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Abstract: It is known that the performance of queueing mechanisms in computer network nodes deteriorates when
traffic is strongly autocorrelated, or has the batch structure, or when the service time is of high variability. It is not
obvious however, which of those three factors plays the dominant role in this deterioration. In this paper, using
realistic traffic parameterizations with different system loads and buffer sizes, we are trying to determine, which of
the three prevails in making queues longer and packet losses higher.
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1 Introduction

The performance of queueing mechanisms in com-
puter network nodes (switches and routers) depends
on characteristics of the processed traffic. Unfortu-
nately, several phenomenons in the network traffic,
which may cause significant deterioration of the per-
formance of these mechanisms, have been noticed.

Firstly, it has been observed (see e.g. [1, 2, 3])
that packet interarrival times can be strongly autocor-
related, up to the lag of 10000. The fact that this
phenomenon makes queues longer and packet losses
higher has been widely disputed in many theoretical,
simulation and experimental papers.

Secondly, traffic is often bursty, [4]. The term
“bursty’ is associated with the appearance of pack-
ets in batches, rather than as single units. Such batch
structure of traffic is explained by the design of the
TCP protocol and its congestion control mechanism,
which uses the variable called window. This variable
determines, how many packets can be injected to the
network one after another, without a confirmation of
the delivery. Again, it is well known that the batch
structure of traffic makes queues longer and packet
losses higher.

Finally, packets can have differently distributed
sizes in different IP networks. As the packet size
translates directly to the service (forwarding) time, we
have different distributions of the service time. The
Pollaczek-Khinchine formula, [5], states that the av-
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erage queue size in the M /G /1 system is equal to:

= p? + X2Var(F)
P=p+t—Fr—
2(1—-p)

where ) is the arrival rate of the Poisson process,
p < 1 is the load of the system and Var(F) is the
variance of the service time distribution. Therefore,
in some systems the average queue size may grow lin-
early with the variance of the service time.

Summarizing, there are at least three important
factors that may cause deterioration of the perfor-
mance of queueing mechanisms, known to be present
in real networks: the interarrival time autocorrelation,
batch arrivals and variable service times.

In theory, each of the three can play the domi-
nant role in deteriorating the queueing performance.
We can obtain an arbitrary large queue size by assum-
ing the service time of large enough variance. We can
obtain an arbitrary large queue size by using the ar-
rival process of strong enough, long-range autocorre-
lation. And we can obtain an arbitrary large queue
size by using heavy-tailed batch sizes of large average
value. Therefore, searching for the dominant factor in
the general case makes no sense.

In this paper, we are trying to find which of the
three factors prevails in real networks, i.e. given the
realistic parameterizations of the network queueing
mechanisms. In particular, we know that the typical
range of size of an IP packet is 40-1500 bytes. We
know also, that in real networks the traffic autocor-
relation is observed up to the fourth time scale, not
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further. We know also, which batch sizes can be ex-
pected in the traffic, given the design of the TCP win-
dow mechanisms.

To accomplish the goal of the paper, four distinct
queueing models will be studied. The first, reference
model, will incorporate neither the variable service
time, nor the batch structure, nor the traffic autocorre-
lation. The second model will incorporate the variable
service time, but not the batch structure, nor the traffic
autocorrelation. The third model will incorporate the
batch structure, but not the variable service time, nor
the traffic autocorrelation. Finally, the fourth model
will incorporate the traffic autocorrelation, but not the
variable service time, nor the batch structure.

As was said, in every model, realistic param-
eters of the traffic and the service process will be
used. In addition, each model will be studied in three
load scenarios: underloaded system (p = 0.9), criti-
cally loaded system (p = 1) and overloaded system
(p = 1.1). Moreover, each model will be studied sep-
arately with a small buffer (N = 100) and a large
buffer (/N = 1000).

The remaining part of the paper is structured as
follows. In Section 2, the details of the four queue-
ing models, as well as their parameterizations, are
given. Section 3 discusses how the performance of
these models can be evaluated. In Section 4, average
queue lengths and packet loss ratios are presented and
discussed for all the models, in six distinct load and
buffer size scenarios. Finally, remarks concluding the
paper are gathered in Section 5.

2 Queueing models

The following four models of queueing systems will
be considered.

Model (a): Poisson arrivals and constant packet
sizes. In Kendall’s notation, this the M/D/1/N sys-
tem. Packet interarrival times are independent and ex-
ponentially distributed with parameter A. Parameter
A will be changed according to the required system
load (p = 0.9, p = 1 or p = 1.1). The packet size
is constant and equal to 770 bytes, which translates to
constant service time (transmission through the 1Gb/s
interface). The buffer size is finite and equals N
packets, meaning that no more than N packets can
be stored, including the service position. If a packet
arrives when the buffer is full, it is deleted and lost.
Two buffer sizes will be considered: N = 100 and
N = 1000.

This is the reference model — it incorporates nei-
ther the variable service time, nor the batch structure,
nor the traffic autocorrelation.

Model (b): Poisson arrivals and uniform packet
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sizes. In Kendall’s notation, this the M/U/1/N
system. Packet interarrival times are independent
and exponentially distributed with parameter A\, while
the packet size is uniformly distributed in the range
[40;1500] bytes, which translates to uniform distri-
bution of the service time (transmission through the
1Gb/s interface). The buffer size is finite and equals
N. Two buffer sizes will be considered, N = 100
and NV = 1000, as well as three load values, p = 0.9,
p=1lorp=1.1.

This model incorporates the variable service time,
but not the batch structure of the traffic, nor the traffic
autocorrelation. Therefore, it is designed to test the
influence of the bare variability of the packet size on
the queueing performance.

Model (c): batch Poisson arrivals and con-
stant packet sizes. In Kendall’s notation, this the
MX/D/1/N system. Packets arrive in batches. A
realistic batch size distribution was taken from Fig. 5
of [4] and is the following:

by = 0.296, by = 0.231, by = 0.034, by = 0.181,
bs = 0.023, bg = 0.021, by = 0.017, bg = 0.107,
by = 0.0075, byo = 0.007, by = 0.006,
bia = 0.006, byz = 0.005, b4 = 0.005,
bis = 0.004, big = 0.042, bsy = 0.0075.

The average batch size is 4.1825. Interarrival times
between batches are independent and exponentially
distributed with parameter A, which will be changed
according to the required system load. The packet
size is constant and equal to 770 bytes, which trans-
lates to constant service time (transmission through
the 1Gb/s interface). The buffer size is finite and equal
to N packets. Two buffer sizes will be considered,
N =100 and N = 1000, as well as three load values,
p=09,p=1lorp=1.1.

This model incorporates the batch structure of the
traffic, but not the variable service times, nor the traf-
fic autocorrelation. Therefore, it is designed to study
the influence of the realistic batch structure on queue-
ing characteristics.

Model (d): MAP arrivals and constant packet
sizes. In Kendall’s notation, this the M AP/D/1/N
system. The interarrival times follow the Markovian
arrival process with the following parameters, taken
from [6]:

. _ | 2:5582-10° 4.3951-1072 |
fe 7 1.1369 1072 6.6173-107" |°

D _ | 2:6769-10° 6.6924-107° ]
7| 4.2706-107°  1.7082-10° |-
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p. [ 43309-10° 27061107
7 6.7564-1072 2.2578-1072 |
Doy — 3.5552 - 10! 2.9355- 1071
1471 2.6962-10° 4.8230-10° |°

Dy = —Dyq @ Doy @ Doe @ Dog,
D1 = D14 @ D1p ® D1 ® D1g,

where each Dy, matrix is negative and diagonal with
i-th element equal in modulus to the sum of the ¢-th
row of the associated D;, matrix. (This MAP pro-
cess is able to mimic very well the strong autocorrela-
tion observed in the famous Bellcore trace file). The
arrival process is then scaled to obtain the required
system loads. The packet size is constant and equal
to 770 bytes, which translates to constant service time
(transmission through the 1Gb/s interface). The buffer
size is finite and equal to N packets. Two buffer sizes
will be considered, N = 100 and N = 1000, as well
as three load values, p = 0.9, p=1orp =1.1.

This model incorporates the traffic autocorrela-
tion, but not the variable service time, nor the batch
structure. Therefore, it is meant to test the influence
of the realistic, strong autocorrelation, on the queue-
ing performance.

In every model and every load-buffer scenario,
the stationary average queue size, the standard devi-
ation of the queue size size and the loss ratio will be
checked. Obviously, the loss ratio is the long-run frac-
tion of packets lost due to the buffer overflow.

3 Models’ solution

Each of the aforementioned queueing models is a spe-
cial case of the BMAP/G/1/N model, ie. the
model with batch Markovian arrival process [7], gen-
eral distribution of the service time and finite buffer
of size N. Therefore, the analytical solution of
BMAP/G/1/N can be used for solving each of the
models (a)-(d). We will recall this solution in this sec-
tion.

Therefore, in this section we assume that the ar-
rivals form the BMAP process with m states, parame-
ters Do, D1, Do, . . ., and transition probabilities:

p2(072) - 07
1
pl([)’k) = X(DO)zka 1< Zak < m, k 7& ia
1
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where )\z’ = _(DO)ii-

Let IP(-) denote probability, X (¢) denote the state
of the modulating chain at time ¢, J(¢) denote the state
of the modulating chain at time ¢, F'(-) denote the
distribution function of the service time distribution,
f(s) denote the Laplace-Stieltjes transform of F'(-),
N (t) denote the total number of arrivals in (0,1), d;;
denote the Kronecker symbol and

Pij(n,t) = P(N(t)=n, J(t)=j|N(0)=0, J(0)=i),

ak’m(s):/ eistpiyj(k‘, t)dF(t),
0

2(8) = ((s+ X)L, (s+ )T,
1=(1,...,1)7T.

Moreover, the following m X m matrices will be
needed:

0 — m X m matrix of zeroes,

Auls) = lanis () i) = [P2ED]

Due) = | [Pyt 00 - )

Ap(s) =) Ails),
i=k

Bi(s) = Agga(s) — Appa(s)(Ao(s))
Ro(s) =0, Ri(s) = Ag'(s),

k—1
Ri(s)=R1(s)(R—1(s)Y_Air1(s)Rri(s)), k > 2.
=0
N o)
My (s)=Rny1(s)Ao(s)+>  Rn—i(s)Bi(s)-Y  Yi(s)
k=0 k=N+1

N k
= Y k(5)[Rrs1(s) Ao(s 1Y Ri—i(s)Bi(s)].
k=0 =0

Now, let

et = [ ot
0
and

¢n(5’ l) = (¢n,1 (57 l)7 B ¢n,m(87 l))T7

where
®,,i(t, 1) =P(X(t) =1|X(0) =n, J(0) =1).

In [8], the following theorem was proven.
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Theorem 1. The Laplace transform of the queue
length distribution in the BMAP/G/1/N system
equals:

N-—n
an(S,l) = Z RN—n—k(S)gk:(Svl)+[Ran+l(5)A0(5)
N—n w0
+ Y Byoni(s)Br(s)IMy' (s)mn (s, 1), (1)
k=0
with
9i(8,1) = Api1(s) (Ao () rn (s, 1) —rn_i(s, 1),
0-1, if I <n,
’f’n(S,l): Elfn(s)'L if n<I<N,

- S Di(s) 1, 1= .

N k
mn(s,) =Y YN r(s)Y_ Rii(s)gi(s,1)
k=0 =0

N

- Z Ry (5)gk(s,1) + boiz(s).

k=0

This theorem can be used for solving all four
queueing models, (a)-(d), exploited in this paper. Al-
ternatively, the simple models of M /G/1/N type and
MX /G/1/N type can be solved using simplified for-
mulas given in [9]. The loss ratio can be obtained us-
ing formula (see e.g. [10]):

L —1_ 1-— @071(00,0)’
p
where p is the system load.

Alternatively, the performance of queueing sys-
tems (a)-(d) can be studied using simulations, e.g.
with the help of Omnet++ simulator, [11], and the
simulation of the BMAP process presented in [12].

4 Results and discussion

The results are presented in Tables 1-6.

In particular, in Tab. 1, the results for an under-
loaded system and a small buffer are presented. As
we can see, distributed packet sizes in (b) have a sur-
prisingly small impact on the queueing performance -
the queue and the losses are only slightly higher that
in (a). On the other hand, both the batch structure
and the autocorrelation enlarge the queue size several
times and the losses by several orders of magnitude.
Comparing models (c) and (d), we can conclude that
both give results in the same ballpark (the autocorre-
lation has a slightly deeper influence of the queueing
performance).
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In Tab. 2, the results for an underloaded system
and a large buffer are presented. Distributed packet
sizes in (b) have a very small impact on the queueing
performance. Contrary to Tab. 1, the impact of the
batch structure and the autocorrelation is very differ-
ent now. The batch structure enlarges the queue size 8
times, while the autocorrelation 72 times. As for the
loss ratio, it is not significantly increased in (c), and
drastically increased in (d).

In Tab. 3, the results for a critically loaded system
and a small buffer are presented. As we can see, nei-
ther the distributed packet sizes, nor the batch struc-
ture, nor the autocorrelation, have a significant impact
on the queue size in this scenario. As regards the loss
ratio, it does not change for distributed packet sizes,
but enlarges 8 times in the case of the batch struc-
ture, and 24 times in the case of the autocorrelation.
The latter is especially bad, as it means a lot of packet
losses — as much as 12%.

In Tab. 4, the results for a critically loaded sys-
tem and a large buffer are presented. They are similar
to those in Tab. 3 in the sense that neither the dis-
tributed packet sizes, nor the batch structure, nor the
autocorrelation has a deep impact on the queue length.
The loss ratio is almost the same in (a) and (b), then
increases 8 times in (¢) and 192 times in (d).

In Tab. 5, the results for an overloaded system
and a small buffer are presented. As we can see, dis-
tributed packet sizes in (b) have a negligible impact
on the queueing performance. The loss ratio is a lit-
tle higher in (c) and (d) than in (a). Surprisingly, the
queue size decreases a little in (c), if compared with
(a), and almost twice in (d). This counterintuitive phe-
nomenon is causes by higher loss ratio, which makes
the actual, carried load, lower in (c) and (d), than in
(a). This phenomenon was studied in detail in [13].

Finally, in Tab. 6, the results for an overloaded
system and a large buffer are presented. In this case,
both distributed packet sizes in (b) and the batch struc-
ture have a negligible impact on the queue size and
loss ratio. The autocorrelation, on the other hand, in-
creases the losses, but decreases the queue size almost
two times. This is again connected with the decreased
carried load of the system in (d).

Summarizing, we see that distributed packet sizes
have a minor or negligible influence on the queueing
performance in all the considered scenarios. Both the
batch structure and the autocorrelation have a negative
impact on the loss ratio in all the considered scenar-
ios, but the impact of the autocorrelation is usually
stronger. It can be extremely strong, when the load is
small and the buffer is large (Tab. 2). The batch struc-
ture and the autocorrelation have also a negative im-
pact on the queue size, but in an underloaded system
only. (The impact of the autocorrelation is stronger).
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system type avg. queue | stddev. queue loss

length length ratio
(a) Poisson arrivals, constant packet sizes 4.95 4.89 1.1-.10719
(b) Poisson arrivals, uniform packet sizes 6.15 6.23 1.0-1078
(c) batch arrivals, constant packet sizes 29.2 26.4 1.2-1072
(d) MAP arrivals, constant packet sizes 35.1 35.7 8.5.1072

Table 1: Average queue length, its standard deviation and the loss ratio, p =0.9 and N =100.

system type avg. queue | stddev. queue loss

length length ratio
(a) Poisson arrivals, constant packet sizes 4.95 4.89 < 10710
(b) Poisson arrivals, uniform packet sizes 6.15 6.23 < 10710
(c) batch arrivals, constant packet sizes 40.7 45.2 5.6-10°10
(d) MAP arrivals, constant packet sizes 358 427 5.5-1072

Table 2: Average queue length, its standard deviation and the loss ratio, p =0.9 and N =1000.

system type avg. queue | stddev. queue loss

length length ratio
(a) Poisson arrivals, constant packet sizes 50.0 28.8 5.0-1073
(b) Poisson arrivals, uniform packet sizes 49.7 28.9 6.4-1073
(c) batch arrivals, constant packet sizes 47.7 30.0 421072
(d) MAP arrivals, constant packet sizes 44.5 37.8 1.2-1071

Table 3: Average queue length, its standard deviation and the loss ratio, p =1.0 and N =100.

system type avg. queue | stddev. queue loss

length length ratio
(a) Poisson arrivals, constant packet sizes 478 290 5.1-10°%
(b) Poisson arrivals, uniform packet sizes 492 283 5.6-10°4
(c) batch arrivals, constant packet sizes 484 288 421073
(d) MAP arrivals, constant packet sizes 409 440 9.8-102

Table 4: Average queue length, its standard deviation and the loss ratio, p =1.0 and N =1000.

system type avg. queue | stddev. queue loss

length length ratio
(a) Poisson arrivals, constant packet sizes 94.8 5.21 9.0-1072
(b) Poisson arrivals, uniform packet sizes 93.3 6.80 9.0-1072
(c) batch arrivals, constant packet sizes 66.5 26.4 1.0-1071
(d) MAP arrivals, constant packet sizes 52.9 38.2 1.7-1071
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In the overloaded system, we can encounter reverse
effect — the queue size might be smaller due to smaller
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load carried by the system.

Table 5: Average queue length, its standard deviation and the loss ratio, p =1.1 and N =100.
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system type avg. queue | stddev. queue loss

length length ratio
(a) Poisson arrivals, constant packet sizes 994 10.7 9.0-102
(b) Poisson arrivals, uniform packet sizes 993 11.8 9.0-10~2
(c) batch arrivals, constant packet sizes 955 43.3 9.0-10~2
(d) MAP arrivals, constant packet sizes 471 427 1.3-1071

Table 6: Average queue length, its standard deviation and the loss ratio, p =1.1 and N =1000.

5 Conclusions

In this paper, we tried to determine, which factor
among the three: the variable service time, the batch
traffic structure and the traffic autocorrelation, causes
the worst deterioration of the queueing performance.
We used four models of queueing systems with real-
istic traffic parameterizations, system loads and buffer
sizes.

The variable service time has a minor impact on
the packet loss ratio. On the other hand, the autocorre-
lation has a deep, negative impact on this characteris-
tic. The batch structure enlarges the number of losses
as well, but not that strongly, as the autocorrelation.

The variable service time has a minor impact on
the queue size. The batch structure and the autocorre-
lation have a deep, negative impact on this characteris-
tic (the impact of the autocorrelation is stronger), but
only when the system is underloaded. If the system
is overloaded, a reverse effect can be observed - the
queues can get shorter when the traffic has the batch
structure of when it is autocorrelated.
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