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Abstract: This paper introduces hybridized monarch butterfly optimization algorithm for solving global optimiza-
tion problems. Despite of the fact that the monarch butterfly optimization algorithm is relatively new approach,
it has already showed great potential when tackling NP-hard optimization tasks. However, by analyzing original
monarch butterfly algorithm, we noticed some deficiencies in the butterfly adjusting operator that in early itera-
tions exceedingly directs the search process towards the current best solution. To overcome this deficiency, we
incorporated firefly’s algorithm search mechanism into the original monarch optimization approach. We tested
our algorithm on six standard global optimization benchamarks, and performed comparative analysis with original
monarch butterfly optimization, as well as with other five state-of-the-art metaheuristics. Experimental results are
promising.
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1 Introduction

Since almost every practical task can be modeled as
an optimization problem, in the last few decades, nu-
merical optimization is in the main focus of many re-
searcher around the world. Also, many techniques,
methods and algorithms were develop for tackling nu-
merical problems.

In general, numerical optimization problems can
be divided into two main categories. Continuous
(global) tasks represent first class of numerical prob-
lems, and in this case variables take real values val-
ues. Contrarily, problems which variables can take
only discrete (integer) values are known in the litera-
ture as combinatorial tasks.

Continuous (global) problems, when taking into
account possible constraints, can further be divided
into unconstrained and constrained. Unconstrained
(or bound constrained) optimization can be defined as
D-dimensional minimization or maximization prob-
lem which can be expressed as:

min(max) f(x), x = (x1, x2, x3, ..., xD) ∈ S, (1)

where x is denotes real vector with D ≥ 1 com-
ponents and S ∈ RD is an D-dimensional hyper-
rectangular search space constrained by lower and up-
per bounds:

lbi ≤ xi ≤ ubi, i ∈ [1, D] (2)

In Eq. (2), lbi and ubi represent lower and upper
bounds of i-th vector component, respectively.

Many numerical optimization problems belong to
the group of NP-hard (nondeterministic polynomial
time) optimization. A problem is NP-hard if an al-
gorithm for its solving can be translated into one for
solving any NP-problem. Thus, NP-hard denotes ”at
least as hard as any NP-problem”, while in fact it
might be harder. Some of the well-known combina-
torial NP-hard problems are subset sum problem and
traveling salesman problem (TSP).

NP-hard problems can not be solved in a satisfy-
ing amount of computational time by employing stan-
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dard, deterministic algorithms (algorithms that for the
same input always generate the same output). For
tackling NP-hard problems, many metaheuristics ap-
proaches were developed. Metaheuristics algorithms
can find suboptimal (satisfying) solutions in an ac-
ceptable time period, but can not guarantee that the
optimum solution will be found.

1.1 Swarm intelligence

Many metaheuristics can be found in the literature,
and one of the most promising group of metaheuris-
tics is swarm intelligence. Swarm intelligence is
branch of artificial intelligence, that simulate the
group of organisms from the nature, relying on four
self-organization principles: positive feedback, nega-
tive feedback, multiple interactions and fluctuations
[1]. Swarm intelligence are population-based, iter-
ative and stochastic optimization methods. During
last few decades, many swarm intelligence algorithms
were developed mimicking flock of birds and fish,
groups of cuckoo birds, bats and moths, colonies of
bees and ant, herds of elephants, etc.

Well-known representative of swarm intelligence
is artificial bee colony (ABC) that simulates the be-
havior of hives of honey bee swarms [2]. In the ABC
approach, three types of bees conduct the search pro-
cess: employees, onlookers and scouts. It was applied
to numerous real world problems such as RFID net-
work planning [3], [4], constrained optimization prob-
lems [5].

Firstly proposed by Yang in 2009 [6], the fire-
fly algorithm (FA) emulates lighting behavior of fire-
fly insects, when less brighter firefly moves to the
direction of firefly with greater brightness. The FA
showed outstanding performance on many benchmark
and real-world problems [7], [8], [9], [10]. Proposed
by the same author as the FA, cuckoo search (CS) al-
gorithm was inspired by the obligate brood parasitism
of some cuckoo species by laying their eggs in the
nests of other host birds [11]. This well-known ap-
proach has also many applications for different kinds
of problems [12], [13].

Herding behavior of elephants was the main
source of inspiration for devising elephant herding op-
timization (EHO) algorithm [14]. As relatively new
swarm intelligence metaheuristics, the EHO proved
to be robust optimization method for various bench-
mark and real-life problems. EHO was also applied
on support vector machine parameters tuning [15],
[16], multilevel image thresholding [17], path plan-
ning problem [18] and static drone placement [19].

Besides above mentioned, according to the liter-
ature survey, there are also many other swarm intel-
ligence algorithms that were successfully applied to

various tasks like general benchmark problems portfo-
lio optimization [20], [21], node localization in wire-
less sensor networks [22], image processing [23], path
planning [24], machine learning optimization [25],
RFID network planning [3], etc.

In this paper, we propose hybridized monarch
butterfly optimization (MBO) algorithm for global op-
timization problems. The MBO is novel swarm intel-
ligence metaheuristic, firstly proposed by Wang and
Deb in 2015 [26]. The MBO emulates the migration
behavior of monarch butterflies.

During empirical tests with the original MBO, we
noticed some deficiencies in the search process, and to
overcome these deficiencies, we hybridized original
MBO with the FA metaheuristics.

The rest of the paper has following structure: af-
ter Introduction, we present original and hybridized
MBO in Section 2 and 3, respectively, experimen-
tal results and comparative analysis with other ap-
proaches are given in Section 4, while Section 5 con-
cludes this paper.

2 Original monarch butterfly opti-
mization algorithm

Monarch butterflies inhabit areas in the territory of
North America and belong to the family of Nymphal-
idae. The butterflies are one of the most beautiful but-
terflies in the world and can be easily distinguished by
orange and black patterns.

During each year, monarch butterflies migrate
twice. First migration starts every year in August,
when monarch butterflies fly thousand of miles from
the USA and southern part of Canada to Mexico. Sec-
ond migration takes place in the spring, when butter-
flies migrates from Mexico to USA and Canada.

The MBO’s search process models two properties
of monarch butterflies: Lévy flights, and the process
of laying eggs by female butterflies for generating off-
spring [27]. Lévy flights are performed by some (not
all) butterflies during the migration period.

MBO was firstly proposed in 2015 by Wang and
Deb [26] for solving global optimization problems.
The very first implementation of MBO was tested on
thirty-eight global optimization benchmarks, where
MBO outperformed other state-of-the-art algorithms
and proved to be robust and efficient optimization
method.

In most cases, nature-inspired algorithms, that
model behavior and characteristics of natural systems,
employ simplifications by using idealized rules. The
MBO algorithm apply four rules that simplify migra-
tion behavior of monarch butterflies [26]. The search
process of the MBO metaheuristics is guided by two
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operators: migration operator and butterfly adjusting
operator.

For the purpose of migration operator’s imple-
mentation, the migration process of monarch butter-
flies from the nature is idealized as follows: the whole
population of monarch butterflies stay in Land 1 for 5
months (from April to August), and stay in Land 2 for
7 months (from September to March).

In order to be consistent with swarm intelligence
terminology, terms Land 1 and Land 2 are substituted
with subpopulation 1 and subpopulation 2, respec-
tively.

The number of monarch butterflies in subpopula-
tion 1 and subpopulation 2 are calculated by using Eq.
(3) and Eq. (4), respectively [26]:

ceil(p ·NP ) ·NP1 (3)

(NP −NP1) ·NP2, (4)

where function ceil(a) rounds argument a to the near-
est integer greater than or equal to a, NP denotes
the total size of the population (number of butter-
flies), NP1 and NP2 are number of monarch butter-
flies in subpopulation 1 and subpopulation 2, respec-
tively, and p represents the ratio of monarch butterflies
in the subpopulation 1.

The MBA’s migration can be mathematically ex-
pressed as [26]:

xt+1
i,k = xtr1,k, (5)

where xt+1
i,k is the k-th element (component) of the xi

individual at generation t + 1, and xtr1,k is the k-th
parameter of the individual xr1 at current generation
t. Parameter r1 represents individual that is randomly
selected from subpopulation 1.

When the expression r ≤ p is satisfied, the k-th
parameter of the newly created butterfly is calculated
by employing Eq. (5).

The ratio r can be calculated as [26]:

r = rand · peri, (6)

where peri denotes the migration period, and rand is
uniformly distributed pseudo-random number.

On contrarily, if the expression r ≥ p holds, the
parameter k of the newly generated monarch butterfly
is calculated as [26]:

xt+1
i,k = xtr2,k, (7)

where xtr2,k represents the k-the parameter of the ran-
domly chosen butterfly r1 from subpopulation 2 in the
current generation t.

The second mechanism that guides monarch but-
terfly’s search process is butterfly adjusting operator.
This operator operates as follows: for all parameters
in individual (butterfly) j, if the pseudo-random num-
ber rand is smaller than or equal to p, the new solu-
tion is generated using the following equation [26]:

xt+1
j,k = xtbest,k, (8)

where xt+1
j,k is the k-th parameter of the new solution

j, and xtbest,k is the k-th parameter of current best so-
lution in the whole population.

In the second case, if the uniformly distributed
number rand is greater than p, the new solution is by
using the following expression [26]:

xt+1
j,k = xtr3,k, (9)

where xtr3,k denotes the k-th parameter of randomly
selected solution r3 from Subpopulation 2, and r3 ∈
{0, 1, 2, ..., NP2}.

Finally, if the condition rand ≥ BAR holds, the
k-th parameter of the child solution is created as [26]:

xt+1
j,k = xtj,k + α× (dxk − 0.5), (10)

where BAR represents butterfly adjusting rate, and
dx is the walk step of the monarch butterfly j that can
be calculated using Lévy flights [26].

3 Hybridized monarch butterfly op-
timization algorithm

By conducting empirical tests, and performing theo-
retical analysis of MBO’s behavior, we noticed defi-
ciency in the search process conducted by butterfly ad-
justing operator. In early stages of algorithm’s execu-
tion, the search process that is exceedingly directed to-
wards the current best solution in the population (Eq.
8), in some of the algorithm’s run generate poor re-
sults.

In this case, when algorithm by accident, in early
iterations, hits the right part of the search space, this
search process around the current best yields good
performance. Unfortunately, in most algorithm’s runs,
the MBO does not hit the right part of the search space
in early iterations, which leads to the worse mean val-
ues with high dispersion.

To tackle with this deficiency, in early iterations
of algorithm’s execution, we incorporated FA’s search
equation in the original MBO, that replaces search
process conducted by using Eq. (8). In this way, we
modified butterfly adjusting operator.

In the FA metaheuristics, the movement of a fire-
fly i (process of exploration and exploitation) towards
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the brighter, and thus more attractive firefly j, for each
solution’s parameter, is determined by [28]:

xt+1
i = xti+β0r

−γr2i,j (xtj−xti)+α(rand−0.5), (11)

where t + 1 is the next iterations, t is the current it-
eration, β0 is attractiveness at r = 0, α is random-
ization parameter, rand is random number uniformly
distributed between 0 and 1, and ri,j is distance be-
tween fireflies i and j.

By incorporating FA’s search equation (Eq. (11))
into the MBO, we developed hybridized approach
named MBO firefly search (MBO-FS). Pseudo-code
of the MBO-FS metaheuristics is shown in Algorithm
1

Algorithm 1 Pseudo-code of the MBO-FS algorithm
Initialization. Set the iterations counter t = 1; gen-
erate the population P of NP monarch butterfly indi-
viduals randomly; set the maximum generation number
MaxGen, monarch butterfly number in land 1 NP1 and
in land 2 NP2, max step length Smax, butterfly adjust-
ing rate BAR, migration period peri and the migration
ratio p.
Fitness evaluation. Evaluate each monarch butterfly
against the objective function and calculate fitness.
while t < MaxGen do

Sort all individuals in the population according to its
fitness.
Divide the whole population into subpopulation 1 and
subpopulation 2.
for i = 1 to NP1 (all butterflies in the subpopulation
1) do

Generate new individuals in subpopulation 1 by us-
ing butterfly migration operator

end for
for j = 1 to NP2 (all butterflies in the subpopulation
2) do

if t < MaxGen · 0.5 then
Generate new individuals in subpopulation 2 by
using modified butterfly adjusting operator

else
Generate new individuals in subpopulation 2 by
using butterfly adjusting operator

end if
end for
Merge newly generated subpopulation 1 and subpop-
ulation 2 into one whole population.
Evaluate the population according to the newly up-
dated positions.
Increase the iteration counter t by one.

end while
return Best individual in the whole population

4 Experimental results and compar-
ative analysis

MBO-FS parameters were set as follows: Smax =
1.0, butterfly adjusting rate (BAR) is set to 5/12, mi-
gration period (peri) is adjusted to 1.2, and the mi-
gration ratio r is set to 5/12. Maximum number of
generations (iterations) in one algorithm’s execution
(MaxGen) is set to 200. Population size parameters
were set as: total population number NP=50, sub-
population 1 NP1=21 and subpopulation 2 NP2=29.
With 200 generations and 50 individuals, total number
of function evaluations is 10.000.

We conducted experiments on six standard un-
constrained benchmark functions: Ackley (f0),
Dixon&Price (f1), Fletcher − Powell (f2),
Griewank (f3), Perm (f4) and Step (f5). Compar-
ative analysis was performed with the original MBO
algorithm, as well as with ABC, biogeography-based
optimization (BBO) differential evolution (DE), parti-
cle swarm optimization (PSO) and stud genetic algo-
rithms (SGA).

The algorithm was executed in 30 independent
runs, and we measured best, mean and worst results’
values. Comparative analysis of best, mean and worst
obtained results are given in Tables 1, 2 and 3, respec-
tively.

Table 1: Comparison of best values
F. ABC BBO DE PSO SGA MBO MBO-FS

f0 13.35 2.51 16.48 17.05 2.51 2.1E-8 0.3E-8
f1 14.0E6 4.6E3 1.2E6 4.1E6 2.1E3 0.67 0.89
f2 1.2E5 3.7E4 1.7E5 3.3E5 3.9E4 3.4E4 6.13E3
f3 30.93 1.79 10.96 34.86 1.37 1.00 1.19
f4 1.4E45 6.0E51 3.7E37 3.7E43 6.0E51 3.0E32 9.6E31
f5 16.00 1.00 6.00 20.00 1.00 1.00 1.00

Table 2: Comparison of mean values
F. ABC BBO DE PSO SGA MBO MBO-FS

f0 16.45 3.77 18.26 18.44 4.33 2.4E6 3.1E-7
f1 4.6E7 7.7E4 3.8E6 1.4E7 1.1E4 0.67 0.63
f2 2.7E5 7.0E4 2.5E5 5.0E5 8.3E4 1.6E5 9.3E4
f3 85.88 3.33 21.42 73.02 2.19 1.00 1.15
f4 1.2E51 6.1E51 4.5E45 4.5E47 6.0E51 2.5E37 2.5E35
f5 35.68 1.16 9.26 27.50 1.44 1.00 1.00

According to presented empirical resuts, our hy-
bridized MBO-FS in average outperforms all other ap-
proaches including the original MBO. Only in some
cases, for example worst and best results for f1
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Table 3: Comparison of worst values
F. ABC BBO DE PSO SGA MBO MBO-FS

f0 17.85 5.77 18.97 18.88 6.42 1.3E5 0.95E-6
f1 1.0E8 2.8E5 9.0E6 3.2E7 4.0E4 0.67 0.69
f2 4.0E5 1.2E5 3.3E5 8.2E5 1.8E5 3.9E5 4.3E5
f3 136.66 5.83 31.13 104.06 3.98 1.00 0.96
f4 6.0E51 1.0E52 6.0E46 3.1E48 6.0E51 3.5E38 3.4E37
f5 49.00 2.00 14.00 36.00 4.00 1.00 1.00

(Dixon&Price) benchmark, original MBO performs
better than hybridized MBO-FS.

As a conclusion, we state that, our proposed hy-
bridization enhanced basic MBO algorithm by intro-
ducing FA’s search equation. In this way, the bal-
ance between exploitation and exploration is better
adjusted, especially in early stages of algorithm’s ex-
ecution.

5 Conclusion
In this paper, we introduced hybridized monarch but-
terfly optimization algorithm for solving global op-
timization problems. Despite of the fact that the
monarch butterfly optimization algorithm is relatively
new approach, it has already showed great potential
when tackling NP-hard optimization tasks. However,
by analyzing original monarch butterfly algorithm,
we noticed some deficiencies in the butterfly adjust-
ing operator that in early iterations exceedingly di-
rects the search process towards the current best so-
lution. To overcome this deficiency, we incorporated
firefly’s algorithm search mechanism into the original
monarch optimization approach. We named our ap-
proach MBO firefly search (MBO-FS).

We tested MBO-FS algorithm on six standard
global optimization benchamarks, and performed
comparative analysis with original monarch butterfly
optimization, as well as with other five state-of-the-art
metaheuristics. In average, MBO-FS outperformed all
other metaheuristics included in comparative analysis,
and as the final conclusion, we state that the MBO-FS
has great potential in dealing with NP-hard tasks.
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