, and drawn in Figure 4, has

value 4.71.

Condition (C4) is essential to ensure the connec-

tivity. For comparison, we show in Figure 6 the simple

graphs having maximum degree r ≤ 4, m = n − 1

Figure 4: Chemical tree with 11 vertices and pre-

sented in [14] and [22] as second-minimum for the

Randić index.

n = 6

n = 7

n = 8 

n = 9

n = 10

n = 11

n = 12

n = 13

n = 14

n = 15

minimum second-minimum third-minimum fourth-minimum fifth-minimum

Figure 5: Extremal chemical trees for the Randić in-

dex.
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Figure 6: Graphs with minimum Randić index and n−
1 edges.

Figure 7: HERE Price of connectivity for the Randić

index of chemical trees.

edges, 4 ≤ n ≤ 13 vertices, and minimum Randić

index.

Let Rn be the minimum Randić index of a chem-

ical tree with n vertices, and let R∗
n be the mini-

mum Randić index of a simple graph with n vertices,

m − 1 edges and maximum degree r ≤ 4. Clearly,

Rn ≥ R∗
n. The difference Rn − R∗

n is somehow a

price of connectivity [6] which we represent in Figure

7 for n ≤ 99. The curve indicates a regular shape for

all n ≥ 11. By analysing the extreme graphs for R∗
n,

we have observed that they all have n−1
2 vertices of

degree 4, and n+1
2 isolated vertices if n is odd, and

n−2
2 vertices of degree 4, 1 vertex of degree 2, and n

2
isolated vertices if n is even. The regular shape of the

curve in Figure 7 is due to the fact that for all n ≥ 11,

we have

Rn −R∗
n =







































n
6 if n mod 6 = 0
n−1
6 +

√
3−1
2 if n mod 6 = 1

n+4
6 −

√
2
2 if n mod 6 = 2

n−3
6 +

√
2
2 if n mod 6 = 3

n−4
6 + 1+

√
3−

√
2

2 if n mod 6 = 4
n+1
6 if n mod 6 = 5.

As final illustration of the use of the proposed

methods, we give in Figure 8 all simple chemical trees

with 6 ≤ n ≤ 12 vertices having minimum, second-

minimum, third-ninimum, fourth-minimum, and fifth-

minimum value of the second Zagreb index.

While this was not the case for the Randić index,

it happens several times that an extremal value of the

second Zagreb index in reached with more than one

Figure 8: Extremal chemical trees for the second Za-

greb index.

M -matrix. Extreme graphs having the same value,

but different M -matrices are separated with a dotted

line in Figure 8. For example, for n = 10, there are 4

graphs with fourth-minimum value of the the second

Zagreb index. The first one was obtained from a first

M -matrix, while the three others were obtained from

a second M -matrix.

Conclusion

We have given necessary and sufficient conditions on

the numbers mij of edges with end-degrees i and j for

the existence of a simple graph or a simple connected

graph with fixed maximum degree. These conditions

can be imposed by an integer programming model,

and graphs with these mij values can be generated us-

ing the proposed algorithms.

We have shown that these models and algorithms

are very helpful to determine all extremal graphs of

Adriatic indices that linearly depend on the the ni and

mij values.
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