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Abstract: - In the recent decades, there has been much research on the representation of commonsense 

knowledge and on inference techniques to manipulate that knowledge. This paper discusses the nature of 

commonsense knowledge highlighting the main challenges exist in acquiring, representing and reasoning with 

commonsense episodic knowledge from the view of artificial intelligence. In addition, the paper analyses the 

different approaches and techniques dealing with commonsense episodic knowledge in many fields, such as 

problem-solving, human-computer interaction, temporal reasoning, script learning and story generation. 
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1 Introduction 
Developing intelligent systems for any domain is 

the main focus of artificial intelligence (AI), which 

strongly requires gathering knowledge about that 

domain, selecting proper knowledge representation 

and reasoning techniques. Knowledge consists of 

facts, concepts, events, theories, procedures, and 

relationships. AI techniques are used to give the 

machine reasoning capability to think, learn and 

make inferences based on the gained knowledge for 

handling many intelligent tasks, such as problem-

solving, story generation, analogy, negotiation 

ability, and decision making.  

Interesting work is being done in giving 

computers the ability to reason about everyday 

situations they face as a human being does it, which 

require a high level of intelligence in humans [1, 2]. 

This ability is known as commonsense which is 

defined as the essential goal of intelligent behavior 

and thought [3]. In fact that many theories and 

researches have ended up that building computers 

that exhibit commonsense ability is more 

complicated than computers that can solve hard 

reasoning issues [4]. There is a continuous tendency 

in AI to provide computers with commonsense 

knowledge using reasoning mechanisms that can 

observe the world and acquire implicit knowledge 

about people, everyday life and the world [4, 5]. 

Such computers can exhibit commonsense behavior 

and interact effectively with humans in everyday 

life [4, 5]. There are many domains related to 

commonsense knowledge such as time, space, 

mental states, stereotypical situations, emotions, 

goals, kinds, and locations of objects and so forth [3, 

6]. 

Chen [7] and Mueller [3] have argued that the 

world that we live in consists of a variety of objects, 

events (actions) and changes as a result of applying 

actions. In addition, most instances of commonsense 

knowledge involve action and change [3]. From 

that, episodic knowledge is one type of 

commonsense knowledge. In which, episodic 

knowledge is composed of previously experienced 

events, temporal relations among them and 

contextual knowledge [8]. For example, temporally 

dated events of “Entering a stadium” and “Eating at 

a restaurant.” Temporal relations play a crucial role 

in preserving the contextual knowledge associated 

with a particular sequence of events that describes a 

certain social situation [9]. Through experiences, 

people interact with different social situations and 

acquire cultural stereotypes regardless idiosyncratic 

variations of humanity [7]. 

The paper is organized as follows: Section 2 

highlights the main challenges exist in dealing with 

commonsense knowledge. While Section 3 presents 

the requirements needed to explicitly represent that 

knowledge. A number of systems with different 

approaches and techniques in representing and 

reasoning with commonsense episodic knowledge 

are surveyed in Section 4. In addition, Section 5 

surveys a number of cognitive architectures with 

different techniques in dealing with commonsense 

episodic knowledge. Finally, Section 6 elucidates 

our conclusions for this work. 
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2 Challenges 
In contrast to expert knowledge given to computers 

by human experts, which is usually explicit [4]. The 

implicit nature of commonsense knowledge arises 

the need to explicitly represent it [3]. As has been 

pointed out in many researches such as [5,6, 10-12] 

that AI pioneers such as John McCarthy, Doug 

Lenat, and Marvin Minsky stated that the 

fundamental challenges in dealing with 

commonsense knowledge in AI are: 

 
A. Representing Commonsense Knowledge.  

First, it is required to find proper general ways to 

encode in machines the whole types of 

commonsense knowledge that humans have. What 

is the best technique to efficiently represent such 

implicit knowledge? Should it be encoded as a long 

list of if-then production rules? Should multiple 

representation techniques be used? 

 

B. Capturing and Storing Sufficiently 

Commonsense Knowledge by Computers as 

Automatically as Humans. 

Second, it is required to find sufficient knowledge 

acquisition techniques that can acquire this much 

knowledge. While humans learn numerous things by 

living on the planet, machines do not generally live 

on the planet as in they cannot see or control things 

on the planet almost well as humans can [6]. Despite 

the works done in the machine learning area, they 

were not able to promptly acquire information about 

the world as humans can. Since the beginning of AI 

area, the hurdle of implementing a believable 

computer program that can act intelligently in many 

different domains is to acquire a large amount of 

information of the world, this problem is so-called 

knowledge acquisition bottleneck [6]. 

 

C. Using and Reasoning with Commonsense 

Knowledge. 

Third, it is required to find reasoning techniques that 

can simply use commonsense knowledge to learn or 

correctly act in new situations. It is worth 

mentioning that there are some automated reasoning 

techniques in specific narrow domains that can be 

compared to humans’ behavior such as game 

playing domain [6]. But with regards to general 

reasoning technique with commonsense knowledge, 

it seems very hard to implement program that can, 

for example, understand a simple story as children 

can. 

From the general view, the main challenges of 

commonsense knowledge are previously discussed. 

To more specific view, the main challenge of the 

episodic knowledge as a type of commonsense 

knowledge is finding a way to represent and reason 

with such knowledge while preserving the context. 

Context is the temporal execution of events that 

distinguish a certain situation from another situation 

and clarify ambiguous situations [9]. So, context 

organizes the episodic knowledge and cannot be 

segregated from it. 

 

 

3 Representation Requirements 
Regard to the first challenge of finding general 

representation techniques to represent the 

tremendous amount of commonsense knowledge. 

McCarthy and Hayes [12] define four types of 

adequacy which after that Davis [10] considered 

them as the main requirements that the knowledge 

representation techniques must satisfy to represent 

commonsense knowledge, which are: 

 

A. Metaphysical (Representational) Adequacy.  

This requirement means that the representation 

technique can represent all aspects of the 

commonsense knowledge without contradicting any 

fact of the reality [12]. 

 

B. Epistemic Adequacy (Expressivity). 

A requirement for the representation technique that 

can express the available knowledge regardless it is 

complete or not (i.e., representing the partial 

knowledge). The time consuming and difficulty of 

getting and computing with complete information 

arise the need and importance of representing and 

reasoning from partial knowledge [10].  

Expressivity is what distinguishes between 

representations used to represent commonsense 

knowledge and representations used to represent 

other types of knowledge [10]. In which, 

commonsense reasoning has a need to use different 

kinds of partial knowledge as it drives general rules 

that apply to a wide range of different situations. 

While other types of knowledge assumed to be 

complete or partial in extremely restricted domains 

[10].  

 

C. Heuristic Adequacy (Effectiveness).  

The necessity that the representation technique can  

be computationally used by a reasoning technique to 

implement effective inferences [10]. 

 

D. Acquisitional Efficiency. 

A requirement for the representation technique to 

acquire new information easily and control 

knowledge acquisition [13].  
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4 Commonsense-Based Applications 
In the following, we describe some systems that 

take unconventional different approaches and 

techniques to representing, acquiring, and reasoning 

with large volumes of commonsense knowledge 

with focusing on the episodic knowledge. Each 

system endorses a different technique: CYC [14] is 

a large-scale formal logic, OMCS [15] is a 

knowledge base of sentences in natural language, 

ConceptNet [16] is a large-scale semantic network, 

LifeNet [2] is a probabilistic graphical model, 

EventNet [5] is a large-scale association network, 

ThoughtTreasure [29], OMEX [17] and StoryNet 

[6] are databases of linear scripts, and FrameNet 

[18] is a database of semantic frames. 

 

A. CYC.  

The first attempt at creating an immense knowledge 

base of diverse types of commonsense knowledge 

began in 1984. As of 1984, Lenat et al. [14, 19] 

have started their CYC project in building a large 

commonsense knowledge base. They believe that 

building an immense knowledge base of everyday 

facts about the world with a reasoning by analogy 

capability, may have the credit to overcome the 

knowledge acquisition bottleneck problem [14]. In 

which, understanding new information depends on 

what already know in advance. So, a team of 

knowledge engineers is manually handcrafting the 

commonsense knowledge as factual assertions in 

formal language [16].  

Along a decade, most of the time has been spent 

in collecting approximately million commonsense 

facts and encoding them in first order logic [19]. 

While CYC is the largest commonsense knowledge 

base till now, it contains general episodic 

knowledge in the formal logic (facts and rules) 

rather than descriptions of events flow in different 

situations [17]. 

In Massachusetts Institute of Technology (MIT) 

Media Lab, the researchers believe that as the 

diversity of commonsense knowledge, it needs 

many types of knowledge representation that can 

represent every aspect of such knowledge [20]. The 

problem is how to build one system that can find a 

way to manipulate them [20]. So, they are exerting 

efforts on creating machines that can exhibit human-

like commonsense intelligence in everyday life. 

Machines that can learn and reason about different 

aspects of human daily life. Machines that have 

knowledge of the kinds of objects and goals people 

have, the actions people can take and their effects, 

and so forth. More than eight commonsense tools 

with different representation and reasoning 

techniques are developed by MIT Media lab., such 

as OMCS-1, OMCS-2, OMCSNet, ConceptNet, 

LifeNet, EventNet, OMEX, and StoryNet. 

 

B. OMCS-1.  

As the end of 2000, the first version of Open Mind 

Common Sense project (OMCS-1) [20] (at 

http://www.openmind.org/commonsense) was 

started to acquire knowledge about the ordinary life 

over the web. By involving non-expert users, with 

no first preparing, in many activities that gather 

facts, rules, stories and descriptions in free-form 

simple English sentences [15, 20]. In contrast to 

CYC, OMCS knowledge is represented by natural 

language rather than formal logic. In addition, it 

constructed by nonexperts rather than knowledge 

engineers. A spelling check method, a word-sense 

disambiguation method and information extraction 

techniques are utilized to extract meaningful 

knowledge and to structure the extracted knowledge 

in knowledge representation technique to be usable 

for further commonsense-based applications [15]. 

This resulted in participating 9296 users and 

gathering 465,195 assertions of commonsense 

knowledge [15]. Which have been employed in 

many different applications such as ARIA [21] 

which is a photo retrieval system uses commonsense 

knowledge for managing personal photos of users 

and GOOSE [22] which is a goal-based search 

engine uses commonsense for returning the most 

effective results that satisfy the users’ search goal 

[15, 20]. 

 

C. OMCS-2.  

Due to the enthusiasm of participants in organizing, 

clarifying, assessing, and entering different sorts of 

knowledge [15]. The second version (OMCS-2) is 

motivated. In OMCS-2 [15], the knowledge 

acquired using templates in English rather than 

using free-form and still represented by natural 

language [15]. In which, participants are involved in 

30 different activities and are restricted to enter 

knowledge into blank fields [15, 23]. For example, 

the effect of [drinking water] is [a feeling of satiety] 

and somewhere you find [a car] is [in front of the 

house] [15]. These templates extracted from OMCS-

1 and helped in acquiring temporal and causal 

relations between stereotyped events [20]. OMCS-2 

utilized analogical reasoning in generating a list of 

inference rules that used to feedback on entered 

knowledge [15]. At the beginning of 2005, the 

results were 750,000 assertions from over 16,000 

participants around the world [5].  

As a commonsense knowledge acquisition 

system, the quality of this corpus is evaluated by 

human judges. They graded 75% of data as largely 
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true, 82% as mostly objective and 85% as making 

sense [23]. OMCS-2 is the second largest 

knowledge base of commonsense knowledge after 

CYC. 

 

D. ConceptNet.  

Based on commonsense knowledge of the OMCS 

corpus, the first attempt to create a free reasoning 

toolkit over text with automatically generated 

commonsense knowledge base is called OMCSNet 

[23] which was launched in 2002. As of 2004, a new 

version of OMCSNet with natural language 

processing was released under another name which 

is ConceptNet [6, 16].  

ConceptNet is generated by extracting a set of 

binary relations which form a simple, handy 

semantic network [16, 23]. Nodes represent 

fragments of English sentence and edges represent 

the commonsense relation between these fragments 

[16, 23] as shown in Fig. 1 for example. ConceptNet 

consists of twenty binary relations such as ISA, 

PartOf, HasProperty, MadeOf, SubEventOf, 

HasEffect, HasAbility, LocationOf, DoesWant, 

HasFunction, and ConceptuallyRelatedTo [16, 23]. 

Once the system was launched, these relations have 

composed around 1.6 million edges and connected 

around 300,000 nodes [16, 23].  

From the expressive power of English in 

representing knowledge in each node and the power 

of semantic network as a graph in inference tasks, 

ConceptNet has three textual reasoning tasks [16, 

23]. The first task is context determination, finding 

out the context around one or several concepts by 

carrying out spread activation from the query 

concept to other concepts [16, 23]. The second task 

is a semantic similarity and analogy-making, which 

utilizes analogical inference by performing 

structure-mapping methods of Gentner [24] over a 

semantic network, for computing the degree of 

structural similarity between pairs of query concepts 

or returning a list of structurally similar concepts to 

the query concept [16, 23]. The third task is building 

inference chains by going over the network starting 

with one node then onto another node till finding 

paths between two query concepts [16, 23]. As a 

commonsense toolkit for textual reasoning, the 

quality of this toolkit was evaluated by human 

judges. They in average rated 68% of data as fairly 

comprehensive, and 24.8% as noisiness (i.e. include 

incorrect knowledge) [16, 23]. 

ConceptNet has been employed in many 

different interesting applications such as 

MAKEBELIEVE [46] which encourages users to 

interact with it in order to invent new stories, 

GloBuddy2 [25] is  a   mobile   application      using  

 
Fig. 1. A fragment of ConceptNet's semantic 

network. (Adapted from [16]). 

 

ConceptNet for providing English speaking tourists 

with a dynamic language phrasebook, and What 

Would They Think? [26] which utilizes ConceptNet 

and natural language processing to model person’s 

attitudes by automatically analyzing personal texts 

(e.g. weblogs, and e-mails). ConceptNet, however, 

can only gain and learn new knowledge from 

OMCS corpus and no learning method is developed 

to enrich its knowledge base by reasoning from its 

prior experiences formulated in the semantic 

network. 

 

E. LifeNet.  

Like ConceptNet, another commonsense knowledge 

base is generated based on the OMCS corpus so-

called LifeNet [2]. LifeNet is concerned with 

temporal reasoning using probabilistic belief 

updating techniques [27]. LifeNet is a knowledge 

base of propositions extracted from the OMCS 

corpus and the OMCSNet [23]. LifeNet represents 

these propositions as a probabilistic graphical model 

with temporal and atemporal relations (before and 

after relations) connecting them together with joint 

transition probabilities [2] as shown in Fig. 2 for 

example. 

The generation of LifeNet knowledge base passed 

through four steps. The first step is generating 

propositions, that is, a list of propositions is created 

by collecting some of the English sentences from 

the OMCS corpus and arguments of the OMCSNet  
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Fig. 2. A sample of LifeNet. (Adapted from [2]) 

 

knowledge base relations [2]. It is worth mentioning 

that in this step a set of automated and manual filters 

are run on the collected list for repairing or deleting 

many of types of generation errors. The second step 

utilizes eight binary relations of OMCSNet in order 

to generate propositions rules [2].  

Temporal and atemporal proposition rules are 

created based on EffectOf, SubEventOf, LocatedAt, 

OftenNear, FirstSubevetOf, LastSubeventOf, 

UsedFor, and Requires OMCSNet relations [2]. Due 

to errors in this step, a probability value that 

determines to what extent the rule is accurate is 

assigned to each resulting proposition rule in the 

third step [2]. These three stages generated around 

130,000 proposition rules. Which in turn converted 

into a large probabilistic graphical model of 78,332 

nodes and 415,248 edges in the last step. For more 

details of the generation process, see [2]. 

With comparison with ConceptNet, ConceptNet 

is more expressive than LifeNet [6]. This is because 

LifeNet focuses only on temporal relations between 

different situations [6]. However, LifeNet as a 

commonsense inference system for temporal 

reasoning, its quality was also evaluated by human 

judges. Due to resolving the knowledge base errors 

and the simplicity of knowledge representation, the 

judgment of humans rated 89% of propositions and 

78% of inferences make sense [2]. These results 

were in favor of LifeNet and proving that 

knowledge of LifeNet is more accurate (less noisy) 

than ConceptNet which its knowledge was in 

average rated 24.8% as noisiness.  

For extending LifeNet knowledge base, a web 

site called Open Mind LifeNet is created to collect 

more propositions and repairing the existing ones 

from the general public as done in the original 

OMCS corpus [2]. Three more activities are added 

to acquire knowledge about new propositions, 

temporal and atemporal edges. Although, the work 

of Open Mind LifeNet on extending the knowledge 

base of LifeNet, but as mentioned that this work 

depends only on the volunteers and there is no an 

automated learning algorithm that can drive new 

knowledge from existing experience.  

 

F. EventNet.  

Focusing on commonsense temporal reasoning, 

another toolkit for predicting temporal relations 

between ordinarily occurring events was released on 

2005. This toolkit is so-named EventNet [5]. 

EventNet is more concerned with predicting the past 

and future events, rather than building a huge 

knowledge base of all possible temporal nodes and 

relations [5]. EventNet depends on LifeNet 

knowledge base in extracting the temporal 

information and creating an association network for 

representing its knowledge [5]. Using the temporal 

information of LifeNet an association network, of 

10,000 nodes and 30,000 temporal links, is created 

by temporal nodes of the English form and weighted 

links between nodes [5].  

EventNet utilizes spread activation algorithm to 

do two main inference operations. In contrast to 

LifeNet of predicting from only one event at a time 

[5]. The first operation of EventNet is plan 

recognition which can infer from the user’s current 

event or a set of events, a set of possible associated 

subsequent (next) events, antecedent (previous) 

events, and temporally related events. The second 

operation is finding paths between two given events 

as a sequence of temporally related events between 

the two [5]. Additionally, EventNet can create new 

links between two semantically similar events by 

utilizing synonyms from WordNet [32] and 

ConceptNet analogies to efficiently search the 

knowledge base for plausible paths between events 

[5]. The quality of EventNet inference toolkit was 

evaluated by human judges with the comparison 

with human inference. They in average rated 62% of 

EventNet temporal reasoning make sense, while 

human inference was rated 69% [5]. 

Although the rich work is done in CYC, OMCS, 

ConceptNet, LifeNet, and EventNet for capturing 

and representing commonsense knowledge, there is 

a shortcoming when dealing with episodic 

knowledge in different social situations. This flaw is 

due to (a) having general knowledge about 

situations rather than rich descriptions of events 

flow, (b) neglect the context of the current social 

situation, (c) fairly sparse of knowledge in separate 

knowledge bases [29], (d) lack of relations that 

connect events in a believable manner, and (e) 
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difficulty in reasoning with used knowledge 

representations.  

For that, a new perspective of using scripts, 

inspired by Schank and Abelson [28], has been 

considered in assembling and representing 

commonsense knowledge for building 

commonsense knowledge bases such as 

ThoughtTreasure [29], OMEX [17], and StoryNet 

[6]. In ThoughtTreasure, knowledge engineers 

entered about 100 scripts of different activities. 

While OMEX and StoryNet, prompting the general 

public to enter structured stories which then 

represented by scripts, instead of factual English 

assertions as CYC, and OMCS. 

 

G. ThoughtTreasure.  

In 1998, Mueller declared its work in building a 

commonsense knowledge base, called 

ThoughtTreasure and begun in 1994, for reasoning 

purposes, natural language processing, and 

computational linguistics tasks [29]. 

ThoughtTreasure contains about 35,000 English 

words and phrases and 51,000 assertions [29]. For 

encoding the diverse sorts of commonsense 

knowledge, it utilizes four knowledge representation 

techniques: physical spaces are represented by 2-

dimensional grids, rules of thumb are represented by 

finite automata, linguistic facts by logical assertions, 

and activities (situations) by scripts [29]. 

Scripts are organized into a top-level hierarchy 

[29]. In which more specific scripts such as riding a 

car inherit the information of more general scripts 

such as riding a vehicle. About 100 scripts of 

different situations have been entered by knowledge 

engineers within the knowledge base [29]. Each 

script contains a chronological sequence of events 

that constitute the script rather than scenes, humans 

and physical objects that are taking part of the 

script, entry conditions, results of carrying out the 

script, personal goals, emotions, locations, and 

duration of the script [29]. Each information of the 

script is of the form [predicate-name argument1 

argument2 …] [29. For example, blackout script is 

shown in Fig. 3[29], in which it inherits disaster 

script as stated in a kind of (ako) predicate, its 

duration is 3,600 seconds. Three emotions 

associated with it (anger, unhappy-surprise, and 

worry). Two events make up the script, the first 

event (event01) indicates that the power cuts and 

three emotions associated with this event, while the 

second one (event02) is the subevent that indicates 

that the reaction of power cuts is fetching another 

light source. The script has one player (human) and 

one physical object (electricity network) and occurs 

in an apartment, house or office. 

Fig. 3. A ThoughtTreasure script. (Adapted from 

[29]) 

 

Organizing scripts in a hierarchical manner and 

representing events in logical assertions make it 

hard to find automated methods for inferring new 

knowledge and the context, learning and adding new 

events without ignoring or breaking the logical 

sequence of the events and applying the script in 

similar activities. 

  

H. OMEX.  

Unlike using the graph with binary relations or 

factual assertions or logical rules to represent 

commonsense knowledge as done in ConceptNet, 

LifeNet, OMCS and CYC. On the approach of 

OMCS, OMEX (Open Mind Experiences) [17] is 

another crowdsourcing approach by MIT Media Lab 

researchers to capture the commonsense knowledge 

from the general people through the Internet. 

OMEX is the first knowledge acquisition tool 

intended to collect story-like knowledge from non-

expert volunteers [17]. Its idea came from the 

argument that humans express and exchange their 

knowledge in the form of stories [17].   

Wherefore, its goal is to build a large-scale 

commonsense knowledge of stories by allowing 

volunteers to write down stories and explanation of 

these stories in structured English sentences [17]. 

Thirty-two story templates were built by hand and 

prompt users to fill in the blank places with English 

sentences to complete the story [17]. The user can 

add a new story, explain a story by answering some 

questions about it, evaluate a story, report that a 

story has grammar or syntax errors and repair errors 

of a story [17]. 
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I. StoryNet.  

Under building a large-scale story knowledge base, 

StoryNet [6] is the second attempt to capture 

commonsense knowledge as structured stories from 

the general public through the Internet by MIT 

Media Lab. Additionally, for extending its 

knowledge, StoryNet utilizes the ConceptNet and 

LifeNet as commonsense resources for gathering 

more stories about different social situations such as 

riding a bicycle, entering a restaurant, and visiting a 

doctor [6]. 

StoryNet is created based on Aristotle’s theory, 

in which Aristotle [47] argued that humans use 

stories to remember and organize their past in the 

form of a sequence of episodes [48]. StoryNet 

represents its knowledge using linear scripts [6]. 

Each script is a list of temporally linked events that 

model the flow of events in a particular situation [6] 

as shown in Fig. 4 for example. Unlike 

ThoughtTreasure, one situation may have multiple 

(one or more) scripts that represent different 

scenarios of events in that situation [6]. 

Singh et al. [6] have declared their desire to 

integrate case-based reasoning with StoryNet for 

generating new stories, merging two scripts 

together, and other script manipulations. But till 

now no notable progress is published. In addition, 

no evaluation of collected story knowledge is 

published. 
Even though, the beneficial effect of OMEX and 

StoryNet in collecting a large-scale commonsense 

knowledge in the form of stories. There is no an 

automated process for inferring the context of the 

current entered story based on the prior experiences 

instead of prompt volunteers to answer some 

questions that can determine the context [6]. In 

addition, using linear scripts in representing 

situations may increase the complexity of finding 

the most similar script to the current situation or 

may make it difficult to find the plausible reaction 

to the current faced event to give computers a 

human-like behavior in social situation. 

 

J. FrameNet.  

In 1997, a three-year project called FrameNet [18] 

was begun for capturing human commonsense into 

schematic conceptual scenarios in different domains 

including perception, social context, cognition, 

communication, space, time and emotion [18, 30]. 

FrameNet introduced a new approach to collecting 

and representing the commonsense knowledge. 

Based on large electronic English corpora such as 

British National Corpus (BNC) and Concise Oxford 

Dictionary (COD),  FrameNet  extracts  information 

 
Fig. 4. A StoryNet script. (Adapted from [6]) 

 

about several English lexical items (English words) 

using both manual and automatic procedures [30]. 

The extracted information is then represented by 

semantic frames structure by humans 

(lexicographers and linguists) [18]. Each frame 

describes one word and consists of two attributes, 

frame-elements attribute which contains names of 

main elements that can participate in describing 

such word and example sentences in scenes attribute 

that describes the situation of the frame [18].  

As shown in Fig. 5, for example, that 

TRANSPORTATION frame specifies MOVER, 

MEANS and PATH as the three elements that take 

part of any transportation, with a description of the 

frame emphasizes the relation between these 

elements by scene: MOVER move along PATH by 

MEANS. The inheritance relationship is defined 

between frames, where less specific frame inherits 

all the properties of a more general and complex 

one. For example, DRIVING and RIDING frames 

are specific kinds of TRANSPORTATION frame as 

shown in Fig. 5. 

FrameNet focuses on the scenes that describe the 

lexical item with lack information about subevents 

of each scene; this may have occurred due to its 

much concern in building a computational 

lexicography system more than capturing all various 

sorts of commonsense knowledge. 

 

K. Chen’s work. 

Another work in representing commonsense 

episodic knowledge using frames is introduced by 

Chen [7]. Where   the  actors,   props,   and    events  
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Fig. 5. Some frames from FrameNet. (Adapted from 

[18]) 

 

formulating a certain social situation are represented 

by two interconnected frames as shown in Fig. 6. 

The first frame is so-called component frame 

which contains actors and props as multi-valued 

attributes with their possible values [7]. In addition, 

it indicates constraint relations between different 

sets of values [7].  For example, as shown in Fig. 6, 

the constraint relations between customer’s values 

and waiter’s values, in which if the value of 

customer is eating, then the value of waiter is with 

others. The second frame is so-called sequence 

frame and contains the temporal sequence of actions 

(scenes) as attributes and the causal connections 

between these scenes. The causal connections for a 

certain scene defined by a set of specific values 

corresponding to the attributes in the component 

frame [7]. For example, as shown in Fig. 6, “eating” 

in the action sequence takes four specific values 

from the four attributes in the component frame: 

“customer eating”, “waiter interacting with others”, 

“food owned by the customer” and “money owned by 

the customer”. 

Despite the significant effort made in this work 

for representing social situations using frames, while 

preserving the context and the causal relations. But 

the frame structure is very complicated to be 

extended and to be used for inferring the context 

associated with the social situation. In addition, each 

frame contains a linear sequence of events 

representing a certain situation which leads to a lack 

of diversity of social dynamics associated with that 

situation. 

 
Fig. 6. A fragment of going to a restaurant frame. 

(Adapted from [7]) 

 

L. Li et al. work. 

In 2012, Li et al. [31] presented a very interesting 

work in automatically learning a multi-branched 

cognitive script-like episodic knowledge from 

crowdsourcing as shown in Fig. 7. For the purpose of 

story generation, this work aimed to build an 

extensive commonsense knowledge base of multi-

branched stories from linear crowdsourced narratives 

using a three-step process [31]. The first step in this 

work is collecting linear crowdsourced story 

examples of a particular situation by allowing 

participants to submit a short real-world linear 

sequence of stereotyped events (linear script) of the 

given common situation in structured English 

sentences [31].  

The second step is to cluster the core set of events 

from the entered linear scripts based on semantic 

similarity. In which, the components (verb, actor, 

and non-actor noun) of each event are extracted 

using Stanford parser [33], then the semantic 

similarity of the events is computed using semantic 

gloss information from WordNet [32], finally k-

Medoids algorithm is utilized to result in clusters, 

each cluster represents an event that can occur in the 

given situation [31]. 

The third step is to construct the multi-branched 

script by learning the typical temporal ordering of 

these clusters (events). In which, a technique tries to 

learn before relations between all pairs of events 

[31]. For every pair of events (e1, e2), there are two 

hypotheses of before relation between them either 

before(e1, e2) is true or before(e2, e1) is true. 
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Fig. 7. A multi-branched script of restaurant 

situation. (Adapted from [31]) 
 

 

Based on counting the observation of evidence 

for each hypothesis, the probability of each 

hypothesis is computed using k/n, where k is the 

number of observations that supports the hypothesis 

and n is the total number of observations. Finally, the 

relation that its probability exceeds a threshold (0.5) 

is selected.  

At the end of this process, a multi-branched 

script, representing different social dynamics and 

preserving the context associated with a certain 

situation, is constructed as shown in Fig. 7. While 

this work is considered as a notable work in script 

learning. But its learning process is based on intra-

domain, where the multi-branched script is 

constructed from a set of linear scripts in the same 

domain. 

Table 1 represents a summary of all previously 

discussed systems that take unique, different 

approaches and techniques to acquiring, representing 

and reasoning with large volumes of commonsense 

knowledge with focusing on the episodic knowledge. 

Although the great efforts are done by the above 

techniques. But none of them prove its competence 

to gain all the vast, diverse information that people 

have. 

5 Cognitive Architectures-Based 

Applications 
Due to diversity dilemma of commonsense 

knowledge, a research direction of building 

computational models of human cognition, so-called 

cognitive architectures, is manifested since the early 

1970s. A cognitive architecture is a model of a set of 

human cognitive capabilities such as memory, 

learning, interaction, perception, problem-solving 

and emotion [34]. A cognitive architecture is also 

considered as an information-processing system for 

computationally modeling many aspects of human 

performance. It is desired that when the model of 

cognitive capabilities combined with knowledge, it 

can play a commonsensical role in exhibiting 

effective human-like behavior in complex 

environments [34].  

It has been argued that the main cognitive 

processes in any cognitive architecture are the both 

memory and learning processes. This is because the 

crucial role of memory in storing all the different 

sorts of knowledge that acquired or modified through 

the learning process. Episodic memory is exhibited 

by few cognitive architectures, which embody how 

episodic knowledge is encoded, learned, retrieved 

and used to improve behavior. In the following, we 

survey some cognitive architectures that take almost 

the same learning mechanisms to alter elements of 

human memory with focusing on the episodic 

memory.  

Soar [35] is a general cognitive architecture that 

has a general mechanism for learning from 

experience which applies to any task it performs and 

guides its behavior. In Soar, all long- term 

knowledge being represented as production rules, so 

learning involves creating new facts and productions. 

ACT-R [36], EPIC [37] and EPIC-Soar [38] are 

other architectures that also use episodic memory 

within which knowledge is represented as production 

rules. 

 

A. SOAR.  

As of the beginning of 1980 and an extension to 

2008, there has been a series of developments and 

evolution in creating a general cognitive system, so-

called Soar [35], which ended up with the ninth 

version (Soar 9.0 [39]). Soar stands for State, 

Operator and Result system, in which all tasks are 

defined as trails to achieve goals through carrying 

out a sequence of actions (operators) starting from 

the initial state (problem) and leading towards the 

goal state [35].  

Soar consists of a single long-term memory and a 

single short-term memory (working memory) [39].
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Table 1. Comparison between different commonsense-based applications. 
 

System Approach 
Knowledge 

Acquisition 

Knowledge 

Representation 

Reasoning 

Technique 
Goal(s) 

CYC (Lenat et al., 

1985) 
Large-scale 

knowledge 

engineers 
First-order logic - 

Knowledge 

acquisition 

OMCS (Singh et 

al., 2002) 
Crowdsourcing 

Nonexperts (the 

general public) 

Natural Language 

Sentences (English) 
- 

Knowledge 

acquisition 

OMCSNet (Liu et 

al., 2002) 

ConceptNet (Liu 

et al., 2004) 

Crowdsourcing OMCS corpus Semantic Network 

Analogy using 

structure-mapping 

method 

Knowledge 

reformulation and 

Textual reasoning 

LifeNet (Singh et 

al.,2003) 
Crowdsourcing 

OMCS corpus and 

OMCSNet 

Probabilistic graphical 

model (Bayesian 

Network) 

Belief Propagation 

Knowledge 

reformulation and 

Temporal 
reasoning 

EventNet 

(Espinosa et 

al.,2005) 

Crowdsourcing LifeNet Association network Spread Activation 
Temporal 

reasoning 

ThoughtTreasure 

(Mueller, 1998) 
Large-scale 

Knowledge 

engineers 

Linear scripts as logical 

assertions 
- 

Knowledge 

acquisition 

OMEX (Singh et 

al.,2003) 
Crowdsourcing 

Nonexperts (the 

general public) 
Linear scripts - 

Knowledge 

acquisition 

StoryNet (Singh et 

al.,2004) 
Crowdsourcing 

LifeNet and 

ConceptNet 
Linear scripts - 

Knowledge 

acquisition 

FrameNet (Baker 

et al.,1998) 
Large-scale 

Electronic English 

corpora 
Semantic frames - 

Knowledge 

acquisition 

Chen, 2004 - - Frames - 
Knowledge 

representation 

Li et al., 2012 Crowdsourcing 
Nonexperts (the 

general public) 

Multi-branched 

cognitive scripts 
- Script Learning 

“-” means that a system does not have this property. 

All knowledge in long-term memory is represented 

as production rules, so learning consists of matching 

and firing rules for creating new facts and rules [39]. 

While short-term knowledge is represented as a 

symbolic graph structure of the current state 

perceived from perception, and the knowledge 

retrieved from the long-term memory [39]. Soar 

started with a procedural long-term memory, while 

episodic and semantic memories were added in 

2007.  

In Soar, episodic memory provides the ability to 

remember the history of previous states (episodes) 

and the temporal relations between these 

experienced states [39, 40]. Soar compares the 

current state in working memory to all stored states 

in episodic memory, and then selects and retrieves 

the best matching state based on a partial matching 

algorithm [41]. Depending on the retrieved state, a 

sequence of states in temporal order is also retrieved 

[41]. Soar utilizes multiple learning mechanisms for 

different types of knowledge such as chunking 

mechanism that compiles the sub-goals of the 

problem-solving process into production rules. In 

addition, episodic learning for acquiring episodic 

knowledge, in which, the contents of working 

memory are recorded as snapshots in episodic 

memory through episodic learning process [39, 41]. 

 

B. ACT-R.   

In 1993, Anderson compiled all his theories, since 

1976, of understanding human cognition in one 

platform so-named ACT-R (Adaptive Control of 

Thought-Rational) [42]. ACT-R is a cognitive 

architecture for emulating human cognition, which 

can be used to implement various models of 

cognitive tasks such as perception, memory, 

thinking, problem-solving, and reasoning [42]. It 

also achieved great progress in implementing 

intelligent tutoring systems [43]. There has been a 

series of developments of ACT-R to improve its 

behavior, which ended up, in 2008, with the fifth 

version (ACT-R 5.0 [36]). 

ACT-R consists of a set of modules that are 

integrated to produce a coherent cognition. Each 

module is associated with a buffer for processing a 

different kind of information. The core modules of 

ACT-R are a declarative memory and procedural 

memory [36].  

In contrast to Soar, ACT-R makes a distinction 

between declarative and procedural knowledge and 
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encode them using different representation 

techniques [42]. In which, it encodes declarative 

knowledge as chunks, whereas procedural 

knowledge encoded as production rules. Each 

declarative chunk has a numeric parameter that 

reflects its past usage and measures the activation 

strength of the chunk to be retrieved from memory to 

solve the current problem [40, 42]. Chunks that are 

repeatedly accessed receive a high activation [44]. 

The chunk with the highest activation is chosen, if 

several chunks are applicable to the current problem 

at the same time [42].  

Similarly, each procedural rule has a probability 

of success (utility value) that measures the interest of 

the rule of achieving the desired goal [36, 44]. In 

ACT-R, declarative memory is implemented as a 

short-term memory [35] for storing factual 

knowledge about the past experiences or objects of 

the current observed environment [36, 43]. While 

procedural memory is a long-term memory used for 

storing rules about how to solve problems and plays 

an important role as a production system for 

handling different cognitive tasks by coordinating 

the processing of all other modules [42].  

During solving a problem, ACT-R test the 

conditions of each production rule against chunks in 

the short-term memory [40, 42]. Once the production 

rules that exactly match against the chunks are 

determined, ACT-R computes the utility value of 

each matched rule [40, 42]. Then it selects the 

production rule with the highest utility value and 

executes its actions [40, 42]. Achieved goals are 

stored as new facts in declarative memory; examples 

can be generalized to new rules. Through ACT-R 

experience, learning involves creating new facts of 

achieved goals in declarative memory and new 

production rules of solved problems in procedural 

memory, as well as updating activation and utility 

values associated with chunks and production rules, 

respectively [40, 42] 

While the modules of ACT-R can work in a 

parallel manner at the same time [36]. ACT-R has 

two bottlenecks, compared with Soar. First, the 

limited size of any buffer to only a single declarative 

chunk that can be retrieved at a time. Second, only 

one production rule is also selected and fired at a 

time [36]. Additionally, in contrast to Soar, the 

declarative memory of ACT-R does not have a 

separate episodic memory nor a method for 

distinguishing a memory of prior events nor the 

ability to preserve the temporal relations between 

different units of knowledge (chunks) nor a retrieval 

method for retrieving temporally related knowledge 

[41]. 

 

C. EPIC-SOAR.  

In 1994, a cognitive architecture that commonly 

shares most of the features of ACT-R was launched 

under the name EPIC (Executive-

Process/Interactive-Control) [37].  EPIC is a 

cognitive information-processing system that aims at 

building models of human-computer interaction for 

practical objectives [37, 45]. Through a set of 

interconnected perceptual processors (visual, 

auditory and tactile) working in parallel, EPIC 

perceive the surrounding environment and 

consequently produce actions via motor processors 

[37, 45].  

EPIC has three memory stores: a declarative 

memory, a procedural memory and working memory 

[45]. Declarative memory is a long-term memory of 

verbal knowledge that, describe particular tasks, 

represented in terms of propositions [45]. The 

procedural memory contains procedural knowledge, 

for actually performing the tasks, represented as 

production rules [45]. Working memory contains all 

of the temporary information received from 

perceptual processors or retrieved from declarative 

memory, which needed for the production rules of 

the model [45]. Similar to Soar, EPIC is a multi-

match, multi-fire production system [45]. Instead of 

only one production rule be fired at a time as in 

ACT-R, when conditions of more than one 

production rule match the current information of 

working memory, all of these satisfying rules be 

fired, and all of their actions be executed [45]. So, 

EPIC has distinguished from ACT-R in parallelism 

the production system in which a set of rules can be 

performed concurrently. 

Although the success of EPIC in building models 

of human-computer interaction, it does not gain any 

benefit of its new derived facts and rules in enriching 

its memory stores (experiences). While, EPIC has 

perceptual and motor processors, it also needs to 

have a problem solving and learning capabilities for 

better performance and behavior. As noticed that, in 

contrast, Soar has problem-solving and learning 

capabilities and neither perceptual nor motor 

processors. Thus, an attempt to integrate the best of 

both systems led to a new hybrid cognitive 

architecture so-called EPIC-SOAR [38]. 

EPIC-SOAR is an integration of perceptual and 

motor processors of EPIC with Soar which works as 

the main cognitive engine [38]. In which, EPIC send 

messages of sensory inputs from perceptual 

processors to Soar, and, in turn, Soar receives the 

inputs, processes them and then returns motor 

commands to EPIC. 
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Table 2. Comparison between different cognitive architectures.

System Retrieval 
Knowledge 

Representation 

Learning 

Technique 
Goal(s) Domain 

SOAR (Laird et 

al.,2008) 

Partial matching 

algorithm 
Production rules 

Chunking and 

Episodic 

Learning 

Problem Solving Domain-specific 

ACT-R (Anderson 

et al.,2004)  

Partial matching 

algorithm 

Chunks and Production 

rules 

Activation 

Learning 
Problem Solving Domain-specific 

EPIC (Kieras et 

al.,1994) 
- 

Propositions and 

Production rules 
- 

Human-Computer 

Interaction 
Domain-specific 

EPIC- SOAR 

(Rosbe et al.,2001) 

Partial matching 

algorithm 
Production rules 

Chunking and 

Activation 

Learning 

Human-Computer 

Interaction and 

Problem Solving 

Domain-specific 

“-” means that a system does not have this property. 

Finally, EPIC accepts the commands and 

executes them. It is worth mentioning that EPIC-

SOAR takes and applies the idea of assigning an 

activation level to each declarative knowledge from 

ACT-R, in order to improve the behavior of the 

system [38]. EPIC-SOAR has been created to meet 

the demand of building air traffic control simulation 

system by the USA Air Force Research Laboratory 

[38]. 

Table 2 represents a summary of previously 

discussed cognitive architectures. Production rules 

were used as the knowledge representation 

technique for encoding episodic knowledge. This 

kind of knowledge representation allows for exact 

matching between the premises of the rules of the 

current situation and those in the episodic memory, 

which can be considered as a drawback because of 

its ignorance of contextual information, which is an 

essential element in social situations [9]. Events are 

not fixed, and they differ according to persons 

involved in the social situation and the context of 

that situation [31]. So, it seems impossible to track 

all rules that capture all those different norms. On the 

other hand, it is notoriously hard to model social and 

cultural situations by hand. For example, a simple 

model of “eating at a restaurant” behavior uses 

more than 80 production rules to capture the social 

dynamics related to that situation [31]. 

 

 

6 Conclusion 
This paper analyzes the main challenges, issues and 

applications of the commonsense episodic 

knowledge from the artificial intelligence 

perspective. The main results based on our analysis, 

multi-branched cognitive script is the most efficient 

and proper representation technique for representing 

commonsense episodic knowledge. As it is a simple 

structure that can (a) preserve the distinct context of 

each social situation, (b) clearly represent a variety 

of different social dynamics associated with the 

social situation, (c) express complex social 

situations, and (d) be easily extended.  

Concerning reasoning technique with episodic 

knowledge, the expressive power of multi-branched 

script in representing the diversity of social 

dynamics and the timing of events execution 

associated with a certain social situation, strongly 

allows it to be used to support reasoning from 

different domains (cross-domain). Which in turn 

permits to gain a vast amount of episodic 

knowledge. 
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