
Testability and Testing of Microservices - complex challenge

DANI ALMOG

Department of Software Engineering

SCE - Shamoon College of Engineering

Bialik/Basel Streets, Be’er Sheva 84100

 ISRAEL

Almog.dani@gmail.com

HADAS CHASSIDIM

Department of Software Engineering

SCE - Shamoon College of Engineering

Bialik/Basel Streets, Be’er Sheva 84100

 ISRAEL

hadasch@sce.ac.il

SHLOMO MARK

Department of Software Engineering

SCE - Shamoon College of Engineering

84 Jabotinsky St. Ashdod, 77245 Israel

ISRAEL

marks@sce.ac.il

Abstract: - Microservices has become one of the most popular software engineering approach for modern web

and IoT applications. Nevertheless, the testability and the testing processes require a comprehensive study that

expands the testability model to a wider approach, focusing on the “not-testable” perspective. This paper presents

the issues areas and proposes a conceptual framework for testability and testing of applications created with

Microservices architecture - a multi-dimension testing approach for improving the process and the outcome. As

the transfer from monolithic to Microservices architecture led to a major shift of complexity from the actual basic

code into the implementation. This paper explores testing levels and dimensions suggesting a new holistic

framework to address the existing challenges.

Keywords: - Microservices, testing services, Multi dimension testing. IoT

1 Introduction
It's been a long road software development has been

taken since the beginning with the first computers,

from procedural thinking via object orientation and

many different methodologies and buildup. Software

architecture was always the signal representation of

the actual building blocks that enable the fulfillment

of the transformation from an abstract idea to a

functioning machine drives instructed and

manifested from a symbolic set of commands and

interactions (software). From one chunk dependent

code and data structure, evolved during the time a

more sophisticated structure and build of this set (as

specific software) [1]. Recently, we tend to increase

imitating the actual life behavior in the pattern of

executing this code. Service-Oriented Architecture

(SOA) presenting this behavioral pattern so each

element in the code will perform (independently) a

service to support the full system.

The term “microservices” was first introduced in

2011 at an architectural workshop as a way to

describe the participant’s common ideas in software

architecture patterns. Microservices are small

autonomous services that work together, modeled

around a business domain [2]. "The foundation of

microservices architecture (MSA) is about

developing a single application as a suite of small and

independent services that are running in its own

process, developed and deployed independently".

Dani Almog et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 88 Volume 6, 2021

mailto:Almog.dani@gmail.com
mailto:hadasch@sce.ac.il
mailto:marks@sce.ac.il

In most of the definitions of microservices

architecture, it is explained as the process of

segregating the services available in the monolith

into a set of independent services. However, It is

more than just about splitting the services within the

monolith application into independent services. SA

is based on a "share-nothing philosophy" [3]. This

architectural style structures a system as a set of

loosely coupled small services which are isolated in

small coherent and autonomous units.

The key idea is that by looking at the functionalities

offered from the monolith, we can identify the

required business capabilities. Then those business

capabilities can be implemented as fully independent,

fine-grained, and self-contained (micro)services.

They might be implemented on top of different

technology stacks and each service is addressing a

very specific and limited business scope.

In their research Di Francesco et al [3], review the

most recent research trends regarding microservices

applications and their industrial potential. It is clear

that very little research was done on testing (10/70)

suggesting, it will become a significant field for

further investigations. This work proposes a

conceptual framework with clear practical

implications.

 One of the main challenges facing quality assurance

and the longtime resilience of applications based on

Microservice is the testability issue. Chapter 2

follows the theoretical background and description of

Microservices architecture (MSA), proposing a new

way to look at all testing activities on the

microservice-based application. Chapter 3 elaborates

and provides another innovative view for testability.

2 Microservices Architecture
Microservice is an SOA interpretation using a set of

specific principles and patterns that claim to be in

harmony with agility and introduce the new name

(Microservice) to break the misunderstandings and

incomprehension of SOA. If SOA is a “victim” of its

success and that microservice will “blow” its new

life, we confirm that it's the opposite, and you must

go back to SOA principles to govern your

microservices. SOA will give the company the

missing enterprise scaling dimension which is

explicitly absent in microservice architecture. As an

extension of the SOA approach to developing an

application as a set of small independent services.

Each of the services is running in its own independent

process [4], and development on Micro-services

Architecture may own a set of drawbacks. In practice,

the micro-services approach means for the

developers the additional complexity of creating a

distributed system [5]. Testing is more difficult for

distributed systems. The inter-service

communication mechanism is probably one of the

main challenges that should consider, including the

specific form of the required distributed transactions.

Multiple services will require strong coordination

among developers within the team or between the

teams of developers. Consequently, the deployment

complexity will increase as well as the management

of different service types. The micro-services

approach leads to increased memory consumption,

due to the own address space for each service.

Therefore, one of the significant challenges is

deciding how to split (partition) the system into

micro-services. One obvious approach is to partition

services by use cases.

Based on Newman [6] and Fowler [2], microservices

are about functional decomposition often in a

domain-driven design context. They are

characterized by well-defined and explicitly

published interfaces. Each service is fully

autonomous and full-stack. Consequently, changing

a service implementation should have no impact on

other services, as communication takes place using

interfaces only. Functional decomposition of an

application and the team is the key to building a

successful microservices architecture. This achieves

loose coupling (probably by REST interfaces) and

high cohesion (multiple services can compose with

each other to define higher-level services or

applications). Functional decomposition enables for

instance agility, flexibility, scalability. These could

be achieved by the microservices ecosystems. The

overall system containing the microservices and

infrastructure can be divided into four layers [6]:

Layer 1: Hardware servers, databases, OS, resource

isolation, resource abstraction, configuration

management, host-level monitoring, host-level

logging, etc.

Layer 2: Communication (network, Dynamic

Service Registries (DNS), Remote Procedure Calls

(RPCs), endpoints, messaging, service discovery,

service registry, load balancing, etc.)

Layer 3: App Platform self-service (dev tools, dev

environment(s), test, build, pkg, release, deployment

pipeline, app-level logging, app-level monitoring,

etc.)

Layer 4: Microservices and microservices-specific

configs

According to Savchenko et al [7] the features of

microservices are:

Open Interface - microservices should provide an

open description of interface and communication

messages format (either API or GUI).

Dani Almog et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 89 Volume 6, 2021

Specialization - each microservices provides support

for an independent part of the application's business

logic.

Containerization - isolation from the execution

environment and other microservices based on a

container virtualization approach. Technologies like

OpenVZ, Docker, or Rocket became a de-facto

standard for the implementation of such an approach.

Autonomy - microservices can be developed, tested,

deployed, destroyed, moved, or duplicated

independently and automatically. Continuous

integration is the only option to deal with such

development and deployment complexity. We may

add to that - Internal containment of logics – all the

logics of the service are contained internally so the

output of the service will be very uniform and

standard.

In microservice architectures, applications are built

and deployed as simple, highly decoupled, focused

services. They connect over lightweight language-

agnostic communication mechanisms, which often

means simple APIs and message queues [2]. Services

implement a self-contained, well-defined, and

documented set of functionalities, which they expose

only via versioned APIs [8]. Implementing

microservices, are polyglot in terms of programming

languages, frameworks, and data stores used. Lastly,

microservices are resilient, which means they are

immutable artifacts that are designed to fail and to be

elastic in scale [9] [10].

Microservices and IoT
It seems that a vision of applying microservices

architecture in IoT systems is becoming widely

spread. wherein, one can expect that microservices

can be additionally associated with a device [19].

Recent work [21] testify that most of the testing used

by practitioner's unit and end-to-end testing and other

levels and aspects of testing do not have dedicated

solutions, which poses challenges during the testing

of microservices. Are we facing the familiar

challenge that was reported in our previous work?

[22] in which, the tendency of the industry to lean

more on unit code base testing? – we believe this

merits additional research.

3 Testability and Testing of

Microservices Applications

Software testability is one of the important concepts

in design and testing of software programs and

components. Building programs and components

with good testability always simplifies test

operations, reduces test cost, and increases software

quality. One way to improve the maintainability of a

software system is the design for testability, which

can address various aspects of software including

size, complexity, system structure, built-in-test

facilities, distribution, and non-determinism.

Design for testability is a strategy to align the

development process so that testing is maximally

effective under either a reliability-driven or resource-

limited regime. There are several sets of program

characteristics that lead to testable software including

operability, observability, controllability, and

understandability. Software testability analysis may

be useful to examine and estimate the quality of

software testing using an empirical analysis

approach. Testability is important for both ad-hoc

developers and organizations with a high level of

process maturity. It reduces cost in a reliability-

driven process and increases reliability in resource-

limited processes. It refers to ‘the inherent ability, or

extent of the ease with which software undergoes

through testing’.

Testability has been defined by ISO as one of the

attributes of software that bare on the effort needed

to validate the software product. ISO25010 – 2011:

"degree of effectiveness and efficiency with which

test criteria can be established for a system, product

or component and tests can be performed to

determine whether those criteria have been met".

Several characteristics have been identified in the

literature that contributes to a software system’s

testability. Later, [11] describe the term practical

testability of a product as: "how easy it is to test "

saying, this is a function of five other “testabilities”:

project-related testability, value-related testability,

subjective testability, intrinsic testability, and

epistemic testability (also known as the “risk gap”).

Earlier Binder [12], describes testability using a fish-

bone diagram, showing a range of typical factors that

are expected to facilitate testability. Later in his book

(page 93) Binder provides a more specific fish-bone

model regarding the capabilities of built-in tests. We

find this binder fish-bone model too general and not

detailed enough. Following Binder González et al.

[13] suggested looking at the runtime testability with

a new fish-bone diagram that describes qualitative

factors that affect runtime testability. In their model,

they separate the components into four different

considerations that manifest oppositely – sensibility -

isolation: State fullness - State separation, Interaction

– interaction separation, Resource limits – resource

monitoring, and Availability – scheduling.

Another attempt to reduce the challenges of the

interactions among services was proposed by Chen

[14] using four practices: (1) using test-first mind-set

and practices. (2) consumer contract-driven testing

Dani Almog et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 90 Volume 6, 2021

(3) Online system Integration test environment as

part of the CD pipeline (4) test in production and

monitoring. Waseem [15] aimed to deepen

understanding at of how microservices are developed

and tested in industry. They found that unit and end-

to-end testing defined as the most used testing

strategies. However, the complexity of microservices

systems poses challenges for their design,

monitoring, and testing, for which there are no

dedicated solutions

Recent works introduced software tools that help to

deliver high-quality microservices. For example,

Schrieber [16] proposed an approach to deploying

and composing containerized microservices as

reviewable applications. Another study compared

several tools that can be used to test

microservices at different levels including end-

to-end testing and regression testing [17]. The

main challenge was that the tool configuration

files need to be written manually and match the

environments in the containers of the services.

Other challenges include the resources needs to

run both the tools and the prototype (e.g., RAM;

unreliable network connectivity). Hernández [18]

evaluated two tools that support end-to-end (E2E)

testing of microservices.

To fit the micro-service architecture, we suggest

expanding the testability model to a wider approach,

focusing on the “not-testable” perspective. For the

testing layers of microservices architecture we have

chosen to present the concept negatively – “Non-

Testability” fish-bone diagram, pointing out various

aspects and characteristics which may lead to

exposing the difficulties in relate to the ability to test

an artifact.

Figure 1 “Non – testability” fish-bone model

Many of these risks expose alternatively each in two

opposite extremes for a single issue:

 The technical ability to test (tools and

environment)

 Enable isolation –but retain the accessibility

 Data-driven facilitation

 Complexity

 Controllability

 A stable situation

We believe that in order to deliver quality software

within time and budget, reducing effort in measuring

the testability of Microservice and IoT is necessary.

Later, we'll try to address these aspects and produce

a valid testing model for covering and assuring each

of these limitations and risks by presenting a multi-

dimension model concept for testing microservices-

related applications. Facing the transition from a

Monolithic application into Microservices may raise

serious issues of complexity and control. Figure 2

presents the transformation from monolithic to

Microservices architecture.

 Figure 2 Internal complexity

Figure 2 suggests that all internal interaction between

the artifacts is maintained, so the complexity is

contained within the monolithic application. The new

architecture on another hand enforces additional

external interaction which creates

Figure 3 external chaos

enormous complexity (Figure 3). Also, each service

is easier to maintain/replace the full picture is of

much more chaotic behaviour. There is a shift of

complexity from the space of code design and

implementation into system operations [19].

While describing testing of MJOLNIRR-Based

Microservices [7], Savchenko considers the most

Dani Almog et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 91 Volume 6, 2021

significant stages of the validation process,

addressing a full software package and particular

microservices systems, defining which features of the

validation items to be considered for microservice

systems. Our work provides a wider view of

microservices testing and attempts to cover more

general aspects and validation activities and as a

result may provide better quality results.

4 Multi dimension (plane) Testing

Levels Approach for Microservices

In this study, we offer a holistic perspective that

enables a conceptual framework for the testing

activities requirements that meets the main

challenges mentioned above.

Justification for differentiating the testing level

dimensions may be demonstrating by address the

following: Who are the right candidates to perform

these activities? What are their needed skills and

qualifications? When this activity should be

exercised? Are there dependencies or constraints

attached to the implementation of the microservices?

Examining the full context of testing, produce new

challenges, the following is a new attempt to address

the testing of microservice differently; multi-

dimension levels for testing starting the traditional

well versed testing levels.

4.1 Technical/code plane testing levels

Following the traditional testing levels [20], technical

levels represent the chronological buildup of the

software starting with the testing of the basic unit of

code, assemble it into components, orchestrate them

into product framework and integrate it into a system

that has other products to integrate with. The

affiliation to the code is a major aspect of these

testing level dimensions. Having Microservices

architecture will probably place unit tests as an

internal service activity. The integration testing may

also appear internally within the service (when a

complex service was developed). Other technical

levels will manifest as external to the actual service

itself.

Figure 4 Technical/code testing levels

Technical/code testing is a procedural serial buildup

process; you cannot fully test an element before you

have fully implemented all its ingredients.

4.2 Functional/business plane testing levels

Testing the functional/business context of an element

requires knowledge and familiarity with the usage

domain. Most of the time, tools and the mechanism

do not demand a real insight of the software internals.

Testing functionality starts with validating each

feature. The second level will be testing the most

basic functional artifact, the microservices. The next

level is the testing of a complex service (which was

granulated from several Microservices). The most

advanced level ought to be testing the actual usage of

the service in its own domain and natural execution

environments.

Figure 4: Functional testing levels

We tend to treat service in more loosely affiliation,

therefore the order of implementation these testing

levels are not as strict as the software actual buildup.

The Microservices ought to supply isolation and

independence so testing a single feature may be

performed separated. Next is most challenging – and

present all difficulties we find testing SOA [21] [4],

where the complexity and flexibility of business

service functionally discovered to its fullness.

Facilitation testing represents its reusability and

independents nature which in many cases may appear

as an endless combination of possible situations to be

tested – so prioritization and risk assessment is

essential.

4.3 Nonfunctional plane testing levels

In the nonfunctional plane testing levels, the

differentiation between the levels is not so clear. We

rather separate it by various aspects and types of non-

functional testing. Some of these testing activities

could start and be performed on the different

development stages, some of them should be

evaluated prior to the actual implementation of the

system altogether – for example, the Security element

must be assured as early as a coding standard.

Dani Almog et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 92 Volume 6, 2021

Figure 5 Nonfunctional testing levels

Figure 5 presents a possible list of non-functional

tests. The actual nonfunctional testing capacity is

much wider than described in Figure 4, it will be

varied depending on the needed business

requirements. For distributed a system, we have to

consider also Network latency, fault tolerance,

message serialization, unreliable networks,

synchronicity, versioning, varying loads within our

application tiers, etc. [22]. New Performance

engineering might be demanded [23], saying that

existing performance engineering techniques -

focusing on testing, monitoring, and modeling -

cannot simply be re-used.

The behavioral testing should focus on addressing the

chaos creating during the operation of distributed

systems. Idiomatic Microservices involves placing

less emphasis on testing and more on monitoring so

we can spot anomalies in production [22] a possible

tool for addressing it, is the ChaosMonki tools [24].

4.4 Multi Dimension matrix plane for

microservice approach

When examining the full context of testing levels in

Microservices, we can also observe that some of

these testing activities may be performing

simultaneously (figure 6). This figure simplifies and

clarifies the testing activities which seem to be

separate and probably applied independently, our

experience shows this demands a deeper analysis –

interdimensional influence should be investigated

and research.

Figure 6 Multi-plane test levels

Multi dimension testing levels expose some

essentials regarding who is doing each activity (skill-

wise) and the exact timing to exercise it?

The following table (table 1) suggests a possible

partition for these activities. Table 1 floods a new

research question addressing the needed skills needed

for each testing plane.

Dimension

(plane)
Technical

/code
Functional

/business
Non-

functional
Who Developer Business tester Professional

services
When During

development
Development

and integration
Flexible,

musty

during

integration

and

production
Outcome All code is

sufficiently

tested

All services

are accurately

functioning

Better

assurance

for expected

behavior
Tools Unit test

tools
Domain

related test

tools

Professional

targeted

tools – for

each type of

testing

Table 1 activities assignment for testing

dimensions

The more we’ll explore these dimensions we may

realize that the affiliated domain may present another

dimension. (for example, the agriculture

microservices domain may present another

implementation and user acceptance plane of

testing).

5. Testing the Implementation of

Microservices with a Chaotic Behavior

Approach

Using Chaos Engineering is the discipline of

experimenting on a distributed system to build

confidence in the system’s capability to withstand

turbulent conditions in production. Another aspect

affecting the testability of application Microservices

is that even when all of the individual services in a

distributed system are functioning properly, the

interactions between those services can cause

unpredictable outcomes. Unpredictable outcomes,

compounded by rare but disruptive real-world events

that affect production environments, make these

distributed systems inherently chaotic – complexity

is way beyond control therefore it is almost

impossible to test [25] [18].

Dani Almog et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 93 Volume 6, 2021

To achieve better stability and confidence with the

microservices systems, we propose the following

steps:

1. Defining ‘steady state’ as some measurable output

of a system that indicates normal behavior. To do

so we must hypothesize that this steady-state will

continue.

2. Introduce new or substitute microservices that

reflect real-world events like servers that crash,

hard drives that malfunction, network connections

that are severed, etc.

3. Recheck the 'steady state' hypothesis by looking

for a difference in a steady state between the

different papulations of your testing

environments.

The harder it is to disrupt the steady-state; the more

confidence we have in the behavior of the system. If

a weakness is uncovered, we now have a target for

improvement before that behavior manifests in the

system at large.

5.1 Dynamic behavior of microservices

implementation – risk for testing
Another risk factor exposed while implementing

microservice-oriented applications is the uncertainty

of which microservice to be used since it by nature is

selected dynamically according to a very specific

service discovery from the microservice repository.

An additional concern is another level of uncertainty

and risk at service scalability, modularity, and

objects’ reusability for intelligence IoT service

provisioning using Web of Objects (WoO) platform

[26]

6. Summary

This paper presents a new conceptual approach

toward testing Microservice-based applications. At

the center of this approach is the formation of

different dimensions (planes) of testing levels

enabling to separate the different aspects needed to

ensure the quality of the application. Using this

strategy may separate the complexity exposed during

the actual implementation of microservices. Further

research is needed to test in practice the proposed

framework. This future evaluation may compare

the matrix multi-dimension testing approaches to

alternatives.

References:

[1] A. Bertolino, G. De Angelis, A. Sabetta and A. Polini,

"Trends and research issues in SOA validation. In

Performance and Dependability in Service Computing:

Concepts, Techniques and Research Directions," IGI

Global, pp. 98-115, 2012.

[2] M. Fowler, "Microservices.," 2017. [Online]. Available:

http://martinfowler.com/articles/microservices.html.

[3] P. Di Francesco, I. Malavolta and P. Lago, "Research on

architecting microservices: Trends, focus, and potential

for industrial adoption.," in 2017 IEEE International

Conference on Software Architecture (ICSA), 2017.

[4] G. A. Lewis, D. B. Smith and K. Kontogiannis, "A

research agenda for service-oriented architecture (SOA):

Maintenance and evolution of service-oriented systems.,"

Carnegie-Mellon University Pittsburgh PA Software

Engineering Inst., 2010.

[5] O. Zimmermann, "Microservices tenets. , ," Computer

Science-Research and Development, vol. 32, no. 3, pp.

301-310, 2017.

[6] S. Newman, Building microservices: designing fine-

grained systems, O'Reilly Media, Inc., 2015.

[7] D. I. Savchenko, G. I. Radchenko and O. Taipale,

"Microservices validation: Mjolnirr platform case study.

In 2015 38th International convention on information and

communication technology, electronics and

microelectronics (MIPRO) (pp.," 2015.

[8] C. Carneiro and T. Schmelmer, Microservices from day

One., Apress. Berkeley, CA., 2016.

[9] P. Abbassi, "What are microservices?," 2017. [Online].

Available: https://www.quora.com/What-are-

microservices/answer/Puja-Abbassi..

[10] C. Santana, L. Andrade, B. Mello, E. Batista, J. V.

Sampaio and C. & Prazeres, "A reliable architecture based

on reactive microservices for IoT applications.," in In

Proceedings of the 25th Brazillian Symposium on

Multimedia and the Web, October, 2019.

[11] J. Bach and M. & Bolton, "Rapid Software Testing

Appendices.," Version (1.3. 2), wwvv. satisficc. com,

2007.

[12] R. V. Binder, "Design for testability in object-oriented

systems.," Communications of the ACM, vol. 37, no. 9, pp.

87-101., 1994.

[13] A. González, E. Piel and H. G. Gross, "A model for the

measurement of the runtime testability of component-

based systems.," in 2009 International Conference on

Software Testing, Verification, and Validation Workshops

, 2009.

[14] L. Chen, "Microservices: Architecting for Continuous

Delivery and DevOps," IEEE International conference on

software architecture (ICSA), pp. 39-397, 2018.

[15] M. Waseem, P. Liang, M. Shahin and A. &. M. G. Di

Salle, "(2021). Design, monitoring, and testing of

microservices systems: The practitioners’ perspective.,"

Journal of Systems and Software, vol. 111061, p. 182,

2021.

[16] M. Schreiber, "Prevant (Preview servant): composing

microservices into reviewable and testable applications.,"

in In Joint Post-proceedings of the First and Second

International Conference on Microservices

(Microservices 2017/2019), Schloss Dagstuhl-Lei, 2020.

[17] J. P. Sotomayor, S. C. Allala, P. P. J. Alt and T. M. &. C.

P. J. King, "Comparison of runtime testing tools for

microservices," In 2019 IEEE 43rd Annual Computer

Software and Applications Conference (COMPSAC) (Vol.

2, pp. 356-361, vol. 2, pp. 356-361, 2019.

Dani Almog et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 94 Volume 6, 2021

[18] C. M. Hernández, A. Martínez and C. &. J. M. Quesada-

López, "Comparison of End-to-End Testing Tools for

Microservices: A Case Study," in International

Conference on Information Technology & Systems, Cham,

2021, February.

[19] I. Nadareishvili, "Microservices shift complexity to where

it belongs.," 2016, [Online]. Available:

https://www.oreilly.com/ideas/microservices-shift-

complexity-to-where-it-belongs.

[20] A. &. L. B. Kramer, Model-based testing essentials-guide

to the ISTQB certified model-based tester: foundation

level, John Wiley & Sons, 2016.

[21] D. Namiot and M. Sneps-Sneppe, "On micro-services

architecture," International Journal of Open Information

Technologies, vol. 2, no. 9, pp. 24-27., 2014.

[22] B. Wootton, 2014. [Online]. Available:

http://highscalability.com/blog/2014/4/8/microservices-

not-a-free-lunch.html.

[23] R. Heinrich, A. van Hoorn, H. Knoche and et. al.,

"Performance engineering for microservices: research

challenges and directions," Proceedings of the 8th

ACM/SPEC on International Conference on Performance

Engineering Companion., no. Heinrich, R., van Hoorn,

A., Knoche, H., Li, F., Lwakatare, L. E., Pahl, C., ... &

Wettinger, J. (2017, April). Performance engineering for

microservices: research challenges and directions. In

Proceedings of the, pp. 223-226, 2017.

[24] "https://github.com/Netflix/SimianArmy/wiki/Chaos-

Monkey," 2017. [Online].

[25] C. Rosenthal, "Principles of Chaos Engineering.," 2017.

[Online]. Available:

https://www.usenix.org/conference/srecon17americas/pr

ogram/presentation/rosenthal.

[26] M. A. Jarwar, M. G. Kibria and S. &. C. I. Ali,

"Microservices in web objects enabled iot environment

for enhancing reusability," Sensors, vol. 18, no. 2, p. 352.,

2018.

Dani Almog et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 95 Volume 6, 2021

