
SOME KEY PRINCIPLES FOR CREATING GOOD VISUAL

MODELS

Anthony Spiteri Staines

Department of Computer Information Systems

University of Malta

MSIDA MSD 2080

MALTA

toni_staines@yahoo.com

Abstract: - This paper discusses the importance of key principles for creating good visual models. Sections I to

II discuss software and system development, different types of techniques and modeling approaches are used.

Visual modeling is suited to developing systems because these notations are understandable by different

stakeholders. Visual modeling can make use of graphs. The paper is presented as follows.

1. Introduction: Information and software systems require the use of methods and notations for proper

representation. Unfortunately many users do not appreciate the need for creating suitable and aesthetically good

diagrammatic notations 2. Background: Different modeling notations can be used to model systems. The key

principles behind these notations are based on principles of tidiness, neatness, constructability and the level of

detail. Different works and findings are presented. 3. Problem Formulation/ Problem Statement: This section

presents various problems with visual modeling. In reality the use of good principles for creating the models are

not necessarily identified, considered and adhered to when diagrammatic notations are used. 4. Proposed

Solutions: several key principles are used as solutions. These are : i) abstraction, ii) universality, iii) aesthetics,

iv) correct sequence and v) patterns. Their importance is explained and it is indicated how these can improve

and solve the overall diagrammatic modeling approach. 5. Some Toy Examples: This part shows the ideas

presented in the proposed solutions being applied in practice. Models can have several characteristics and still

be useful and offer good representation. 6. Discussion and Existing Problems: Explains the validity of the toy

examples and how this can be extended to other models. However several problems still remain and these are

not straightforward to solve. These issues are explained in this part. 7. Conclusion: Summarizes the paper and

explains other issues that can be tackled in the future.

Key-Words: -Diagrammatic notations, Software engineering, Requirements engineering, Visual modeling.

1 Introduction
Information systems analysis, software, hardware

design and computer engineering make use of many

different forms of system representation. Many

formal methods, notations and design methods have

been created. Some examples are: the UML,

software design methods and techniques. Several

graph based diagrams are used to do this job [1]-

[10], [12]-[15].

Extensive literature and courses have been

developed to support this knowledge [1]-[7]. The

design prior to coding principle is a mainstream

approach in software development. Modeling is not

only used for good system design but can be applied

to many other computer related areas. Several

reasons exist for modeling. These are: i)

understanding a system, ii) simplifying the

representation of a system, iii) component

identification, iv) scalability, v) representing the

architecture, vi) communicating to stakeholders, vii)

verification, viii) analysis and design, ix) creating

architectural specifications etc. [1]-[3], [12]-[15].

Modeling has become a topic of fundamental

importance for the design and analysis of computer

systems. It is increasing becoming a problem to

select the right model for the job [1],[2]. Some

models are never used because of their complexity

or oversimplification. Models provide and give

insight to different scenarios. However there are

cases where models are not used for various

reasons.

Models used in computing range from formal

models and mathematical models to different forms

of visual models [1]-[12].

Anthony Spiteri Staines
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 112 Volume 3, 2018

In this work the focus is on visual modeling.

Visual models are easier to understand at a glance

and appeal to a wide audience [3], [5]-[7]. This

paper is concerned with visual models mainly based

on graphs and their representation.

Modeling principles and skills are often left to

the user to develop and are not taught as a separate

and important topic. Abstraction and representation

lie at the very core of system development.

Many existing notations used in literature are

modification of block diagram notations and graphs

[2],[3],[5]. These are simple and straightforward.

Because of their effectiveness they play a crucial

role in software modeling. Currently many

compositional structures that are used for

representation are based on modifications of these

models [2],[3],[5].

It is imperative to educate students and IT

professionals from the onset about key modeling

principles for good system representation [9],[12].

Good notations and designs should support the

process of creating better and more robust systems

and they support the intuitive creative thinking

process which is fundamental in requirements

engineering and software engineering [2], [12]-[15].

Creating models also has an artistic and expressive

side to it which is very often ignored.

Modeling is symbolic in nature [1], [13]-[14]. In

literature there are several approaches that have

been created for visual modeling. The mainstream

approaches can be shown as follows: the i) UML

notation [6], ii) Fundamental modeling concepts

(FMCs) [2], iii) Technical architectural modeling

(TAM) [15],[20], and different approaches that are

graph based, formal or semi-formal [16],[19]. Some

graph based approaches could be different classes of

Petri nets or plain graphs like those used in

[3],[5],[8],[10],[11],[20],[21]. The key principles

presented here are an integral part of FMCs and

TAM. The FMC approach places a lot of emphasis

on aesthetics, node harmonization and layout of the

visual models. The same ideas apply for TAM.

Unfortunately when using UML and graph notations

these principles might not be considered. The

emphasis in the UML is to provide a large unified

repository of notations for system representation.

Other works focus mainly on formal representation,

which is a very important aspect. The ideas in the

problem solution section related to good

diagrammatic notation can be extended to all visual

modeling domains.

This paper is organized as follows: 2

Background, here the motivating ideas for creating

visual models are presented and compared with

other works. 3 Problem formulation, this part

presents the problems associated with creating good

visual models for software and requirements

engineering. 4 Proposed Solutions, identifies some

ideas and solutions to the problems presented in 3.

Section 5 Some toy examples, illustrates the main

ideas behind the solutions proposed in 4. Section 6

Discussion and existing problems explain the

validity of the solutions and examples given and

consider other open problems that are not easily

understood. Section 7 Conclusion closes this paper.

2 Background
In this work modeling can be defined as the activity

of creating valuable structures that capture the

behaviour or composition of a system. This is an

intellectual activity that adds value and involves

some sort of effort. Capturing the details of essential

structures that either i) exist or are ii) planned will

create more knowledge and value about them [1]-

[15].

The main requirements of systems must be

precisely understood by designers and other

specialists [1],[2]. Information and knowledge about

a system might have to be exchanged between

different persons. Models serve as exchange

mechanisms for knowledge that could otherwise go

missing. Drawing models and understanding them

are two separate activities.

Diversity in notations used for representing

modern software development happens because of

the different types of requirements and complexity

issues. New problems and challenges are being

created all the time. Certain modeling structures that

are universally accepted and understood are

normally used. Class diagrams are an example of

this [6], [7]. However new structures might have to

be created for a particular scenario.

Requirements of real time systems are very

different from those of an e-commerce application.

It is impossible to reconcile these because the nature

of the end product is entirely different. Each system

requires the use of diverse modeling notations and

Anthony Spiteri Staines
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 113 Volume 3, 2018

techniques. A delicate balance has to be maintained

between using too few or too many models.

Modern systems could be diverse as distributed

systems and web-based applications. At the extreme

side, embedded applications could be stand alone.

Any system can contain a finite number of

subsystems depending on classification. Sub-

systems can exhibit diversity.

A single simple system can have multiple

configurations excluding those that not necessarily

accounted for. Diversity, configurability,

distributedness, new technologies and platforms etc.

require proper management.

Creating good software does not only imply

successful coding but involves several other

structures and sound modeling principles [2]. These

need to be considered in order to deal with

complexity issues. Modeling issues tend to be

neglected and are not properly understood by many

stakeholders in development. This is obvious when

good programs that are created require to be

developed again from scratch because some

important issues were not implemented. Even in

modern technologies it is possible to get some high

end device that has a poor UI layout or software that

is too tedious to operate or gives unforeseen errors

in some state that was unaccounted for.

Good models should promote reuse. It should be

descriptive, suggestive and self-explanatory. For

comprehension it should contain a sufficient level of

detail. Tidiness implies that it is neatly laid out and

drawn up using appropriate scales. The model

would be suitable for visualization.

3 Problem Formulation
Several reasons exist to explain why modeling is

neglected: i) there is a lack of uniform modeling

foundation, ii) so many diverse notations exist.

Which should be chosen? iii) there is a lack of

training in requirements engineering and modeling,

iv) it is time consuming to apply notations. When

should we stop applying them? How much is

enough? Which should be selected? v) there is a

lack of education and training about the importance

of models. For more details refer to [1]-[21].

The skill of modeling is certainly acquired as one

goes along solving certain problems and developing

systems. It would be beneficial if this skill is

systematically taught or initially presented.

In many occasions the use of models is

overlooked. There is a lack of instruction at different

levels on how to produce suitable models. Analysts

and developers are in a rush to get done with the

application and solve problems. Thus the result of

having a quick implementation comes at the

expense of proper comprehension of the problem

domain. It might happen than an improper solution

has been formulated. A possible reason not to use

notations is that they could divulge too much

information and be used for reverse engineering by

competitors to their advantage.

 In many cases detailed diagrams of the system

components and their functionalities are not

provided for specific obvious reasons.

The lack of proper representation is one reason

of the large software costs. This leads to the

problem of not doing something right at the first

attempt so many other attempts need to follow. The

use of good notations would contribute to the

solution of this problem.

The following main problems can be identified

when constructing system models: i) precise and

fundamental terminologies need to be used. ii) the

model should be comprehensive enough to reflect

about the structures of the system and the

subsystem. iii) add value and be understandable by

different stakeholders, iv) concise or retain

simplicity but not at the cost of omitting important

Anthony Spiteri Staines
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 114 Volume 3, 2018

details. v) be very presentable and simple to

construct. vi) the models should promote reuse and

transformation to other frameworks or applications

[1],[2],[5],[6],[12]-[15].

The main issues presented here can be

summarized into the following fundamental points.

i) the model is too detailed or contains too little

information. If the model contains too much

information for the user it becomes unreadable and

some of the information is not taken in by the user.

On the other hand if the model is too compact, then

there is insufficient information and knowledge that

can be derived from the model.

ii) the model is not neatly drawn. This is a big

problem with many mainstream modeling

approaches [5]. The models could contain

overlapping edges and nodes. The size of the nodes

and the node arraignment setup give the model a

look of untidiness. It could also imply that excessive

nodes and edges are used [5].

iii) the model should be easy to construct. This

implies that there should not be a high level of

difficulty to construct the model.

These three main points summarize many of the

problems with modeling systems and software.

These are depicted in figure 1.

4 Proposed Solution
The following solutions are given for the problems

that have been previously identified.

For i) too much detail, the solution would be to

simplify the structures and on the other hand for ii)

too little detail more information could be added.

The solutions cannot be implemented without the

following qualities. The users need to comprehend

the value of modeling: i) the user needs to have

some idea or a rough idea of how the system works

and its possible main components. ii) the user needs

to have the ability to formulate or give shape to

different classes of problems. I.e. have some explicit

form of representation to put the concept into visible

form. iii) knowledge of basic computer related

structures is a pre-requisite and iv) one has to

identify alternative structures or ways of

representing.

The key principles presented can be used to solve

many of the problems with visual modeling. These

form an integral part of creating good visual

structures for system and software development.

Some of these principles have been already

presented to some extent in the MDA, MDE

literature, FMCs and TAM and the UML

[6],[7],[15],[2]. In this work more details have been

added. These have been identified and put together

from experience in this area over a long period of

time.

These key principles are:

i) Abstraction: this is the ability to describe

conceptual architectural structures at different

levels. Abstraction implies simplicity. Simplicity

happens because the representation is decomposed.

Description techniques should be restricted to very

few elements and notations.

ii) Universality: a description albeit being simple

requires to provide sufficient information that will

cover a variety of situations and scenarios. Basic

block diagram notations and certain graphs like

undirected graphs or digraphs can be used to create

useful models that are visually understandable.

Many of the diagrams used in the UML like activity

diagrams, class diagrams, sequence diagrams are

based on graphs. Petri nets and FMC or TAM

diagrams are similarly based on graphs

[2],[3],[8],[10],[11],[15],[20],[21].

iii) Separation of concerns: there are important

and trivial parts. Different parts of the system have

different requirements hence the different parts (e.g.

components or entities that collaborate together are

fundamentally different).

iv) Aesthetics: Deals with the neatness or

tidiness of the diagram. This implies that a structure

should support a proper layout and presentation. The

graphical patterns should be well formed and follow

certain key principles that make them presentable.

The aesthetical value of the diagram is often

overlooked or ignored. The principle of aesthetical

value can be extended even to formal notations or

representation that are non-graphical. The actual

process of creating structures for computer based

systems can be attractive not just from the scientific

and economical point of view but also from the

compositional point of view. Thus it is possible to

acquire a skill where designing becomes a sort of

craft or art. Aesthetical design would imply the

correct layout of nodes, and harmonization of the

layout. This will imply proper graphical connections

Anthony Spiteri Staines
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 115 Volume 3, 2018

and tidiness in the design. However these principles

are not easily defined and it is important to be tied

down to a particular approach.

v) Correct Syntax: This property deals with the

correctness and validity of the model being created.

Sometimes the syntax used is full of errors. The tool

used to create the model could use some form of

syntax that is not the proper one. This is commonly

seen with the UML where different case tools

support different syntax. However the model can

normally be supported using formal methods to give

it more rigor if this is required. Correct syntax is not

necessary in the most important part of the model.

Sometimes the aesthetical value of the model is

more important.

vi) Patterns: A pattern refers to something that

can be repeated. In the case of modeling the patterns

refer to the building style properties of the model.

E.g. if a form of representation is similar, in this

case the pattern will also be similar. In the case of

modeling having a pattern implies that for a

particular representation in a diagram a similar

layout or form is used. E.g. if a decision node is

being modeled twice it should look similar.

5 Some Toy Examples
A simple control flow graph (CFG) is used to

illustrate the ideas presented in the proposed

solutions. The CFG represents the basic processing

of a typical bank ATM (automated teller machine).

This has been selected because the ideas can be

easily understood. The processes or activities in the

CFG are just used to explain the control flow and do

not necessarily reflect correct ordering. This CFG

can be refined and subgraphs can be added. There

are several ways and many different notations used

in software engineering that are used to represent

CFGs.

The example of the CFG drawn using the

principles presented here are constructed in fig. 3

and 4. These show exactly the same thing even

though they look different. It is possible to find

many other valid combinations for representing this

example.

The most important principles presented in the

previous section are used to create these models.

The focus is on generating models that are usable

and understandable. As regards aesthetics some

might prefer the diagram in fig. 4 to that in fig. 3.

For others the opposite might hold. In fig. 4 there is

more abstraction and separation of concerns than in

fig. 3. because the ATM menu has been properly

separated from the main functioning of the ATM.

6 Discussion and Existing Problems
In this section some key principles that are useful

for creating good models are indicated. These would

help software engineers to come up with better

designs. The principles presented can be easily

implemented with minimum effort. Ideally, they

should be a crucial part of software engineering.

However this is not normally the case.

In section V, CFGs have been used as an

example but the key points presented here can be

used with any type of diagrammatic and graphical

notation like those found in MDA [7], UML [6],

data flow diagrams DFDs, class diagrams [6], block

diagram notations [2], etc. The key principles can be

used elsewhere.

The principle of aesthetics is not often

considered. This concept could create a new field of

modeling notations and software development

models. Other principles like universality, syntax,

patterns and abstraction are closely linked with

aesthetics.

The suitability and usefulness of models is not

always in agreement with good construction

principles. This is because for good construction

principles the following apply i) representation and

ii) understanding. Representation does not

necessarily guarantee that a model is easy or simple

to translate into a given specific language. Why? It

could be that the model cannot be translated

automatically but requires additional information or

additional human information.

System size and complexity are very difficult to

estimate and describe. It is fundamental to know at

what stage a model will be used. Will the model be

used at the analysis stage, design stage, for system

documentation or at any other stage?

A model to be used for input to a tool or another

transformation needs to be complete and free from

inconsistencies. However, there are several

secondary issues for it to be communicable and

usable at the stakeholder level. When teaching

Anthony Spiteri Staines
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 116 Volume 3, 2018

software modeling in topics like requirements

engineering and software engineering the layout and

visual impact of the model might be of greater

significance than its actual completeness. This is

because the functionality of the model should serve

its purpose as an agent of i) representation ii)

communication and iii) pattern capturing.

Ambiguity will not allow proper comprehension.

Unfortunately if MDA [7] and UML [6] driven

approaches are considered, architectural models can

become surprisingly complex and unmanageable.

The UML representation can become too rigid.

Abstraction does serve to reduce complexity

however detail can be lost. It cannot be expected for

MDA and UML along with other mainstream

approaches to fully replace the need for creating

simple system diagrams using block diagram

notations. These serve to enable better thinking and

give a holistic picture of the system.

 It is observed that there does not exist a single

notation that covers all the modeling needs for a

system. There is a great amount of fragmentation

and diversity in requirements engineering thus

complicating issues related to its presentation. This

happens because different stakeholders require

different viewpoints.

Visual models created to represent information

systems can be developed to create new forms of

representation and understanding. The visual models

can be combined with pictorial representation, other

notations and mathematical expressions as required.

The expression of form through geometry,

graphs, interacting shapes and symbols provides one

level of the expression of knowledge and

understanding, depending on the transformations

carried out.

Graph diagrams and geometric shapes can

undergo several processes of dissolution, expansion

or contraction of their components. Graph drawing

for visualization is a vast area in its own right. There

are various algorithms that can be used to optimize

the layout of the shape and the particular drawing.

Several different layouts can be found to depict the

shape. The concept of aesthetics can be expanded to

implement ideas related to symmetry, size, vertices

layering etc.

Anthony Spiteri Staines
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 117 Volume 3, 2018

Examining a diagram its connections and shapes

immediately indicates how its components do relate

to each other. A user can discuss various

relationships of patterns, connections, layout, form

and aesthetics. Liking or disliking the object model

is to a large extent dependent on how we perceive

the model as a whole.

This is similar to when we see a well laid out

model. We experience various qualities based on the

relationships between the entities, the size of the

nodes, communication, form, aesthetics, layout etc.

In this respect modeling is not just a scientific

approach but it also has its artistic part. This part is

still not properly understood in software

engineering.

Software engineering has a variety of issues related

to modeling and quality that remain unresolved till

this very day. Ideally one must not become attached

to a particular approach or notation. This could

imply that under certain circumstances some rules

and key principles mentioned might have to be

broken in favor of others. This choice is left up to

the user to decide what is best with ample room for

experimentation and creativity.

7 Conclusion
This work deals with basic key principles for

creating good system and software models.

However it is far off from finding a solution to this

problematic area. Requirements engineering and

software engineering have several problems that

have withstood the test of time and seem to remain

unsolvable. The more complex and fragmented

systems become, the greater is the significance and

importance of sound modeling principles. As

already indicated here, there is no one size fits all

solution readily available and this important topic

definitely requires more work in many different

directions. Formal methods and formal notations

could be combined with the visual diagrams for

creating more robust models. The solutions and

ideas presented can be easily integrated in other

works and practices to improve the design of visual

models.

References:
[1] H. Kaindl And J.M. Carroll, Symbolic Modeling in

Practice, Communications of the ACM, vol. 42, No

1, 1999, pp. 28-37.

[2] A. Knopfel, B. Grone, P. Tabeling, Fundamental

Modeling Concepts, Uk: Wiley, 2006.

[3] K. van Hee, Information Systems: A Formal

Approach, Cambridge Univ. Press, 2009.

[4] C.B. Jones, Systematic Software Development using

VDM, Pretence Hall, 1990.

[5] G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis,

Graph Drawing Algorithms for the Visualization of

Graphs, New Jersey: Pretence Hall, 1999.

[6] OMG, UML Super Structure Specification

Documentation,

2018,https://www.omg.org/spec/UML/2.4.1/About-

UML/

[7] OMG, Model Driven Architecture, 2018,

http://www.omg.org/mda/

[8] A. Spiteri Staines, Some Fundamental Properties of

Petri Nets, International Journal of Electronics

Communication and Computer Engineering,

IJECCE, vol.4, Issue 3, 2013, pp. 1103-1109.

Anthony Spiteri Staines
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 118 Volume 3, 2018

https://www.omg.org/spec/UML/2.4.1/About-UML/
https://www.omg.org/spec/UML/2.4.1/About-UML/
http://www.omg.org/mda/

[9] T. Spiteri Staines, A Rational Perspective on

Software Modeling, Software Engineering and

Applications, 9th ICSOFT- EA, 2014, pp. 345-350.

[10] A. Spiteri Staines, A Triple Graph Grammer (TGG)

Approach for Mapping UML 2 Activities into Petri

Nets, 9th SEPADS conf., WSEAS ,Cambridge UK,

2010, pp. 90-95.

[11] A. Spiteri Staines, Rewriting Petri Nets as Directed

Graphs, Int. Journal of Computers, NAUN, issue 2,

vol. 5, 2011,pp. 289-297.

[12] J. Osis, and E. Asnina, Topological Modeling for

Model-Driven Domain Analysis and Software

Development: Functions and Architectures, Model-

Driven Domain Analysis and Software Development:

Architectures and Functions, 2010, pp. 15-39.

[13] T.D. Kelly, Symbolic and Sub-Symbolic

Representations in Computational Models of Human

Cognition, Theory& Psychology, Sage Publications:

Vol. 13, No. 6, 2003, pp. 847-860.

[14] D. Hofstadter, Fluid Concepts and Creative

Analogies: Computer Models of the Fundamental

Mechanisms of Thought, Great Britain: Penguin

Books: 1995.

[15] www.fmc-modeling.org, Standardize Technical

Architectural Modeling Conceptual and Design

Level, SAP, http://www.fmc-

modeling.org/download/fmc-and-tam/SAP-

TAM_Standard.pdf

[16] S. Fleurke, Forecasting Automobile Sales using an

Ensemble of Methods, WSEAS Transactions on

Systems, WSEAS, Vol. 16, 2017, pp. 337- 345.

[17] Agostino Poggi, Developing Scalable Applications

with Actors, WSEAS Transactions on Computers,

WSEAS, Vol. 13, 2014, pp. 660-669.

[18] L. Pace, P. Maggiore, Model-Supported Verification

of Space Systems, WSEAS Transactions on Systems,

WSEAS, Vol. 16, 2017, pp. 64-68.

[19] V. Kasyanov, T. Zolotuhin, A System for Structural

Information Visualization Based on Attributed

Hierarchical Graphs, WSEAS Transactions on

Computers, WSEAS, Vol. 16, 2017, pp. 193-201.

[20] SAP, How to communicate Architecture – Technical

Architecture Modeling at SAP, 2015,

https://blogs.sap.com/2015/02/11/how-to-

communicate-architecture-technical-architecture-

modeling-at-sap-part-4/

[21] A. Spiteri Staines, Matrix Representations for

Ordinary Restricted Place Transition Nets, WSEAS

Transactions on Computers, WSEAS, Vol 16, 2017,

pp. 23-9-29.

Anthony Spiteri Staines
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 119 Volume 3, 2018

http://www.fmc-modeling.org/download/fmc-and-tam/SAP-TAM_Standard.pdf
http://www.fmc-modeling.org/download/fmc-and-tam/SAP-TAM_Standard.pdf
http://www.fmc-modeling.org/download/fmc-and-tam/SAP-TAM_Standard.pdf
https://blogs.sap.com/2015/02/11/how-to-communicate-architecture-technical-architecture-modeling-at-sap-part-4/
https://blogs.sap.com/2015/02/11/how-to-communicate-architecture-technical-architecture-modeling-at-sap-part-4/
https://blogs.sap.com/2015/02/11/how-to-communicate-architecture-technical-architecture-modeling-at-sap-part-4/

