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Abstract: This paper presents implementation of the moth search algorithm adjusted for solving static drone loca-
tion problem. The optimal location of drones is one of the most important issues in this domain, and it belongs to
the group of NP-hard optimization. The objective of the model applied in this paper is to establish monitoring all
targets with the least possible number of drones. For testing purposes, we used problem instance with 30 uniformly
distributed targets in the network domain. According to the results of simulations, where moth search algorithm
established full coverage of targets, this approach shows potential in dealing with this kind of problem.
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1 Introduction

The applications of flexible flying drones have in-
creased with the emerging of low energy consump-
tion machines, processing devices with high perfor-
mance and availability of light materials. Drones can
be used in a wide variety of applications, such as ve-
hicle tracking, the traffic management, fire detection,
military operations,etc. [1].

Drones are mostly used to monitor targets, which
are considered as points that can be static or mobile,
depending on the scenario. Similar to anchor nodes
targeting unknown nodes in wireless sensor network,
drones deployment must be placed in a way to cover
multiple targets, where each target must be covered by
at least one drone [2].

The optimal placement of drones is one of the
most important challenges in this domain and belong
to the group of NP-hard problems [3]. For solving
NP-hard problems, metaheuristics can obtain satisfy-
ing results, while standard, deterministic methods can
not be applied. One of the most promising group of
metaheuristics approaches is swarm intelligence.

Swarm intelligence simulate group of organisms
from the nature, such as flock of birds and fish, herd
of elephants, groups of bats and cuckoos, etc. Artifi-
cial bee colony (ABC) models the behavior of honey

bee swarm [4], and proved to be robust optimization
technique [5], [6].

Firefly algorithm (FA) emulates lighting behavior
of fireflies [7], and has been implemented for a wide
variety of problems [8], [9], [10]. Cuckoo search (CS)
metaheuristics [11] is based on similar principles as
FA and has also been applied to different real-world
tasks [12], [13]. Firework algorithm (FWA) was in-
spired by the process of fireworks’ explosion [14], and
became on of the most popular algorithm with many
versions [15], [16], [17], [18], [19]. Bat algorithm
(BA) simulates group of bats and their characteristics
of echolocation [20], and shows outstanding perfor-
mance [21], [22], [23]. Brain storm optimization algo-
rithm is based on the human idea generation process
and it was applied to real world problem[24], [25],
[26].

In this paper, we propose moth search (MS) algo-
rithm adopted for solving static drone location prob-
lem. MS algorithm was proposed in 2016 by Wang
for global optimization problems [27].

The structure of this paper is as follows: after
Introduction, in Section 2, we show mathematical
formulation of static drone placement problem, MS
metaheuristics is presented in Section 3, Section 4
show empirical results, while Section 5 concludes this
paper.
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2 Formulation of static drone loca-
tion problem

This section presents mathematical formulation of the
static drone location problem (SDLP). In our imple-
mentation, we used similar problem formulation as in
[28].

Rectangular two-dimensional terrain with length
xmax and width ymax represents the flying region of
the drone u. The radius r and 2D coordinates (x, y)
determine the position of each drone u in the monitor-
ing domain. Set of available drones can be denoted as
U , while T can be used to indicate the set of targets to
be monitored by the available drones.

With the assumption that the drone u with radius
ru is located in the terrain at coordinates (xu, yu), and
that there is a target ti with coordinates (Yti , Yti) , the
distance Dxu,yu

ti
between u and ti can be calculated

as:

Dxu,yu
ti

=
√

(Xti − xu)2 + (Yti − yu)2 (1)

Moreover, Each drone u with radius ru is char-
acterized with the visibility θ, that exemplifies a disk
in the plane. In mathematical formulation of drone
coverage of targets, two main issues should be con-
sidered. In order to monitor the targets, coordinates
(xu, yu) of each drone u ∈ U with radius ru should
be determined. With known location (xu, yu) of the
drone u ∈ U with radius ru, we need to determine
which target ti ∈ T is monitored by the drone u ∈ U .

The mathematical formulation of two above men-
tioned issues can be represented as decision variables
[28]:

δuxy =

{
1, if the drone u is located at (x, y)
0, otherwise

(2)

and

γuti =

{
1, if the target ti is observed by the drone u
0, otherwise

(3)
The objective function of the mathematical model

employed in this paper is to monitor all targets with
the least possible number of drones. This model can
be expressed as follows [28]:

min f(δ) =
∑
(x,y)

∑
u∈U

δuxy (4)

s.t.

∑
x,y

δuxy ≤ 1 ∀u ∈ U (5)

γuti ≤
∑
(x,y)

δuxy

(
ru

Duxy
ti

)
∀u ∈ U, ti ∈ T (6)

∑
u∈U

γuti ≥ 1 ∀ti ∈ T (7)

δuxy ∈ {0, 1}, ∀(x, y), 1 ≤ x ≤ xmax (8)

1 ≤ y ≤ ymax, u ∈ U (9)

γuti ∈ {0, 1}, ∀ti ∈ T, u ∈ U (10)

The objective function showed in Eq.(4) deals
with the minimization of the number of employed
drones. Assurance that the drone u is positioned in
at most one location is provided by using constraint
showed in Eq. (5). Condition showed in Eq. (6) is
used to set the value of decision variable γuti . The vari-
able γuti takes the value of 0, if the radius of drone u is
lesser than the distance between the target ti and the
drone u, and vice-versa. Condition that the each target
ti is being monitored by at least one drone is specified
in Eq. (7), while constraints (8) - (10) determine the
domain of the variables.

3 Moth search algorithm

MS algorithm was inspired by the the phototaxis and
Lévy flights of the moths. This relatively new algo-
rithm was developed in 2016 by Wang [27]. MS al-
gorithm belongs to the group of swarm intelligence
metaheuristics, and was primarily implemented for
global optimization problems [27].

In order to demonstrate the performance of MS
algorithm, its very first implementation was compared
with five state-of-the-art metaheuristics through an
array of experiments on fourteen basic benchmarks,
eleven IEEE CEC 2005 complicated benchmarks and
seven IEEE CEC 2011 real world problems [27]. The
results of comparative analysis have shown great po-
tential of the MS algorithm for tackling global opti-
mization tasks [27].

Moths have two distinguishing characteristics
that differentiate them from other similar species.
First characteristic of moths, phototaxis, represents a
phenomena, where moths tend to fly around the light
source [29]. The other characteristic of the moths,

Ivana Strumberger et al.
International Journal of Computers 

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 76 Volume 3, 2018



Lévy flights, as one of the most important flight pat-
terns in natural surroundings, was considered for MS
algorithm [27].

Lévy flights define the type of random walk
which step length is drawn from Lévy distribution.
The Lévy distribution which can be modeled in the
form of a power-law formula [27]:

L(s) ∼ |s|−β, (11)

where β ∈ [0, 3] denotes an index.
According to the analysis of moths fly patterns

[30], moths use Lévy flights movements with β ≈ 1.5.
For that reason, in our experiments, we set the value
of parameter β to 1.5.

Some other swarm intelligence approaches also
use Lévy flights search, like cuckoo search (CS) [11],
FA [7] and krill herd (KH) [31] metaheuristics.

Two above mentioned characteristics of moths
(phototaxis and Lévy flights) were used to model two
stepping stones of every swarm intelligence meta-
heuristics - intensification and diversification.

The moths that are closer to the light source (best
moth in the population) tend to fly around the best
moth in the form of Lévy flights. This type of be-
havior is presented in the following equation [27]:

xt+1
i = xti + αL(s), (12)

where xt+1
i is the updated position of moth i and xti

is the original position of moth i in current genera-
tion t, respectively. Step drawn from Lévy distribution
is denoted as L(s), and the parameter α is scale fac-
tor whose value depends on the optimization problem.
In the original MS’s implementation, α was given as
[27]:

α = Smax/t
2, (13)

where Smax is the maximum walk step whose value
also depends on the problem in hand.

Lévy distribution given in Eq. (12) can be calcu-
lated as [27]:

L(s) =
(β − 1)Γ(β − 1) sin(π(β−1)2 )

πsβ
, (14)

where Γ is the gamma function and s is greater than 0
[27].

Moths that are far from the light source (best moth
in the population) will fly towards the light source
with trajectory of a line.This type of fly can be math-
ematically expressed as [27]:

xt+1
i = λ× (xti + φ× (xtbest − xti)), (15)

where xtbest denotes best moth in generation t and φ
and λ are acceleration and scale factors, respectively.

The moth can fly in direction of the final position
that is beyond the best moth in the population (light
source). This flight pattern is described as [27]:

xt+1
i = λ× (xti +

1

φ
× (xtbest − xti)) (16)

In the original research [27], the entire moth pop-
ulation is separated into two equivalent subpopula-
tions based on their fitness. In subpopulation 1 (moths
with greater fitness), positions of individuals are be-
ing updated using Lévy flights (Eq. (12)), where moth
positions in the subpopulation 2 (moths with lower fit-
ness) are being updated by using Eq. (15) or Eq. (16)
with possibility of 50% [27].

4 Experimental results
In this section, we briefly show network topology used
in experiments, parameters’ setup, and results of em-
pirical tests.

In the empirical tests, we used static drone loca-
tion problem instance with 30 uniformly distributed
targets. Scenario with randomly distributed targets is
harder to solve than scenario with clustered targets.
Working domain of the network was set to 100 m by
100 m. For all drones in the population, radius r was
set to 15 m, similar like in [28].

The number of moths in the population N was
set to 40, and the maximum number of generations
MaxGen was set to 2,000 yielding total of 80,000
objective function evaluations. The rest of parame-
ters were adjusted as: the number of moths kept in
each generation to 2, index β = 1.5, max walk step
Smax = 1.0, and acceleration factor φ = (51/2 −
1)/2 ∼= 0.618.

For testing purposes, we developed software
framework using Visual Studio 2017 with .NET
Framework 4.7. Algorithm was tested in 30 inde-
pendent runs on Intel CoreTM i7-4770HQ processor
@2.4GHz with 32GB of RAM memory.

For experimental purposes, in order to analyze
how MS algorithm behaves, we conducted experi-
ments with different number of drones (starting with
only one drone). In the employed scenario, minimum
number of 9 drones is necessary to cover all targets.

Experimental results for 30 uniformly distributed
targets are shown in Table 1. In the presented table,
we show results for different number of drones for
absolute and targets coverage in percentiles, and for
execution time of the MS algorithm. As performance
indicators, we used best and mean results obtained in
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Figure 1: Examples with one drone (left), and four
drones (right) in clustered target set

30 independent runs of the algorithm. In Table 1, T.C.,
T.C.% and E.T. are abbreviations for target coverage,
target coverage in percentiles and execution time, re-
spectively.

Table 1: Experimental results
Drone No. Indicator T.C. T.C % E.T.

1
Best 6 20% 1.5
Mean 5 16.6% 3.2

2
Best 11 36.6% 4.3
Mean 10 33.3% 5.1

3
Best 15 50% 6.6
Mean 13 76.6% 7.0

4
Best 18 60% 7.6
Mean 16 53.3% 8.3

5
Best 21 70% 10.0
Mean 20 66.6% 11.1

6
Best 24 80% 14.2
Mean 22 73.3% 15.2

7
Best 26 86% 17.3
Mean 23 76.6% 18.1

8
Best 28 93% 21.9
Mean 27 90% 24.3

9
Best 30 100% 29.4
Mean 29 96.6% 31.6

From the results presented in the Table 1, we con-
clude that the MS algorithm generates optimal values,
and establishes full coverage of targets with 9 drones.
Results with 9 drones are visualized in Figure 1.

5 Conclusion
In this paper we showed moth search (MS) algo-
rithm adjusted for solving static drone location prob-
lem (SDLP). MS is novel swarm intelligence meta-
heuristics proposed by Wang in 2016, and it was not
tested on this problem before.

The MS algorithm was tested on problem instance
with 30 uniformly distributed targets. In this case,
MS algorithm obtained coverage of all targets with 9
drones, which is optimum solution. As a conclusion,
we state that the MS algorithm shows good perfor-
mance when tackling NP-hard problems such is static
drone location problem.
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