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Abstract: Wireless sensor networks have numerous practical uses which make them interesting and active research
topic. Beside the information collected by wireless sensor networks, usually location of the sensor is necessary
in order to have complete and useful information. Since it is rather expensive to put GPS receivers in all sensors,
different localization techniques were developed. Usually a small number of nodes are equipped by GPS receiver
while the location of the rest nodes is determined based on the received signal strength. Finding the positions
of sensors is a hard optimization problem and in this paper we propose recent swarm intelligence optimization
algorithm - water cycle algorithm. The proposed method was compared to other methods from literature and it was
proved to be better considering all quality indicators.
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1 Introduction
Wireless sensor networks (WSN) consist large num-
ber of sensor nodes deployed in the area of inter-
est. All sensors work together in order to achieve
the common objective. Sensor nodes are low-cost and
low-power, samll in size and have limited resources,
communication capability and storage [1]. Each sen-
sor node in the wireless sensor networks collects data
such as sensing vibration, temperature, motion or de-
tect different pressure in the monitoring area. WSN
have found purpose in numerous applications [2], [3],
[4], [5].

When location of the sensor nodes are unknown,
information collected from them is usually unmean-
ing and useless. In order to determine sensor nodes
positions, numerous localization techniques were pro-
posed. The easies and well-known technologies for
localization is the global positioning system (GPS).
By putting GPS receivers in each sensor node, loca-
tions can be determined, but it is too expensive. Better
solution is to post the GPS only on limited number of
nodes named anchor nodes. Anchor nodes locations
are known while the sensor nodes locations have to be
determined. Sensor node estimate the distance from
all anchor nodes location by using ranging techniques,

and then compute its location.
Numerous studies deal with the problem of local-

ization of nodes in the WSN. Finding the positions
based on the all estimated positions from the inaccu-
rate distance information represents hard optimization
problem. For solving these problems stochastic pop-
ulation based metaheuristics have been used success-
fully. Some of the well known and widely used metha-
heuristics are swarm intelligence algorithms. For ex-
ample, bat algorithm [6] was applied to support vec-
tor machine optimization [7], handwritten digit recog-
nition [8], RFID network planning [9], fireworks al-
gorithm [10] was used for image processing prob-
lems [11], [12], [13], optimizing machine learning
algorithms [14], brain storm optimization algorithm
[15] was applied to path planning problem [16], drone
placement [17], elephant herding optimization [18]
was used for solving coverage problem [19], [20],
support vectore machine parameter tuning [21], [22],
multilevel image thresholding [23], etc.

Swarm intelligence algorithms were also applied
to numerous wireless sensor network problems such
as node localization [24], [25], [26], [27] and coverage
problem [28], [29].

In this paper we propose recent water cycle algo-
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rithm [30] for solving localization problem in WSN.
The rest of the paper is organized as follows. Math-
ematical model used for node localization was de-
scribed in Section 2. Water cycle algorithm applied to
sensors localization was presented in Section 3. Ex-
perimental results and the conclusion were given in
Section4 and Section 5, respectively.

2 Mathematical Model for Localiza-
tion of Unknown Nodes in WSN

Mathematical model used in this paper was presented
in [31]. The sensor network is represented in three-
dimensional coordinate system while sensor nodes are
coordinate points. Nodes in the WSN are fixed and
the position of the anchor nodes is known. The un-
known node based on the received signal strength in-
dex (RSSI) between them and anchor nodes, deter-
mines its position.

If the sensor node is in the range of anchor node
as well as the anchor node is in the range of radio sig-
nals transmitted by the sensor node, localization will
be possible. The sensor with unknown position will
measures the power of the received radio signal com-
ing from at least three anchor nodes and that power
will be used for estimating the distance between cor-
responding nodes.

The aim of this paper is to estimate coordinates
of the unknown nodes as close as possible to their real
locations. In order to define the problem, the follow-
ing notation will be used. N is the number of sen-
sor nodes posted in the three-dimensional space while
M is the number of anchor nodes equipped with GPS
tags. For two nodes i and j the distance obtained by
RSSI ranging techniques is di,j . Received radio signal
is converted in dBm and it is calculated by the follow-
ing equation:

Pr (d) =
PtGtGrλ

2

4 π2d2L
(1)

where Pr is the received power of wireless signal, Pt

is the transmitted power of wireless signal from the
anchor node, Gt is the antenna gain of the anchor,
Gr is the antenna gain of the sensor node, L is the
system loss, λ is the system wavelength and d is the
distance between the sending and receiving nodes. In
most cases Gt, Gr and L are equal to 1 [32], [33].

The distance can be determined by the following
equation:

d =

√
PtGtGrλ2

4 π2PrL
(2)

This distance (Eq. (2)) represents the estimated
distance which means that it has some measuring er-
ror. The real distance between the two nodes i and j
can be obtained by:

rij =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (3)

Localization problem in WSN can be considered
as an optimization problem where the goal is to min-
imize the difference between estimated and the real
distances. If (x, y, z) is the real location of an un-
known node Ti, (xj , yj , zj) the coordinate of Aj an-
chor node, and dij is the measured distance between
Ti and Aj where i = 1, 2, . . ., N and j = 1, 2, . . .,M ,
then an optimization problem whose purpose is to find
the optimal solution for (x, y, z) is defined by the fol-
lowing equation:

f (x, y, z) =

N∑
i=1

M∑
j=1

|rij − dij |. (4)

or

f (x, y, z) =

N∑
i=1

M∑
j=1

(
r2ij − d2ij

)2
. (5)

The goal is to minimize the fitness function. In the
next section we describe the recent water cycle algo-
rithm used for minimizing the fitness function defined
in Eq. 5.

3 Water Cycle Algorithm for Node
Localization

Water cycle algorithm (WCA) is swarm intelligence
optimization algorithm proposed by Eskandar et al. in
2012 [30]. Originally, it was tested on constrained
engineering problems while after in [34], WCA was
applied to both, unconstrained and constrained op-
timization problems. In [35], modified WSA algo-
rithm was proposed for solving multi-objective opti-
mization problems and in [36] it was also adjusted for
constrained multi-objective problems. It was applied
to numerous problems such as controlling reservoir
systems[38], weight optimization of truss structures
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[39], interactive operation management of a micro-
grid [40], etc. Bare bones WCA was proposed for op-
timal reactive power dispatch in electrical power sys-
tems in [41].

Water cycle algorithm is based on the natural phe-
nomena of the water cycling. The complexity of this
phenomena was reduced and summarized into several
steps that represent steps and operations of the swarm
intelligence algorithm. Detail description of the phe-
nomena can be found in [30]. In general, it can be
described as follows. Streams flow to the rivers while
the rivers flow downhill toward the seas and the water
from the all three, sea, rivers and streams, evaporated
after which clouds are generated. Clouds carry the
water until releases it in the form of rain.

Definition of the water cycle algorithm is as fol-
lows. The initial population of size N are raindrops
and they represent random solutions in the search
space with lower limit LB and upper limit UB:

x = LB + (UB − LB)rand (6)

where rand is an uniformly distributed random value
in range [0, 1]. The first algorithm’s parameter is Nsr

and it represents the number of rivers along with the
one sea. The best solution is saved as a sea, denoted
by Xsea. The next Nsr − 1 best solutions are rivers
and all other solutions (Nraindrops = N − Nsr) are
the raindrops that flow toward the rivers and sea. Each
of the Nsr best solutions have some number of worse
solutions that moves toward them (that are the rain-
drops that form stream and flow to the specific rivers
and sea). The number of solutions that will flow to-
ward the better solutions is determined by the follow-
ing equation:

NSn = round
{ ∣∣∣∣∣ Costn∑Nsr

i=1 Costi

∣∣∣∣∣Nraindrops

}
, (7)

where NSn is the number of solutions that will move
toward the solution Xn where n = 1, 2, . . . , Nsr, and
Costi is the value of fitness function for the solution
Xi.

The new solutions are generated in each genera-
tion as follows:

Xi+1
stram = Xi

stream+C(Xi
river−Xi

stream)rand (8)

Xi+1
river = Xi

river + C(Xi
sea −Xi

river)rand (9)

where rand is random number in range [0, 1] drawn
from uniform distribution. Parameter 1 ≤ C ≤ 2 is
algorithm’s parameter that enables movement in dif-
ferent directions toward the corresponding solutions.

By applying described operations, exploitation
was implemented. On the other hand, exploration was
introduced as evaporation process. In WCA, it was
implemented in the following way. If there is a solu-
tion closer to the best one more than threshold value
dmax then that solution is replaced by the random ob-
tained by Eq. 6.

WCA parameter dmax is used to control the ex-
ploration. If it has larger value, then the solutions will
be replaced approaching close to the best one. In prac-
tice it means that the space around the best solution
will not be extensively explored. This is not a desir-
able behavior in the final stages of the optimization
algorithm but it is highly necessary at the beginning
so the algorithm would not be trapped in local optima.
Based on these parameter dmax should be larger at
the beginning and reduced in later stages of the WCA.
It was accomplished by controlling parameter by the
current iteration number [30]:

di+1
max = dimax −

dimax

maxIter
, (10)

wheremaxIter represents the maximal number of al-
gorithm’s iterations.

In this paper, WCA was used for finding the op-
timal solution based on the fitness function defined in
Eq. 5.

4 Simulation Results
The proposed WCA method was implemented in Mat-
lab 2016b. All experiments were conducted at the
computer with Intel R© CoreTM i7-3770K CPU at
4GHz, 8GB RAM, Windows 10 Professional OS.

Experiments were organized same as in [42] since
the results obtained by our proposed method were
compared with the particle swarm optimization algo-
rithm described in that paper [42]. The sensing range
of anchor nodes was 87 m, while the range of sensor
nodes was 30 m. Wireless sensor network contains
20 sensor nodes randomly deployed in the monitoring
area of 50m×50m×50m, and for 4 anchor nodes (not
coplanar). The locations of the anchors were set as
follows: A1 (50,0,0), A2 (0,50,50), A3 (50,50,50) and
A4 (0,0,50).

Parameters of the WCA were set in the following
way. Population size was N =100, while Nsr, the
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Table 1: Localization error comparisons under different ranging errors
Rang WCA TLP

err. % Avg Min Max Avg Min Max
0 0.000 0.000 0.000 0.212 0.011 0.463
5 1.454 0.998 1.942 4.980 1.290 9.670

10 2.871 2.402 3.338 9.660 3.980 17.259
20 5.575 4.413 6.965 19.670 6.120 26.592
30 8.196 6.207 9.567 27.921 14.780 39.257
40 10.658 7.702 11.893 30.343 15.458 41.364
50 12.601 10.522 17.628 32.691 17.665 41.292

number of rivers plus the sea, was set to 16. Initially,
parameter dmax was set to 0.1 while the parameter C
was 2. The total localization error was calculated as:

e =

∑N
i=1

√
(xi − xi0)2 + (yi − yi0)2 + (zi − zi0)2

N
(11)

where (xi, yi, zi) is the location of the unknown sen-
sor node, (xi0, yi0, zi0) is the result of localization al-
gorithm for one node, N is the number of all unknown
sensor nodes.

The results of our proposed method and the
method described in [42] (TLP) are presented in Ta-
ble 1. Simulations were performed with the different
errors ranges same as in [42]. As it can be seen, the er-
ror of estimated nodes locations is the smallest when
the proposed WCA was used. In Table 1 avarage,
minimum and maximum errors in 30 runs for rang-
ing errors from 0% to 50% are reported. The pro-
posed WCA obtained smaller localization error for all
indicators and all simulations which leads to the con-
clusion that WCA is a superior method for the WSN
localization problem.

5 Conclusion
In this paper we proposed the recent swarm intel-
ligence water cycle algorithm for the localization
problem in wireless sensor networks. The proposed
method was compared to the particle swarm optimiza-
tion method presented in literature. For all simula-
tions, the WCA obtained better results, i.e. smaller
localization error which allows to conclude that the
proposed method is superior compared to the meth-
ods from literature. In future work, WCA algorithm
can be tested for other WSN problems such as cover-
ing and deployment problems.
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