
Designing of Software Model to Model Transformation Language

OLENA V. CHEBANYUK1
Software Engineering Department

National Aviation University,
KYIV, UKRAINE,

chebanyuk.elena@ithea.org

Abstract: Software model transformation is a central operation in Model-Driven Development approach. In
order to represent software models, graphical modeling notations, for example UML, are used. Quality of
software model, obtained after transformation, influences on further operations with it. Many papers, proposing
strong contribution in model to model transformational approach, consider transformational tasks, relating to
concrete transformational languages or environments. Respectively, transformational results are visualized in
concrete modeling environments (for example Eclipse or Microsoft Visual Studio) and software models are
represented in concrete formats XML (XML, 2015) or XMI. Such approaches depend on possibilities of
concrete tools, formats or model transformation languages (QVT [9], ATLAS or other). Variety of
transformational operations is limited by supported features of chosen practical tools. From other side,
development of analytical approaches for model to model transformations permit avoiding transformation
environment limitations and composing transformational rules with different levels of complexity.
This paper is devoted to designing of modeling language for Model to Model Transformation. The language
designing is started from abstract syntax development. Then concrete syntax based on software model graph
representation is described. Software model representation is proposed on two levels: at metalevel and
representation considering details. Transformation operations are described by means of transformation
grammar. Designing of software tool architecture for software model to model transformation is presented.
Case study, containing description of transformation process, is outlined.

Key-Words: Software Model, Modeling Languages, Syntax and Semantics of Modeling Languages, Software
Model Transformation, Graph Transformation, Model-Driven Development, Transformation Rules, UML,
Use Case Diagram, Collaboration Diagram.

1 INTRODUCTION
Software models, represented as UML diagram,

are central development artifacts in Agile approach.
Direction of Model-Driven Engineering is

development of code generation approach [6].
Necessary condition to develop investigations in this
field is to involve new fundamentals and analytical
approaches to improve existing software model
processing techniques. New proposed approaches
should be related to all 4-layer metamodeling stack
[1]. To achieve this goal software engineering
standards and formal approaches touching
foundation of software model processing are
developed. One of the important tasks in this field is
to modeling develop standards on metalevel. For
example, formal aspects of representation objects
and interconnections between them covers OMG
MOF standard [8].

But standards, related to transformation
languages consider model to model transformation,
are developed on third level of 4-layer
metamodeling stack. These standards are QVT

(group of standards) [9], ATLAS, ATL [5], and
others. Mathematical transformation grammar,
introduced by Chomsky considers transformation
process on the first layer of 4-layer metamodeling
stack (meta-metalevel) [4]. Contribution of this
paper is proposing Model to Model Transformation
Language (M2MTL) that describes model
transformation operation on the metalevel. For
supporting model to model transformation process
corresponding software tool is proposed.

2 Related papers

Tasks, needed to be automated, for increasing
effectiveness of different software development
operations are summarized in paper [12]. Authors
formulate requirements for software model
transformation language, which supports model-
driven software development are formulated.

Olena V. Chebanyuk

International Journal of Computers
http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 120 Volume 3, 2018

This paper makes strong contribution to
systematic review of model transformation
requirements. But some requirement to software
model transformation languages are remains still not
clear. For example requirement “b)”, namely “be
implementable in an efficient way” or difference
between model selection rules and rules for
producing target model.

In the paper [10] an idea to combine
representation of abstract and concrete syntax to
support graph transformation operations is
proposed. Then the transformation rule language for
hierarchical automata was introduced. This
introduction is informal in the sense that it points
out the style of transformation rules and what
happens at execution time of these rules. Syntax and
semantics of these rules is not completely defined.
That is why goal, formulated by authors, is to
generate transformation languages from the
grammars of DSLs is not archived completely.

Also, it is interesting to explore such questions:
― How to archive precise representation of

transformation rules when transformational
grammar will be spread?

― How to represent analytically transformation
rules, if rules in metalevel and concrete
syntax are represented together?

Touched questions make difficult reusing of
proposed language.

In the paper [11] is proposed to proceed use-case
templates, that are composed for requirements
description. Authors present a systematic mapping
study about the software product line variability
description. From this mapping twelve Software
Product Line (SPL) use case templates were
defined. Also classification of these templates is
proposed.

Use-case evaluation is divided into three main
phases: Research Directives, Data Collection, and
Results. In the first phase, the protocol and the
research questions are established. The second
phase, Data Collection, comprises the execution of
the Systematic Mapping, and the
inclusion/exclusion criteria are used in order to
select relevant studies according to the research
questions. Finally, the third phase, “Results”, is
responsible for reporting the study outcomes based
on a classification scheme.

This classification can be used as entire
information for successfully performing many
activities in requirement engineering, especially in
model-driven approaches. Analyzing templates can
be a starting point to make model execution more

precise. Also systematic representation of templates
can help to design and precise profile constrains.

Represented review shows that model
transformation techniques are actively investigated
from fundamental points of view. Also there are
many approaches, solving important tasks in
software development life cycle, that can be
performed more effectively implementing software
model transformation techniques. Thus, designing
language for software model to model
transformation is a very important task.

3 Task and challenges

Task: to design a Model To Model
Transformation Language (M2MTL) following
approach for modeling language designing proposed
in [1]. Language should be defined by abstract
syntax, metamodel with constraints, and concrete
syntax.

Challenges to the abstract syntax of M2MTL:
― Describe all entities and processes related to

software model to model transformation
process.

― Define them uniquely.
Challenges to the metamodel of language
― Facilitate process of acquainting with

designed language from the cognitive point
of view [2].

― Represent interconnection between main
language entities.

― Provide extensible language constraints [7].
Challenges to the concrete syntax of M2MTL:
― Support both compact and detailed software

model representations.
― Allow flexible choosing of graphical

notations that participate in transformation
(UML or other modeling languages).

― Be convenient for model software proceeding
(analysis of structure, comparing, merging
and so on).

― Be convenient for human cognitive
perception [2].

Challenges to transformational rules of M2MTL:
― Be compatible with analytical approaches

representing software models both in
compact and detailed notations [7].

― Allow matching software model elements of
compact and detailed view.

― Be compatible with representation of rules in
natural language. Namely reflect all
transformational conditions and details of
transformational process.

Olena V. Chebanyuk

International Journal of Computers
http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 121 Volume 3, 2018

4 Designing of model to model
transformation language

Book [1] proposes the procedure of designing
your own modeling language. The first procedure of
modeling language designing is to define its abstract
syntax. Following [1] in Table 1, the elements of

abstract syntax for M2MTL are represented. The
aim of abstract syntax is define main meaning of the
designed language for the further graphical
metamodel designging.

Table 1. Elements of M2MTL abstract syntax

Language element Description of M2MTL element
Software model According to standard UML 2.5 Software Model (SM) is UML diagram.
Initial software model It is a software model from which transformation is started. This model contains initial

information for transformation.
Resulting software
model

Software model designed as a result from the transformation.

Software model
representation

Graph representation [4].

Software model
elements

Structural components from which software model is consists. They are objects and
links.

Software models
objects

Software model nodes.

Software model links Elements of software model that connect two (or more) nodes.
Initial sub-graph Part of software model chosen for the further transformation.
Elementary sub-graph Sub-graph consisting from two linked vertexes.
Initial selecting rules Rules for selecting sub-graphs from initial software model for using them in further

transformation.
Resulting sub-graph Sub-graphs of resulting software model designed during transformation.
Transformation Process of obtaining a set of resulting sub-graphs by means of performing all

transformational operations.
Transformation
operation

Operation for obtaining one resulting sub-graph from the initial one.

Transformation rules A set of recommendations for performing transformation operations.
Mappings Operation which defines correspondence between initial and resulting software model

elements.
One to one mapping Mapping of an object or a link of initial software model to an object or a link of

resulting software model.
One to many mapping Mapping of an object or a link of initial diagram to sub-graph of resulting software

model.
Many to one mapping Mapping of sub-graph of initial model to an object or a link of resulting software

model.
Many to many
mapping

Mapping of sub-graph of initial model to sub-graph of resulting model.

Metamodel of M2MTL is represented on the
Figure 1. It is designed using MOF syntax [8].

Metamodel constrains
― For performing transformation operation one

initial and one resulting software model
should be used (Initial SM, resulting SM).

― After transformation a set of resulting sub-
graphs are appeared.

― Transformation operation uses at least one
transformation rule.

Concrete M2MTL syntax is represented in Table 2.

Olena V. Chebanyuk

International Journal of Computers
http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 122 Volume 3, 2018

M2MTL

Initial SM

-Конец1

1

-Конец2*

-Конец11

-Конец2*

objects links

-Конец11

-Конец2*

Selecting rules

-Конец11

-Конец2*

Transformation rules

-Конец11

-Конец2*

-Конец11

-Конец2*

One to
one

One to
many

-Конец11

-Конец2*

Many to
one

-Конец11

-Конец2*

Many to
many

-Конец11

-Конец2*

Resulting SM
-Конец11

-Конец2*

objects links

-Конец11

-Конец2*

Initial
subgraphs

-Конец11

-Конец2*

-Конец1

1

-Конец2*

Fig. 1 Metamodel of M2MTL

According to sequence of action proposed by [1] the
next step after designing of modeling language
metamodel is to choose way of language concepts
representation in terms of chosen analytical
apparatus. The ground of choosing mathematical
tools for performing different operation in

transformation approach is represented in the paper
[3]. The concrete syntax is formed in graph
representation of software model and using set
theory for description of the language elements.
Details are represented in the table 2.

Table 2. Concrete M2MTL syntax

Language
element

Description of M2MTL element

Software model

Denote software model as SM and SM of some type as typeSM .
Where type=use case, type=class. The note if the name of UML diagram is long one
several first letters denoting UML diagram type can be used.
If the name of UML diagram is long type is denoted by several first letters with further
explanation.
For example comSM where type=communication.

Initial software
model *

Initial software model is a software model of typeSM . Denote it as typeSMI

Resulting
software model *

Resulting software model is a software model of typeSM . Denote it as typeSMR

 * Example transformation from use case diagram to class one is denoted as: transform
caseuseSMI to classSMR

Software model
representation
and its elements,
namely objects
and links

To represent software model graph representation is used.
Denote software model(SM) as:

),(typetypetype LOSM = (1)
where

typeO – a set of software model objects that are used in typeSM notation. Objects are

elements of software model (SM) notations that can be expressed as graph vertexes.
typeL – a set of software model links that are used in typeSM notation. Links are elements of

software model notation that can be expressed as graph edges.
Representation of
initial software
model

Whe
re

typeOI - a set of objects in notation of typeSMI ,

 typeLI - a set of links in notation of typeSMI

),(typetypetype LIOISMI = (2)

Representation of
resulting software

Whe
re

),(typetypetype LRORSMR = (3)

Olena V. Chebanyuk

International Journal of Computers
http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 123 Volume 3, 2018

Language
element

Description of M2MTL element

model typeOR - a set of objects in notation of
typeSMR ,

 typeLR - a set of links in notation of
typeSMR

Elementary sub-
graph

Denote elementary sub-graph of software model as SME
1 2(, ,)SME o l o= (4)

where 1o and 2o are software model objects (graph vertexes)

 l - connection between objects 1o and 2o (graph edge).

Software model
sub-graph

Part of software model, consisting from linked chain of elementary sub-graphs. Denote
sub-graph of software model as subSM . Using (4) this chain is denoted by the following:

1 1 2 2 2 3 1 1

1 2

(, ,), (, ,),..., (, ,)
, ,...,

sub n n n

sub n

SM o l o o l o o l o
SM SME SME SME

− −=
=

 (5)

where n – is a number of elementary sub-graphs in sub-graph
Initial sub-graph Part of software model chosen for the further transformation It is denoted as subSMI .

This part consist from several linked sub-graphs of initial software model.
Resulting sub-
graph

Denote resulting sub-graph as subSMR
It is designed as a result of transformation of subSMI to subSMR

Initial selecting
rule

Initial selecting rules define how to choose subSMI from typeSMI for performing
transformational operation.
Denote initial selecting rule as ()typeR SMI . Thus, operation of selecting subSMI applying R,

namely rule, on typeSMI is written as follows:

()type subR SMI SMI= (6)
Usually initial selecting rules are composed as conditional statements, defining which
elementary sub-graphs of typeSMI compose subSMI .

Denote sub-graph for selecting subSMI from initialSM as S. Thus:

1 1 2 1 1(,) (, ,),..., (, ,)n n nS OS LS os ls os os ls os− −= = (7)
OS - set of objects in S, LS – set of links in S, m – number of elementary sub-graphs in S.
Thus statement (4) can be written as follows:

()type subselect S from SMI SMI= (8)
S is a mask which is applied to every elementary sub-graph of typeSMI .
Graph subSMI is formed by the next: every elementary sub-graph of typeSMI

1 1 2 1 2 1(, ,) ; , ,oI lI oI oI oI OI lI LI∈ ∈ is compared with the first elementary sub-graph of S,

1 1 2 1 2 1(, ,) ; , ,oS lS oS oS oS OS lS LS∈ ∈ If they are the same, then the next elementary sub-
graphs of S and typeSMI are compared consequently. If typeSMI contains S then subSMI is
formed.

Initial selecting
rules

A set of initial selecting rules is denoted as RULES. Using (6), RULES for selecting set of
subSMI from typeSMI are written as follows:

{ () | 1,..., }; | |i typeRULES R SMI i q q RULES= = = (9)

Transformation To represent transformation rules, the transformational grammar [4] is used.

Olena V. Chebanyuk

International Journal of Computers
http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 124 Volume 3, 2018

Language
element

Description of M2MTL element

grammar Transformation rules are syntax of this grammar [3].
Second order logic is used for representation of transformation rules in high level [3].
Also, such representation can be described in details using first-order logic [3].

Transformation
operation

Transformation operation from subSMI to subSMR is written as follows:

sub subSMI SMR→ (10)
where → transformation operation [4]
According to (2) and (3) transformation operation using second order logic is represented
by the following

(,) (,);type type type typeOI LI OR LR→ (11)
According to (11) represent transformation operation in details using first-order logic

1 1 2 1 1 1 1 2 1 1((, ,),..., (, ,)) ((, ,),..., (, ,));
, , , ; 1,..., ; 1,..., ; | |, | |

n n n m m m

i i j j

oI lI oI oI lI oI oR lR oR oR lR oR
oI OI lI LI oR OR lR LR i n j m n OI m OR

− − − −→
∈ ∈ ∈ ∈ = = = =

(12)

Transformation
rules

A set of rules for performing transformation operations
Denote a set of transformation rules as TRANS. According to (10):

, ,{ | 1,..., }; | |sub i sub iTRANS SMI SMR i t t TRANS= → = = (13)

Model to Model
transformation
process

Every typeSMI is transformed to set of sub-graphs in typeSMR notation applying all
transformation rules. Denote all obtained sub-graphs subSMR in notation as SMR.
According (9) and (13):

(()type subTRANS RULES SMI SMR= (14)

5 Case study

Consider process of transformation Use Case
diagram to Collaboration one. Denote this process as

ucSMI (uc = use case) to colSMR (col =collaboration).
1. Prepare analytical representation of initial and

resulting software model using graph representation
based on (1)-(3)

})(,)(,{
},{

),(

ucucucuc

ucucuc

cucuuc

extendsLincludeLLL
PAO

LOSMI

=
=
=

where ucA - a set of Use Case diagram actors.
 ucP - a set Use Case diagram precedents.

 ucL - a set of Use Case diagram links.
ucincludeL)(- a set of Use Case diagram links with

mark <<include>>.
ucextendsL)(- a set of Use Case diagram links with

mark <<extends>>.

}{},,{
),(

colcolcolcolcolcol

colcolcol
MLCOAO

LOSMR
==

=

where colA - a set of Collaboration Diagram actors.
colO - a set of Collaboration Diagram objects.
colC - a set of Collaboration Diagram conditions.

colM - a set Collaboration Diagram messages.

2. Design transformation rules for transformation

of ucSMI to colSMR
2.1. One to one transformation
Use case diagram precedents are transformed to

collaboration diagram messages.

coluc

colluc
MP

SMRSMI
→

→

2.2. Many to many transformation rules are
represented in the table 3.

Olena V. Chebanyuk

International Journal of Computers
http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 125 Volume 3, 2018

Table 3. Many to many transformation rules for transforming use case diagram to collaboration one
Sub-graphs S formed for initial

selection rules
Graphical representation of

transformation rule
Analytical representation of

transformation rule
Consider elementary sub-graph of

use-case diagram
),,(secsecsec aseuaseuaseu pla

It is transformed to the next

fragment of collaboration diagram:
actor and outgoing message from it

),,(∅colcol ma

a) Use Case diagram fragment

a

pl

b) collaboration diagram fragment

a

m :o

),,(
),,(

),,(
),,(

∅
→

∅→

→

colcol

ucucuc

colcol

ucucuc

colluc

ma
pla

MA
PLA

SMRSMI

Consider elementary sub-graph of

use-case diagram
)2,)(,1(ucucus pincludeLp

It is transformed to the next

fragment of collaboration diagram:
actor and outgoing message from it

),,(colcolcol omo

a) Use Case diagram fragment

p1

p2

<<include>>
l

b) collaboration diagram fragment

:O

m

),,(
)2,,1(

),,(
)2,1(

,

,

colcolcol

ucucuc

colcolcol

ucucuc

colluc

omo
plp

OMO
PLP

SMRSMI

→

→

→

3. Designing initial software model. Consider use case diagram for solving square equation (Figure 2):

Input a

input b

input c

Calculate D

correct data

Calculate x1

Calculate x2

user

<<include>>

<<include>>
<<include>>

D>=0
l1

l(include)1

l3

l1

l(include)2

l(include)3

Fig. 2. Use Case diagram for solving square questions

4. Prepare initial sub-graphs of use case diagram

for further transformation using (6) and (7).
Denote a set of sub-graphs compose according to

transformation rules as niSMI iuc ,...,1,, =
Where n- is a number of transformation rules.

4.1. Fragments of Use Case diagram that

correspond to the first transformation rule (table 3)
are marked by green color.

)),,(),,,(
),,,((

),,(
)(

32

1

11,

cinputluserbinputluser
ainputluser

SMIfromPLAselect
SMRSMI

ucucucuc

ucuc

=
==

==

4.2. Fragments of Use Case diagram that

correspond to the second transformation rule
(table 3) are marked by blue color.

Olena V. Chebanyuk

International Journal of Computers
http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 126 Volume 3, 2018

)},)(,(
),,)(,(),,)(,((

),)(,(
)(

3

21

,2,1

22,

cdincludelcinput
cdincludelbinputcdincludelainput

SMIfromPincludeLPselect
SMRSMI

ucucucuc

ucuc
=

==

cd is an acronym for name of precedent “correct
data”.

4.3. Prepare 3,ucSMI . It will consists from all
precedents that were not included to first and the
second transformation rules. They are colored in use
case diagram (Figure 2) in black.

))2,,(),1,,(
),,,((

),,(),,(3,

xcalculatexcalculate
DcalculateSMfrom

PandPSelectSMI
uc

uc

∅∅∅∅
∅∅=

∅∅∅∅=

sign ∅ picks elements of elementary sub-graphs

are not important for the transformation.
5. Perform transformation operation using (11)

and (12).

),,(),,(
),,(),,(
),,(),,(

3

2

1

1,1,

∅→
∅→
∅→

→

cinputusercinputluser
binputuserbinputluser
ainputuserainputluser

SMRSMI coluc

 Elements of collaboration diagram that are
designed using the first transformation rule are
marked by green

),,(),)(,(
),,(),)(,(
),,(),)(,(

3

2

1

2,2,

cccorrectccdincludelcinput
bbcorrectbcdincludelbinput
aacorrectacdincludelainput

SMRSMI coluc

→
→
→

→

Elements of collaboration diagram that are

designed using the second transformation rule are
marked by blue

3,3,sec colaseu SMRSMI →

Precedents with names “calculate D”, “calculate
x1”, ”calculate x2” become messages of
collaboration diagram with the same names.

:b

:cuser

1.3 Input c

1.2 Input b

1.1 Input a
:a

2.1 Correct a

2.2 correct b

2.2 correct c
:D

3 Calculate D

3 Calculate D

3 Calculate D

[D>=0]

4.1 Calculate x1

4.2 Calculate x2

:x1

:x2

Fig. 3. Collaboration diagram for solving square questions

6 Designing an architecture of model
to model transformation framework
Consider an example of model to model
transformation designing framework to transform
Use Case to Collaboration diagram.
Class diagram of model to model transformation
framework is represented on Figure 4
Information about software models is stored in the
classes Use_Case and Collaboration from
UML_model package.

Diagram notation is stored in separate list, for
instance list of actors, precedents, and comments.

Link between elements is characterized by two
linked objects in UML diagram. Information about
links is stored in class Link.
Information about Collaboration diagram entities,
obtained after transformation is stored in class
Collaboration.
Lists of Use Case diagram entities are populated in
constructor Use_Case(string path). It obtains path to
Use Case diagram, stored in XML based format [13].
Usually in this format environments for software
models designing store information about UML
diagrams. Examples of such environments are
Microsoft Visual Studio, IBM Rational Software
Architect, Integrated Development Environment
Eclipse, ect.

Olena V. Chebanyuk

International Journal of Computers
http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 127 Volume 3, 2018

Figure 4. Class diagram of framework for transforming Use Case to Collaboration diagram

Consider use case diagram, created in Microsoft
Visual Studio format.
The example of XML tags, corresponded to actor
entity is given below.

<actor Id="f32af9db-669a-486d-a5a2-
c66ebab0af85" name="Actor1" isAbstract="false"
isLeaf="false">

Then actor is linked with precedent “a”

<association Id="000dd500-e774-4754-b526-
9fea979b34a1" isDerived="false"
sourceEndRoleName="Actor1"
targetEndRoleName="a" isLeaf="false"
isAbstract="false">

Precedent itself is stored in the next XML string

<memberEnd Id="9e1f21b1-9d2f-4e56-b61e-
304d50b96f35" name="a" isLeaf="false"
isStatic="false" isReadOnly="false"
isDerived="false" isDerivedUnion="false"
aggregation="None" isComposite="false">

Implementing LINQ queries XML tags can be
proceeded. The aim of proceeding UML model file
is to obtain lists of all its components and
interconnections between them.
The next step is to compose sub-graphs according to
initial selection rules. Information about every sub-

graph is stored in class Subgraph from
“Transformation” package. Every sub-graph serves
information to perform one transformation rule.
Transformation rules are divided to several types,
namely support one to one transformation, one to
many, and many to many. Types of transformation
rules are defined in enumeration Transformation
from transformation package.
Consider realization of different types of
transformation rules.
Transformation rule one to one realized in the
method Transform_one_one(string source, string
target) in the next way: Every entity from list, named
as source is added to list of entities, named target.
Transformation many to one is realized by method
Transform_many_one(string target).
Entities, represented in target parameter are chosen
from an initial sub-graph that is a property of
Transformation_rule class. Then, these entities are
added to proper list of Collaboration Diagram.
Class “Transformation” stores list of transformation
rules. Method Transofmation(ref collaboration c,
use_case u) populates Collaboration Diagram
entities. Collaboration Diagram is transmitted as a
parameter to method.
And the last step is to delete duplicated entities from
lists of collaboration diagram entities.
As a result of transformation, user obtains a list of
sub-graphs and lists of Collaboration Diagram
entities. They help user to verify designed
collaboration diagram.

Olena V. Chebanyuk

International Journal of Computers
http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 128 Volume 3, 2018

7 Conclusions
Language of software model to model transformation
is presented in this paper. The motivation of
performing such a research is to obtain extensible
model to model transformation language supporting
several concrete syntaxes, allowing representation of
software models and transformation rules both in
compact and detail view. Graph representation of
software models allows providing a bridge between
UML (or other modeling language with graphical
concrete syntax) and analytical tools for software
models processing and analyzing (1)-(3). Proposed
representation of transformation rules is also
compatible with graph representation of software
models (10)-(13). Such representation allows
considering complex expression for performing
transformations, including several preconditions, or
software model elements that are not linked each
other directly.
Concrete syntax of the M2MTM, proposed in this
paper, allows considering transformation process
both on metalevel and model level [6]. General
transformation ideas and software models notations
can be analyzed on metalevel.
Considering of sub-graphs and software models at
level of elements permits analyzing transformations
in details. Doing this existing transformation rules
can be refined and new transformation rules also can
be designed.

8 FURTHER WORK
Propose an approach of resulting software model
designing grounded on problem domain ontology
analysis. Visualized resulting software model should
consider possibilities of human cognitive abilities for
perception (Chebanyuk and Markov, 2015).
Define operations that are used for analysis of
software model before and after transformation (for
example refinement or merging). Extend M2MTL
abstract and concrete syntaxes for preforming these
operations and propose corresponded analytical
tools.
Develop a software tool for extracting information
from initial software model designed in different
modeling environments.

References
[1]Brambilla M., Cabot J., Wimmer M., 2012. The book

Model-Driven Software Engineering in Practice. Synthesis
Lectures on Software Engineering. Morgan & ClayPool
publishers. Pages 1-182

[2] Chebanyuk E., Markov K., 2015. Software model cognitive
value. International Journal “Information Theories and

Applications”, Vol. 22, Number 4, ITHEA 2015
http://www.foibg.com/ijita/vol22/ijita22-04-p04.pdf

[3] Chebanyuk E., Markov K., 2016. Model of problem domain
“Model-driven architecture formal methods and approaches”
International Journal “Information Content and Processing”,
Vol. 22, Number 4, ITHEA 2016, p.202-222.
http://www.foibg.com/ijicp/vol03/ijicp03-03-p01.pdf

[4] Chomsky, N. 1957. The book. Syntactic Structures. Mouton
publishers, Eilenberg: Mac Lane The, Hague, 1945 - 1957.
ISBN 90 279 3385 5. p.107.

[5] ATL 2016 . ATL Transformation Language, 2016 .
http://www.eclipse.org/atl/

[6] IBM, 2016.
http://researcher.ibm.com/researcher/files/zurich-jku/mdse-
07.pdf

[7] OCL, 2014. Object Constraint Language Version 2.4
OMG standard.
http://www.omg.org/spec/OCL/2.4/PDF

[8] OMG, 2016. Meta Object Facility™ (MOF™) Core
http://www.omg.org/spec/MOF/

[9] QVT, 2016. Meta Object Facility
Query/View/Transformation, v1.3 http://www.omg.org/cgi-
bin/doc?formal/2016-06-03

[10] Rumpe B., Weisemöller I., 2011. A Domain Specific
Transformation Language. In: ME 2011 - Models and
Evolution, Wellington, New Zealand. Ed: B. Schätz, D.
Deridder, A. Pierantonio, J. Sprinkle, D. Tamzalit,
Wellington, New Zealand, Okt. 2011.
https://arxiv.org/ftp/arxiv/papers/1409/1409.2309.pdf

[11] Santo I.S., MC Andrade R., Santos P.A., 2015. Templates
for textual use cases of software product lines: results from a
systematic mapping study and a controlled experiment.
Journal of Software Engineering Research and Development
(2015) 3:5 DOI 10.1186/s40411-015-0020-3
https://jserd.springeropen.com/articles/10.1186/s40411-015-
0020-3

[12] Sendall, S., Kozaczynski. W., 2003. "Model transformation:
The heart and soul of model-driven software development."
IEEE Software 20.5 (2003): 42-45.
http://ieeexplore.ieee.org/document/1231150/

[13] XMI, 2015. XML Metadata Interchange. Access mode
http://www.omg.org/spec/XMI/

Olena V. Chebanyuk

International Journal of Computers
http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 129 Volume 3, 2018

http://www.foibg.com/ijita/vol22/ijita22-04-p04.pdf
http://www.foibg.com/ijicp/vol03/ijicp03-03-p01.pdf
http://www.eclipse.org/atl/
http://researcher.ibm.com/researcher/files/zurich-jku/mdse-07.pdf
http://researcher.ibm.com/researcher/files/zurich-jku/mdse-07.pdf
http://www.omg.org/spec/OCL/2.4/PDF
http://www.omg.org/spec/MOF/
http://www.omg.org/cgi-bin/doc?formal/2016-06-03
http://www.omg.org/cgi-bin/doc?formal/2016-06-03
https://arxiv.org/ftp/arxiv/papers/1409/1409.2309.pdf
https://jserd.springeropen.com/articles/10.1186/s40411-015-0020-3
https://jserd.springeropen.com/articles/10.1186/s40411-015-0020-3
http://ieeexplore.ieee.org/document/1231150/
http://www.omg.org/spec/XMI/

